Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
BMC Microbiol ; 20(1): 300, 2020 10 06.
Article in English | MEDLINE | ID: mdl-33023493

ABSTRACT

BACKGROUND: Numerous studies have reported the health-promoting effects of exopolysaccharides (EPSs) in in vitro models; however, a functional evaluation of EPSs will provide additional knowledge of EPS-microbe interactions by in vivo intestinal microbial model. In the present study, high-throughput amplicon sequencing, short-chain fatty acid (SCFAs) and intestinal inflammation evaluation were performed to explore the potential benefits of exopolysaccharides (EPSs) and EPS-producing Lactobacillus (HNUB20 group) using the healthy zebrafish (Danio rerio) model. RESULTS: The results based on microbial taxonomic analysis revealed that the abundance of four genera, Ochrobactrum, Sediminibacterium, Sphingomonas and Sphingobium, were increased in the control group in comparison to HNUB20 group. Pelomonas spp. levels were significantly higher and that of the genera Lactobacillus and Brachybacterium were significantly decreased in EPS group compared with control group. PICRUSt based functional prediction of gut microbiota metabolic pathways indicated that significantly lower abundance was found for transcription, and membrane transport, whereas folding, sorting and degradation and energy metabolism had significantly higher abundance after HNUB20 treatment. Two metabolic pathways, including metabolism and endocrine functions, were more abundant in the EPS group than control group. Similar to the HNUB20 group, transcription was also decreased in the EPS group compared with the control group. However, SCFAs and immune indexes indicated EPS and HNUB20 performed limited efficacy in the healthy zebrafish. CONCLUSIONS: The present intestinal microbial model-based study indicated that EPSs and high-yield EPS-producing Lactobacillus can shake the structure of intestinal microbiota, but cannot change SCFAs presence and intestinal inflammation.


Subject(s)
Gastrointestinal Microbiome/physiology , Intestines/microbiology , Lactobacillus/physiology , Polysaccharides, Bacterial/pharmacology , Zebrafish/microbiology , Actinobacteria/physiology , Animals , Bacteroidetes/physiology , Comamonadaceae/physiology , Fatty Acids, Volatile/metabolism , Female , Male , Metabolic Networks and Pathways/genetics , Ochrobactrum/physiology , Polysaccharides, Bacterial/biosynthesis , Sphingomonadaceae/physiology , Sphingomonas/physiology , Transcription, Genetic
2.
Ecotoxicol Environ Saf ; 189: 109938, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31759739

ABSTRACT

A novel carbofuran-degrading strain CFD-1 was isolated and preliminarily identified as Sphingbium sp. This strain was able to utilize carbofuran as the sole carbon source for growth. The carbofuran hydrolase gene cehA was cloned from strain CFD-1 and expressed in Escherichia coli. CehA could hydrolyze carbamate pesticides including carbofuran and carbaryl efficiently, while it showed poor hydrolysis ability against isoprocarb, propoxur, oxamyl and aldicarb. CehA displayed maximal enzymatic activity at 40 °C and pH 7.0. The apparent Km and Kcat values of CehA for carbofuran were 133.22 ±â€¯5.70 µM and 9.48 ±â€¯0.89 s-1, respectively. The site-directed mutation experiment showed that His313, His315, His453 and His495 played important roles in the hydrolysis of carbofuran by CehA. Furthermore, the sequence of cehA is highly conserved among different carbofuran-degrading strains, and there are mobile elements around cehA, indicating that it may be transferred horizontally between different strains.


Subject(s)
Carbofuran/metabolism , Pesticides/metabolism , Sphingomonadaceae/physiology , Amino Acids/metabolism , Biodegradation, Environmental , Carbamates , Carbaryl/metabolism , Hydrolases/metabolism , Hydrolysis
3.
Antonie Van Leeuwenhoek ; 112(9): 1341-1348, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30997587

ABSTRACT

A novel Gram-staining negative, yellow-pigmented, non-motile, aerobic and rod-shaped bacterium, designated MAH-11T, was isolated from rhizosphere of Pinus koraiensis and was characterised by using a polyphasic taxonomic approach. The colonies were smooth, circular and 0.3-1.0 mm in diameter when grown on R2A agar for 3 days. The strain was positive for both catalase and oxidase tests. Optimum growth temperature and pH were 28-30 °C and 7.0, respectively. Cell growth occurs on R2A agar, nutrient agar, Luria-Bertani agar and tryptone soya agar but not on MacConkey agar. The novel strain was found to be able to hydrolyse esculin but not casein, gelatin, starch, L-tyrosine, DNA, L-arginine, urea, Tween 20 and Tween 80. On the basis of 16S rRNA gene sequence analysis, strain MAH-11T belongs to the genus Sphingobium and is closely related to Sphingobium quisquiliarum P25T (98.1%), Sphingobium vermicomposti VC-230T (97.8%), Sphingobium mellinum WI4T (97.5%), Sphingobium barthaii KK22T (97.2%) and Sphingobium fuliginis TKPT (97.2%). In DNA-DNA hybridization tests, the DNA relatedness values between strain MAH-11T and its close phylogenetic neighbors were below 45.0%. The DNA G+C content was 64.5 mol% and the predominant respiratory quinone was identified as ubiquinone-10. The major cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c), summed feature 3 (C16:1ω7c and/or C16:1ω6c) and C16:0. The DNA-DNA hybridization results in combination with chemotaxonomic and physiological data demonstrated that strain MAH-11T represents a novel species within the genus Sphingobium, for which the name Sphingobium chungangianum is proposed. The type strain is MAH-11T (= KACC 19836T = CGMCC 1.13749T).


Subject(s)
Pinus/growth & development , Soil Microbiology , Sphingomonadaceae/classification , Sphingomonadaceae/isolation & purification , Bacterial Typing Techniques , Base Composition , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Nucleic Acid Hybridization , Phylogeny , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Rhizosphere , Sequence Analysis, DNA , Sphingomonadaceae/genetics , Sphingomonadaceae/physiology
4.
Antonie Van Leeuwenhoek ; 112(9): 1357-1367, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31025129

ABSTRACT

Strain SYSU M10002T was isolated from a water sample collected from the coastal region of Pearl River estuary, Guangdong Province, southern China. The taxonomic position of the isolate was investigated by polyphasic taxonomic approaches. The isolate was found to be Gram-negative, non-motile, short rods and aerobic. The strain was able to grow at 14-37 °C, pH 6.0-10.0 and in the presence of up to 0.5% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SYSU M10002T is a member of the family Sphingomonadaceae, with high sequence similarity to Sphingorhabdus buctiana T5T (95.1%). Overall genomic related indices between the genome of strain SYSU M10002T and those of related strains were low to moderate (AAI values < 64.3%; POCP values < 58%), indicating that strain SYSU M10002T represents a novel lineage within the family Sphinogomonadaceae. Strain SYSU M10002T contained homospermidine as its polyamine. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, two unidentified phospholipids and an unidentified aminolipid. Ubiquinone Q-9 (44.9%) and Q-10 (43.2%) were the dominant respiratory quinones, along with a minor amount of Q-8 (11.9%). The predominant cellular fatty acids (> 10%) identified were summed feature 3 (C16:1ω7c and/or C16:1ω6c), summed feature 8 (C18:1ω7c) and C14:0 2-OH. The genomic DNA G+C content was 64.0%. Based on the analyses of the phenotypic, genotypic and phylogenetic characteristics, strain SYSU M10002T is determined to represent a novel species of a novel genus, for which the name Aestuariisphingobium litorale gen. nov., sp. nov. is proposed. The type strain of the species is SYSU M10002T (= KCTC 52944T = NBRC 112961T).


Subject(s)
Rivers/microbiology , Sphingomonadaceae/classification , Sphingomonadaceae/isolation & purification , Bacterial Typing Techniques , Base Composition , China , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Estuaries , Fatty Acids/analysis , Phospholipids/analysis , Phylogeny , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spermidine/analysis , Sphingomonadaceae/genetics , Sphingomonadaceae/physiology
5.
J Appl Microbiol ; 124(6): 1532-1543, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29473990

ABSTRACT

AIM: To analyse the physiological response of Sphingobium sp. 22B to water stress. METHODS AND RESULTS: The strain was grown under excess of carbon source and then subjected to low (60RH) and high (18RH) water stress conditions for 96 h. Quantification of trehalose, glycogen, polyhydroxybutyrate (PHB) and transmission electron microscopy (TEM) was studied. Genes linked with desiccation were searched in Sphingobium sp. 22B and Sphingomonas 'sensu latu' genomes and their transcripts were quantified by real-time PCR. Results showed that, in the absence of water stress, strain 22B accumulated 4·76 ± 1·41% of glycogen, 0·84 ± 1·62% of trehalose and 44·9 ± 6·4% of PHB per cellular dry weight. Glycogen and trehalose were mobilized under water stressed conditions, this mobilization was significantly higher in 60RH in comparison to 18RH. Gene treY was upregulated sixfold in 60RH relative to control condition. TEM and quantification of PHB revealed that PHB was mobilized under 60RH condition accompanied by the downregulation of the phbB gene. TEM images showed an extracellular amorphous matrix in 18RH and 60RH. Major differences were found in the presence of aqpZ and trehalose genes between strain 22B and Sphingomonas genomes. CONCLUSION: Strain 22B showed a carbon conservative metabolism capable of accumulation of three types of endogenous carbon sources. The strain responds to water stress by changing the expression pattern of genes related to desiccation, formation of an extracellular amorphous matrix and mobilization of the carbon sources according to the degree of water stress. Trehalose, glycogen and PHB may have multiple functions in different degrees of desiccation. The robust endowment of molecular responses to desiccation shown in Sphingobium sp. 22B could explain its survival in semi-arid soil. SIGNIFICANCE AND IMPACT OF THE STUDY: Understanding the physiology implicated in the toleration of the PAH-degrading strain Sphingobium sp 22B to environmental desiccation may improve the bioaugmentation technologies in semi-arid hydrocarbon-contaminated soils.


Subject(s)
Adaptation, Physiological/physiology , Microbial Viability , Sphingomonadaceae/physiology , Water/metabolism , Argentina , Chile , Glycogen/metabolism , Humidity , Soil Microbiology , Sphingomonadaceae/genetics , Sphingomonadaceae/metabolism , Trehalose/metabolism
6.
Appl Microbiol Biotechnol ; 102(6): 2803-2815, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29417199

ABSTRACT

Sphingomonads are isolated at exceptionally high frequency from organic polluted environments and assumed to be more hydrophobic than other Gram-negative bacteria. However, the potential roles of cell-surface hydrophobicity (CSH) in the cell survival in polluted environment, as well as the mechanisms underlying the CSH of sphingomonads, remain unclear. Sphingobium hydrophobicum C1T is a highly hydrophobic sphingomonad isolated from electronic-waste contaminated sediment. In this study, we found that exposure to the typical pollutants in electronic-waste contaminated sediment, such as the heavy metal ion Pb and the organic compound deca-brominated diphenyl ether (deca-BDE), resulted in the development of even higher CSH of the hydrophobic strain C1T; but no significant change was observed in the low CSH of its hydrophilic variant C2. The hydrophobic strain C1T achieved higher biomass yield in standing conditions and adsorbed more amounts of hydrophobic deca-BDE than its hydrophilic variant C2, suggesting that the high CSH potentially enhanced the adaptation of hydrophobic strain to colonize in sediment and adsorb hydrophobic nutrients. The identification of the bacterial cell-surface constituents showed that the high CSH of S. hydrophobicum was contributed greatly by outer-membrane proteins, particularly membrane transporters functioning as enhancers for nutrient uptake and stress sustainment. This study will enhance our understanding of the adaptive strategies of sphingomonads in contaminated environments. It will be of great importance to enhance the CSH of sphingomonads and utilize them in cleaning up the environment from organic pollution.


Subject(s)
Adaptation, Biological , Electronic Waste , Hydrophobic and Hydrophilic Interactions , Sphingomonadaceae/physiology , Surface Properties , Adsorption , Bacterial Outer Membrane Proteins/metabolism , Environmental Microbiology , Environmental Pollutants/metabolism , Halogenated Diphenyl Ethers/metabolism , Lead/metabolism , Membrane Transport Proteins/metabolism , Sphingomonadaceae/drug effects , Sphingomonadaceae/isolation & purification
7.
Antonie Van Leeuwenhoek ; 110(7): 877-889, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28337567

ABSTRACT

It is believed that sphingomonads are ubiquitously distributed in environments. However detailed information about their community structure and their co-relationship with environmental parameters remain unclear. In this study, novel sphingomonads-specific primers based on the 16S rRNA gene were designed to investigate the distribution of sphingomonads in 10 different niches. Both in silico and in-practice tests on pure cultures and environmental samples showed that Sph384f/Sph701r was an efficient primer set. Illumina MiSeq sequencing revealed that community structures of sphingomonads were significantly different among the 10 samples, although 12 sphingomonad genera were present in all samples. Based on RDA analysis and Monte Carlo permutation test, sphingomonad community structure was significantly correlated with limnetic and marine habitat types. Among these niches, the genus Sphingomicrobium showed strong positive correlation with marine habitats, whereas genera Sphingobium, Novosphingobium, Sphingopyxis, and Sphingorhabdus showed strong positive correlation with limnetic habitats. Our study provided direct evidence that sphingomonads are ubiquitously distributed in environments, and revealed for the first time that their community structure can be correlated with habitats.


Subject(s)
Ecosystem , Phylogeny , RNA, Ribosomal, 16S , Sphingomonadaceae/genetics , DNA, Bacterial , DNA, Ribosomal , Sphingomonadaceae/physiology
8.
Wei Sheng Wu Xue Bao ; 57(3): 399-410, 2017 Mar 04.
Article in Zh | MEDLINE | ID: mdl-29756438

ABSTRACT

Objective: The present study aims to analyze the chemotaxis genes and proteins of several PAH-degrading Novosphingobium strains, and the chemotaxis of these strains toward aromatic compounds and intermediates. Methods: Based on genome comparative analysis, we identified the chemotaxis genes organization and proteins distribution. We used drop and swarm plate assays to detect the chemotaxis of these strains toward aromatic compounds and intermediates of TCA cycle. Results: We found that all these Novosphingobium strains showed chemotaxis, but the chemotatic ability varied. The completed genome sequenced strains N. pentaromativorans F2, N. pentaromativorans US6-1, N. pentaromativorans PP1Y, Novosphingobium sp. AP12, Novosphingobium sp. Rr 2-17, and Novosphingobium nitrogenifigens DSM 19370 contained MCP, CheW, CheA, CheB, CheR and CheY. Strain F2, US6-1 and PP1Y, shared a consistent order of chemotaxis genes in "che" cluster. The chemotatic system of these Novosphingobium strains belonged to the Fla chemotactic system. Conclusion: These strains all contained a complete chmotaxis pathway. Their chemotactic ability toward aromatic compounds and intermediates varied, and the chemotaxis of US6-1 was obvious.


Subject(s)
Chemotaxis , Sphingomonadaceae/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chemotaxis/drug effects , Hydrocarbons, Aromatic/pharmacology , Sphingomonadaceae/drug effects , Sphingomonadaceae/genetics , Trichloroacetic Acid/pharmacology
9.
Appl Environ Microbiol ; 82(9): 2872-2883, 2016 May.
Article in English | MEDLINE | ID: mdl-26969701

ABSTRACT

Although the source of drinking water (DW) used in hospitals is commonly disinfected, biofilms forming on water pipelines are a refuge for bacteria, including possible pathogens that survive different disinfection strategies. These biofilm communities are only beginning to be explored by culture-independent techniques that circumvent the limitations of conventional monitoring efforts. Hence, theories regarding the frequency of opportunistic pathogens in DW biofilms and how biofilm members withstand high doses of disinfectants and/or chlorine residuals in the water supply remain speculative. The aim of this study was to characterize the composition of microbial communities growing on five hospital shower hoses using both 16S rRNA gene sequencing of bacterial isolates and whole-genome shotgun metagenome sequencing. The resulting data revealed a Mycobacterium-like population, closely related to Mycobacterium rhodesiae and Mycobacterium tusciae, to be the predominant taxon in all five samples, and its nearly complete draft genome sequence was recovered. In contrast, the fraction recovered by culture was mostly affiliated with Proteobacteria, including members of the genera Sphingomonas, Blastomonas, and Porphyrobacter.The biofilm community harbored genes related to disinfectant tolerance (2.34% of the total annotated proteins) and a lower abundance of virulence determinants related to colonization and evasion of the host immune system. Additionally, genes potentially conferring resistance to ß-lactam, aminoglycoside, amphenicol, and quinolone antibiotics were detected. Collectively, our results underscore the need to understand the microbiome of DW biofilms using metagenomic approaches. This information might lead to more robust management practices that minimize the risks associated with exposure to opportunistic pathogens in hospitals.


Subject(s)
Bacterial Physiological Phenomena , Biofilms/growth & development , Cross Infection/genetics , Cross Infection/microbiology , Hospitals , Water Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/pathogenicity , Chlorine , Culture Techniques , DNA, Bacterial/analysis , Disinfectants/pharmacology , Disinfection , Drug Resistance, Bacterial , Genome, Bacterial , Metagenome , Microbiota/genetics , Mycobacterium/physiology , Ohio , Phylogeny , Proteobacteria/physiology , RNA, Ribosomal, 16S/genetics , Sphingomonadaceae/physiology , Water Supply
10.
Curr Microbiol ; 72(3): 276-81, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26613616

ABSTRACT

A novel rod-shaped binary fission, and yellow-pigmented bacterial strain, JLT 2480(T), was isolated from surface seawater in the East Pacific Ocean. The strain is Gram negative and oxidase negative. Phylogenetic analyses based on 16S rRNA gene sequence indicate that strain JLT 2480(T) falls in the family Sphingomonadaceae, sharing highest similarity (95.6 %) with the species Blastomonas ursincola. The DNA G+C content of JLT 2480(T) is 65.5 mol%, and the sole respiratory quinone is coenzyme Q10. The predominant polar lipids are sphingoglycolipids (SGL1 and SGL2), phosphatidylglycerols, phosphatidylethanolamines, phospholipids, glycolipids, and phosphatidylcholines. The predominant cellular fatty acids are C16:0, C18:0, C18:1ω7c, C12:0, and C16:1ω7c. Strain JLT 2480(T) is distinct from the B. ursincola type strain DSM 9006(T) as reflected by major chemotaxonomic distinctions between the two. Furthermore, two notable characteristics of the genus Blastomonas, that is, the presence of bacteriochlorophyll a and the puf genes, are not detected in JLT 2480(T). On the basis of present evidence, we consider JLT 2480(T) to be a novel species in a new genus of the family Sphingomonadaceae, and propose the name Binariimonas pacifica gen. nov., sp. nov., with strain JLT 2480(T) (=CGMCC 1.12850(T) = DSM 28646(T)) to be the type strain for genus Binariimonas.


Subject(s)
Aquatic Organisms/classification , Aquatic Organisms/isolation & purification , Seawater/microbiology , Sphingomonadaceae/classification , Sphingomonadaceae/isolation & purification , Aquatic Organisms/genetics , Aquatic Organisms/physiology , Bacterial Typing Techniques , Base Composition , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Glycolipids/analysis , Microscopy, Electron, Transmission , Molecular Sequence Data , Pacific Ocean , Phospholipids/analysis , Phylogeny , Pigments, Biological/analysis , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sphingomonadaceae/genetics , Sphingomonadaceae/physiology
11.
Arch Microbiol ; 197(2): 147-53, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25227995

ABSTRACT

An aerobic, Gram-negative, yellow-pigmented, non-motile rod-shaped bacterium designated KMM 9574(T) was isolated from a sand sediment sample collected from the Sea of Japan seashore. Comparative 16S rRNA gene sequence analysis showed that strain KMM 9574(T) belonged to the genus Sphingorhabdus sharing a highest sequence similarity to Sphingorhabdus marina JCM 14161(T) 96.8 %. Strain KMM 9574(T) was characterized by the major ubiquinone Q-10, and by the predominance of C(18:1) ω7c, C(16:0) 2-OH, C(16:1) ω7c, C(17:1), followed by C(15:0) 2-OH and C(14:0) 2-OH in its fatty acid profile. Polar lipids consisted of phosphatidylcholine, sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unknown phospholipid, and an unknown lipid. The DNA G+C content was 56.5 mol %. Based on phylogenetic analysis and distinctive phenotypic characteristics, strain 9574(T) is concluded to represent a novel species of the genus Sphingorhabdus, for which the name Sphingorhabdus pacificus sp. nov., is proposed. The type strain of the species is strain KMM 9574(T) (= NRIC 0922(T) = JCM 30177(T)).


Subject(s)
Geologic Sediments/microbiology , Phylogeny , Sphingomonadaceae/physiology , Base Composition , Fatty Acids/analysis , Lipids/analysis , Molecular Sequence Data , Oceans and Seas , Phospholipids/analysis , RNA, Ribosomal, 16S/genetics , Russia , Species Specificity , Sphingomonadaceae/chemistry , Sphingomonadaceae/classification , Sphingomonadaceae/genetics , Sphingomonadaceae/isolation & purification
12.
Antonie Van Leeuwenhoek ; 108(5): 1091-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26427858

ABSTRACT

Strain THG-SQA7(T), a Gram-negative, strictly aerobic, non-motile, rod-shaped bacterium was isolated from rhizosphere soil of a rose in PR China. Strain THG-SQA7(T) is closely related to the members of the genus Sphingobium, showing the highest 16S rRNA gene sequence similarities with Sphingobium lactosutens KACC 18100(T) (98.2%) and Sphingobium abikonense KCTC 2864(T) (98.1%). The DNA-DNA relatedness between strain THG-SQA7(T) and S. lactosutens KACC 18100(T) and S. abikonense KCTC 2864(T) was 26.2 ± 0.9 and 28.3 ± 1.2%, respectively. Chemotaxonomic data showed that strain THG-SQA7(T) possesses ubiquinone Q-10 as the predominant respiratory quinone, and C(18:1)ω7c, C(16:0), summed feature 3 (C(16:1)ω7c and/or C(16:1)ω6c) and C(14:0) 2OH as the major fatty acids. The major polar lipids were found to be phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidylglycerol, sphingoglycolipid, diphosphatidylglycerol and phosphatidyldimethylethanolamine. Based on these results, together with phenotypic characterization, a novel species, Sphingobium soli sp. nov. is proposed.with the type strain is THG-SQA7(T) (=CCTCC AB 2015125(T) = KCTC 42607(T)).


Subject(s)
Rhizosphere , Rosa/microbiology , Soil Microbiology , Sphingomonadaceae/classification , Base Composition , DNA, Bacterial , Fatty Acids/metabolism , Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , Sphingomonadaceae/isolation & purification , Sphingomonadaceae/physiology
13.
Antonie Van Leeuwenhoek ; 108(5): 1181-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26315363

ABSTRACT

A novel bacterial strain, THG-sc1(T), was isolated from a soil sample of a cucumber garden and was characterised by using a polyphasic approach. Cells were observed to be Gram-stain negative, non-motile and rod-shaped. The strain was found to be aerobic, catalase and oxidase positive, esculin and starch negative, and to have an optimum growth temperature and pH of 28 °C and 7.5, respectively. On the basis of 16S rRNA gene sequence analysis, strain THG-sc1(T) was found to belong to the genus Sphingosinicella and to be closely related to Sphingosinicella vermicomposti KCTC 22446(T), followed by Sphingosinicella xenopeptidilytica DSM 17130(T) and Sphingosinicella microcystinivorans KCTC 12019(T). The DNA G+C content was determined to be 60.8 mol% and the predominant respiratory quinone was identified as ubiquinone-10. The major polyamine was found to be sym-homospermidine. The major polar lipids were identified as sphingoglycolipid, phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid. The major fatty acids were identified as C(18:1)ω7c, C(16:0) and summed feature 3 (C(16:1)ω7c and/or iso-C(15:0) 2-OH, as defined by MIDI). The results of the genotypic analysis, in combination with chemotaxonomic and physiological data, demonstrated that strain THG-sc1(T) represents a novel species within the genus Sphingosinicella, for which the name Sphingosinicella cucumeris is proposed. The type strain is THG-sc1(T) (=KACC 18279(T) = CCTCC AB 2015120(T)).


Subject(s)
Cucumis sativus , Soil Microbiology , Sphingomonadaceae/classification , Base Composition , Cucumis sativus/microbiology , DNA, Bacterial , Fatty Acids/chemistry , Lipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sphingomonadaceae/chemistry , Sphingomonadaceae/isolation & purification , Sphingomonadaceae/physiology
14.
Antonie Van Leeuwenhoek ; 108(4): 851-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26205206

ABSTRACT

A novel Gram-stain negative, yellow coloured, strictly aerobic, rod-shaped, non-motile bacterium designated as THW-SA1(T), was isolated from lake water near Samsung apartment, Suwon, Republic of Korea. The phylogenetic analysis based on 16S rRNA gene sequences showed that strain THW-SA1(T) belongs to the genus Novosphingobium and is closely related to Novosphingobium taihuense (97.8 %) and Novosphingobium subterraneum (97.1 %). The DNA-DNA relatedness values between strain THW-SA1(T) and the most closely related type strains were found to be less than 30.0 %. The DNA G+C content was determined to be 67.5 mol%. The strain grows optimally at 25-28 °C, at pH 7.0, and in the presence of 0.5 % NaCl. The predominant isoprenoid quinone was identified as ubiquinone Q-10. The polar lipid profile comprises diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipid, phosphatidylcholine, some unidentified phospholipids and some unidentified polar lipids. Fatty acids characteristic for this genus, such as C16:1, C14:0 2-OH, C16:1 ω6c and/or C16:1 ω7c (summed feature 3) and C18:1 ω6c and/or C18:1 ω7c (summed feature 8) were also detected. On the basis of the phenotypic and genotypic analysis, the strain THW-SA1(T) is considered to represent a novel species of the genus Novosphingobium, for which the name Novosphingobium aquaticum sp. nov. is proposed. The type strain is THW-SA1(T) (=KCTC 42608(T)=CCTCC AB 2015114(T)).


Subject(s)
Lakes/microbiology , Sphingomonadaceae/classification , Sphingomonadaceae/isolation & purification , Aerobiosis , Bacterial Typing Techniques , Base Composition , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Hydrogen-Ion Concentration , Korea , Locomotion , Molecular Sequence Data , Nucleic Acid Hybridization , Phospholipids/analysis , Phylogeny , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Republic of Korea , Sequence Analysis, DNA , Sodium Chloride/metabolism , Sphingomonadaceae/genetics , Sphingomonadaceae/physiology , Temperature
15.
Antonie Van Leeuwenhoek ; 107(4): 1001-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25623892

ABSTRACT

A yellow-pigmented bacterium, designated strain GZGR-4(T), was isolated from the root of Hylomecon japonica (Thunb.) Prantl et Kündig collected from Taibai Mountain in Shaanxi Province, north-west China. Cells of strain GZGR-4(T) were Gram-negative, rod-shaped, strictly aerobic, non-endospore-forming and non-motile. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GZGR-4(T) is a member of the genus Sphingobium, exhibiting the highest sequence similarity to Sphingobium aromaticiconvertens DSM 12677(T) (97.3 %). 16S rRNA gene sequence similarities between strain GZGR-4(T) and the type strains of other Sphingobium species with validly published names ranged from 93.4-96.5 %. The predominant respiratory quinone of strain GZGR-4(T) was ubiquinone-10 (Q-10) and the major cellular fatty acids were summed feature 8 (comprising C18:1 ω7c and/or C18:1 ω6c), summed feature 3 (comprising C16:1 ω7c and/or C16:1 ω6c), C16:0 and C14:0 2-OH. Spermidine was the major polyamine. The polar lipid profile consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, sphingoglycolipid, one unidentified phosphoglycolipid, one unidentified phospholipid, one unidentified aminolipid and one unidentified lipid. The DNA G+C content was 63.6 mol%. DNA-DNA relatedness for strain GZGR-4(T) with respect to its closest phylogenetic relative S. aromaticiconvertens DSM 12677(T) was 22.6 ± 5.3 %. On the basis of the polyphasic taxonomic data presented, strain GZGR-4(T) is considered to represent a novel species of the genus Sphingobium, for which the name Sphingobium endophyticus sp. nov. is proposed. The type strain is GZGR-4(T) (=CCTCC AB 2013305(T) = KCTC 32447(T)).


Subject(s)
Papaveraceae/microbiology , Plant Roots/microbiology , Sphingomonadaceae/classification , Sphingomonadaceae/isolation & purification , Aerobiosis , Bacterial Typing Techniques , Base Composition , China , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Molecular Sequence Data , Nucleic Acid Hybridization , Phospholipids/analysis , Phylogeny , Pigments, Biological/analysis , Polyamines/analysis , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sphingomonadaceae/genetics , Sphingomonadaceae/physiology
16.
Antonie Van Leeuwenhoek ; 108(1): 51-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25912732

ABSTRACT

A Gram-negative, non-motive, aerobic and non-spore-forming strain 16-28-2(T) isolated from freshwater sediment of Taihu Lake was characterized by using a polyphasic approach. The optimum growth conditions were found to be as follows: 28 °C, pH 6.5 and 0-0.5 % NaCl in YG liquid medium. The major fatty acids were identified to be summed feature 3 (consisting of C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (consisting of C18:1 ω7c and/or C18:1 ω6c), C14:0 2-OH, C17:1 ω6c, C16:0 and C18:1 ω7c 11-methyl (>5 %). Strain 16-28-2(T) was found to contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and sphingoglycolipid as the major polar lipids; and ubiquinone 10 (Q-10) as the major respiratory quinone. DNA G+C content of strain 16-28-2(T) was 63.5 mol % (Tm). A phylogenetic study of 16S rRNA gene indicated that strain 16-28-2(T) is a member of the genus Novosphingobium, with the highest 16S rRNA gene sequence similarity of 96.3 % with Novosphingobium lentum MT1(T) and below 96 % with the other Novosphingobium species. On the basis of the phylogenetic, phenotypic analyses and biochemical characterization, we suggest that strain 16-28-2(T) is a novel species in the genus Novosphingobium, for which the name Novosphingobium tardum sp. nov. is proposed. The type strain of N. tardum is 16-28-2(T) (=CGMCC 1.12989(T) =NBRC 110956(T)).


Subject(s)
Geologic Sediments/microbiology , Sphingomonadaceae/classification , Sphingomonadaceae/isolation & purification , Aerobiosis , Bacterial Typing Techniques , Base Composition , Cluster Analysis , Cytosol/chemistry , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fatty Acids/analysis , Fresh Water , Glycolipids/analysis , Hydrogen-Ion Concentration , Lakes , Molecular Sequence Data , Phospholipids/analysis , Phylogeny , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride/metabolism , Sphingomonadaceae/genetics , Sphingomonadaceae/physiology , Temperature
17.
Appl Environ Microbiol ; 80(11): 3350-61, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24657861

ABSTRACT

The aim of this study was to identify genes involved in solute and matric stress mitigation in the polycyclic aromatic hydrocarbon (PAH)-degrading Novosphingobium sp. strain LH128. The genes were identified using plasposon mutagenesis and by selection of mutants that showed impaired growth in a medium containing 450 mM NaCl as a solute stress or 10% (wt/vol) polyethylene glycol (PEG) 6000 as a matric stress. Eleven and 14 mutants showed growth impairment when exposed to solute and matric stresses, respectively. The disrupted sequences were mapped on a draft genome sequence of strain LH128, and the corresponding gene functions were predicted. None of them were shared between solute and matric stress-impacted mutants. One NaCl-affected mutant (i.e., NA7E1) with a disruption in a gene encoding a putative outer membrane protein (OpsA) was susceptible to lower NaCl concentrations than the other mutants. The growth of NA7E1 was impacted by other ions and nonionic solutes and by sodium dodecyl sulfate (SDS), suggesting that opsA is involved in osmotic stress mitigation and/or outer membrane stability in strain LH128. NA7E1 was also the only mutant that showed reduced growth and less-efficient phenanthrene degradation in soil compared to the wild type. Moreover, the survival of NA7E1 in soil decreased significantly when the moisture content was decreased but was unaffected when soluble solutes from sandy soil were removed by washing. opsA appears to be important for the survival of strain LH128 in soil, especially in the case of reduced moisture content, probably by mitigating the effects of solute stress and retaining membrane stability.


Subject(s)
Bacterial Proteins/genetics , Microbial Viability , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Microbiology , Sphingomonadaceae/physiology , Stress, Physiological , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Mutagenesis, Insertional , Polyethylene Glycols/toxicity , Saline Solution, Hypertonic/toxicity , Sequence Analysis, DNA , Sphingomonadaceae/genetics , Sphingomonadaceae/growth & development , Sphingomonadaceae/metabolism
18.
Int J Syst Evol Microbiol ; 61(Pt 10): 2464-2468, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21097643

ABSTRACT

A yellow-pigmented, Gram-negative, short rod-shaped, non-motile and non-spore-forming bacterial strain, designated HU1-AH51(T), was isolated from freshwater sediment and was characterized using a polyphasic approach, in order to determine its taxonomic position. On the basis of 16S rRNA gene sequence similarity, strain HU1-AH51(T) was shown to belong to the genus Novosphingobium, showing the highest level of sequence similarity with respect to Novosphingobium resinovorum NCIMB 8767(T) (96.0 %), Novosphingobium naphthalenivorans TUT562(T) (96.0 %) and Novosphingobium panipatense SM16(T) (96.0 %). Strain HU1-AH51(T) had a genomic DNA G+C content of 62.6 mol% and Q-10 as the predominant respiratory quinone. Furthermore, the major polyamine component (spermidine) in the cytoplasm and the presence of sphingoglycolipids suggested that strain HU1-AH51(T) belongs to the family Sphingomonadaceae. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain HU1-AH51(T) represents a novel species of the genus Novosphingobium, for which the name Novosphingobium sediminicola sp. nov. is proposed. The type strain is HU1-AH51(T) ( = LMG 24320(T)  = KCTC 22311(T)).


Subject(s)
Fresh Water/microbiology , Geologic Sediments/microbiology , Sphingomonadaceae/classification , Sphingomonadaceae/isolation & purification , Bacterial Typing Techniques , Base Composition , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Glycosphingolipids/analysis , Molecular Sequence Data , Phylogeny , Pigments, Biological/metabolism , Polyamines/analysis , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sphingomonadaceae/genetics , Sphingomonadaceae/physiology
19.
mSphere ; 6(4): e0041221, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34378981

ABSTRACT

Rhizoremediation is based on the ability of microorganisms to metabolize nutrients from plant root exudates and, thereby, to cometabolize or even mineralize toxic environmental contaminants. Novosphingobium sp. HR1a is a bacterial strain able to degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs). Here, we have demonstrated that the number of CFU in microcosms vegetated with clover was almost 2 orders of magnitude higher than that in nonvegetated microcosms or microcosms vegetated with rye-grass or grass. Strain HR1a was able to eliminate 92% of the phenanthrene in the microcosms with clover after 9 days. We have studied the molecular basis of the interaction between strain HR1a and clover by phenomic, metabolomic, and transcriptomic analyses. By measuring the relative concentrations of several metabolites exudated by clover both in the presence and in the absence of the bacteria, we identified some compounds that were probably consumed in the rhizosphere; the transcriptomic analyses confirmed the expression of genes involved in the catabolism of these compounds. By using a transcriptional fusion of the green fluorescent protein (GFP) to the promoter of the gene encoding the dioxygenase involved in the degradation of PAHs, we have demonstrated that this gene is induced at higher levels in clover microcosms than in nonvegetated microcosms. Therefore, the positive interaction between clover and Novosphingobium sp. HR1a during rhizoremediation is a result of the bacterial utilization of different carbon and nitrogen sources released during seedling development and the capacity of clover exudates to induce the PAH degradation pathway. IMPORTANCE The success of an eco-friendly and cost-effective strategy for soil decontamination is conditioned by the understanding of the ecology of plant-microorganism interactions. Although many studies have been published about the bacterial metabolic capacities in the rhizosphere and about rhizoremediation of contaminants, there are fewer studies dealing with the integration of bacterial metabolic capacities in the rhizosphere during PAH bioremediation, and some aspects still remain controversial. Some authors have postulated that the presence of easily metabolizable carbon sources in root exudates might repress the expression of genes required for contaminant degradation, while others found that specific rhizosphere compounds can induce such genes. Novosphingobium sp. HR1a, which is our model organism, has two characteristics desirable in bacteria for use in remediation: its ubiquity and the capacity to degrade a wide variety of contaminants. We have demonstrated that this bacterium consumes several rhizospheric compounds without repression of the genes required for the mineralization of PAHs. In fact, some compounds even induced their expression.


Subject(s)
Medicago/chemistry , Phenanthrenes/metabolism , Plant Roots/chemistry , Sphingomonadaceae/physiology , Biodegradation, Environmental , Medicago/drug effects , Phenanthrenes/analysis , Phenanthrenes/pharmacology , Plant Extracts/pharmacology , Soil Microbiology , Sphingomonadaceae/drug effects
20.
Environ Microbiol ; 12(10): 2658-76, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20482592

ABSTRACT

The cold marine environment constitutes a large proportion of the Earth's biosphere. Sphingopyxis alaskensis was isolated as a numerically abundant bacterium from several cold marine locations, and has been extensively studied as a model marine bacterium. Recently, a metabolic labelling platform was developed to comprehensively identify and quantify proteins from S. alaskensis. The approach incorporated data normalization and statistical validation for the purpose of generating highly confident quantitative proteomics data. Using this approach, we determined quantitative differences between cells grown at 10°C (low temperature) and 30°C (high temperature). Cold adaptation was linked to specific aspects of gene expression: a dedicated protein-folding system using GroESL, DnaK, DnaJ, GrpE, SecB, ClpB and PPIase; polyhydroxyalkanoate-associated storage materials; a link between enzymes in fatty acid metabolism and energy generation; de novo synthesis of polyunsaturated fatty acids in the membrane and cell wall; inorganic phosphate ion transport by a phosphate import PstB homologue; TonB-dependent receptor and bacterioferritin in iron homeostasis; histidine, tryptophan and proline amino acid metabolism; and a large number of proteins without annotated functions. This study provides a new level of understanding on how important marine bacteria can adapt to compete effectively in cold marine environments. This study is also a benchmark for comparative proteomic analyses with other important marine bacteria and other cold-adapted organisms.


Subject(s)
Adaptation, Physiological , Cold Temperature , Proteome/metabolism , Sphingomonadaceae/physiology , Amino Acids/metabolism , Bacterial Proteins/metabolism , Cell Membrane/physiology , Cell Wall/physiology , Fatty Acids/metabolism , Gene Expression Regulation, Bacterial , Homeostasis , Iron/metabolism , Protein Folding , Seawater/chemistry , Seawater/microbiology , Sphingomonadaceae/isolation & purification , Sphingomonadaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL