Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.956
Filter
1.
Nature ; 584(7819): 75-81, 2020 08.
Article in English | MEDLINE | ID: mdl-32760044

ABSTRACT

Chemical reactions that reliably join two molecular fragments together (cross-couplings) are essential to the discovery and manufacture of pharmaceuticals and agrochemicals1,2. The introduction of amines onto functionalized aromatics at specific and pre-determined positions (ortho versus meta versus para) is currently achievable only in transition-metal-catalysed processes and requires halogen- or boron-containing substrates3-6. The introduction of these groups around the aromatic unit is dictated by the intrinsic reactivity profile of the method (electrophilic halogenation or C-H borylation) so selective targeting of all positions is often not possible. Here we report a non-canonical cross-coupling approach for the construction of anilines, exploiting saturated cyclohexanones as aryl electrophile surrogates. Condensation between amines and carbonyls, a process that frequently occurs in nature and is often used by (bio-)organic chemists7, enables a predetermined and site-selective carbon-nitrogen (C-N) bond formation, while a photoredox- and cobalt-based catalytic system progressively desaturates the cyclohexene ring en route to the aniline. Given that functionalized cyclohexanones are readily accessible with complete regiocontrol using the well established carbonyl reactivity, this approach bypasses some of the frequent selectivity issues of aromatic chemistry. We demonstrate the utility of this C-N coupling protocol by preparing commercial medicines and by the late-stage amination-aromatization of natural products, steroids and terpene feedstocks.


Subject(s)
Aniline Compounds/chemical synthesis , Hydrogen/chemistry , Photochemical Processes , Amination , Amines/chemistry , Aniline Compounds/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Catalysis/radiation effects , Cyclohexanones/chemistry , Oxidation-Reduction/radiation effects , Photochemical Processes/radiation effects , Steroids/chemical synthesis , Steroids/chemistry , Terpenes/chemical synthesis , Terpenes/chemistry
2.
J Biol Chem ; 300(8): 107509, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944126

ABSTRACT

Shy (side chain hydratase) and Sal (side chain aldolase), are involved in successive reactions in the pathway of bile acid side chain catabolism in Proteobacteria. Untagged Shy copurified with His-tagged Sal indicating that the two enzymes form a complex. Shy contains a MaoC and a DUF35 domain. When coexpressed with Sal, the DUF35 domain but not the MaoC domain of Shy was observed to copurify with Sal, indicating Sal interacts with Shy through its DUF35 domain. The MaoC domain of Shy (ShyMaoC) remained catalytically viable and could hydrate cholyl-enoyl-CoA with similar catalytic efficiency as in the Shy-Sal complex. Sal expressed with the DUF35 domain of Shy (Sal-ShyDUF35) was similarly competent for the retro-aldol cleavage of cholyl-3-OH-CoA. ShyMaoC showed a preference for C5 side chain bile acid substrates, exhibiting low activity toward C3 side chain substrates. The ShyMaoC structure was determined by X-ray crystallography, showing a hot dog fold with a short central helix surrounded by a twisted antiparallel ß-sheet. Modeling and mutagenesis studies suggest that the bile acid substrate occupies the large open cleft formed by the truncated central helix and repositioning of the active site housing. ShyMaoC therefore contains two substrate binding sites per homodimer, making it distinct from previously characterized MaoC steroid hydratases that are (pseudo) heterodimers with one substrate binding site per dimer. The characterization of Shy provides insight into how MaoC family hydratases have adapted to accommodate large polycyclic substrates that can facilitate future engineering of these enzymes to produce novel steroid pharmaceuticals.


Subject(s)
Bacterial Proteins , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Protein Domains , Steroids/metabolism , Steroids/chemistry , Substrate Specificity , Proteobacteria/enzymology , Proteobacteria/metabolism , Hydro-Lyases/metabolism , Hydro-Lyases/chemistry , Hydro-Lyases/genetics , Catalytic Domain , Crystallography, X-Ray , Bile Acids and Salts/metabolism , Bile Acids and Salts/chemistry
3.
Proc Natl Acad Sci U S A ; 119(30): e2205228119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858451

ABSTRACT

The mitochondrial electron transport chain maintains the proton motive force that powers adenosine triphosphate (ATP) synthesis. The energy for this process comes from oxidation of reduced nicotinamide adenine dinucleotide (NADH) and succinate, with the electrons from this oxidation passed via intermediate carriers to oxygen. Complex IV (CIV), the terminal oxidase, transfers electrons from the intermediate electron carrier cytochrome c to oxygen, contributing to the proton motive force in the process. Within CIV, protons move through the K and D pathways during turnover. The former is responsible for transferring two protons to the enzyme's catalytic site upon its reduction, where they eventually combine with oxygen and electrons to form water. CIV is the main site for respiratory regulation, and although previous studies showed that steroid binding can regulate CIV activity, little is known about how this regulation occurs. Here, we characterize the interaction between CIV and steroids using a combination of kinetic experiments, structure determination, and molecular simulations. We show that molecules with a sterol moiety, such as glyco-diosgenin and cholesteryl hemisuccinate, reversibly inhibit CIV. Flash photolysis experiments probing the rapid equilibration of electrons within CIV demonstrate that binding of these molecules inhibits proton uptake through the K pathway. Single particle cryogenic electron microscopy (cryo-EM) of CIV with glyco-diosgenin reveals a previously undescribed steroid binding site adjacent to the K pathway, and molecular simulations suggest that the steroid binding modulates the conformational dynamics of key residues and proton transfer kinetics within this pathway. The binding pose of the sterol group sheds light on possible structural gating mechanisms in the CIV catalytic cycle.


Subject(s)
Diosgenin , Electron Transport Complex IV , Steroids , Animals , Binding Sites , Catalytic Domain/drug effects , Cattle , Diosgenin/pharmacology , Electron Transport , Electron Transport Complex IV/antagonists & inhibitors , Electron Transport Complex IV/chemistry , Oxidation-Reduction , Oxygen/metabolism , Protein Conformation , Protons , Steroids/chemistry , Steroids/pharmacology , Sterols
4.
J Infect Dis ; 230(1): e149-e158, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052707

ABSTRACT

BACKGROUND: Cytochrome bd complexes are respiratory oxidases found exclusively in prokaryotes that are important during infection for numerous bacterial pathogens. METHODS: In silico docking was employed to screen approved drugs for their ability to bind to the quinol site of Escherichia coli cytochrome bd-I. Respiratory inhibition was assessed with oxygen electrodes using membranes isolated from E. coli and methicillin-resistant Staphylococcus aureus strains expressing single respiratory oxidases (ie, cytochromes bd, bo', or aa3). Growth/viability assays were used to measure bacteriostatic and bactericidal effects. RESULTS: The steroid drugs ethinylestradiol and quinestrol inhibited E. coli bd-I activity with median inhibitory concentration (IC50) values of 47 ± 28.9 µg/mL (158 ± 97.2 µM) and 0.2 ± 0.04 µg/mL (0.5 ± 0.1 µM), respectively. Quinestrol inhibited growth of an E. coli "bd-I only" strain with an IC50 of 0.06 ± 0.02 µg/mL (0.2 ± 0.07 µM). Growth of an S. aureus "bd only" strain was inhibited by quinestrol with an IC50 of 2.2 ± 0.43 µg/mL (6.0 ± 1.2 µM). Quinestrol exhibited potent bactericidal effects against S. aureus but not E. coli. CONCLUSIONS: Quinestrol inhibits cytochrome bd in E. coli and S. aureus membranes and inhibits the growth of both species, yet is only bactericidal toward S. aureus.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Methicillin-Resistant Staphylococcus aureus , Methicillin-Resistant Staphylococcus aureus/drug effects , Escherichia coli/drug effects , Escherichia coli/enzymology , Anti-Bacterial Agents/pharmacology , Molecular Docking Simulation , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/metabolism , Escherichia coli Proteins/antagonists & inhibitors , Escherichia coli Proteins/metabolism , Microbial Sensitivity Tests , Steroids/pharmacology , Steroids/chemistry , Electron Transport Chain Complex Proteins/antagonists & inhibitors , Electron Transport Chain Complex Proteins/metabolism , Cytochrome b Group , Cytochromes/antagonists & inhibitors , Cytochromes/metabolism
5.
J Biol Chem ; 299(3): 102999, 2023 03.
Article in English | MEDLINE | ID: mdl-36773804

ABSTRACT

Abiraterone acetate is a first-line therapy for castration-resistant prostate cancer. This prodrug is deacetylated in vivo to abiraterone, which is a potent and specific inhibitor of cytochrome P450 17A1 (CYP17A1). CYP17A1 performs two sequential steps that are required for the biosynthesis of androgens that drive prostate cancer proliferation, analogous to estrogens in breast cancer. Abiraterone can be further metabolized in vivo on the steroid A ring to multiple metabolites that also inhibit CYP17A1. Despite its design as an active-site-directed substrate analog, abiraterone and its metabolites demonstrate mixed competitive/noncompetitive inhibition. To understand their binding, we solved the X-ray structures of CYP17A1 with three primary abiraterone metabolites. Despite different conformations of the steroid A ring and substituents, all three bound in the CYP17A1 active site with the steroid core packed against the I helix and the A ring C3 keto or hydroxyl oxygen forming a hydrogen bond with N202 similar to abiraterone itself. The structure of CYP17A1 with 3-keto, 5α-abiraterone was solved to 2.0 Å, the highest resolution to date for a CYP17A1 complex. This structure had additional electron density near the F/G loop, which is likely a second molecule of the inhibitor and which may explain the noncompetitive inhibition. Mutation of the adjacent Asn52 to Tyr positions its side chain in this space, maintains enzyme activity, and prevents binding of the peripheral ligand. Collectively, our findings provide further insight into abiraterone metabolite binding and CYP17A1 function.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Antineoplastic Agents/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Binding Sites , Steroids/chemistry , Cytochrome P-450 Enzyme System/metabolism , Steroid 17-alpha-Hydroxylase/metabolism
6.
J Am Chem Soc ; 146(17): 11811-11822, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635880

ABSTRACT

The development of novel agents with immunoregulatory effects is a keen way to combat the growing threat of inflammatory storms to global health. To synthesize pseudo-steroidal glycosides tethered by ether bonds with promising immunomodulatory potential, we develop herein a highly effective deoxygenative functionalization of a novel steroidal donor (steroidation) facilitated by strain-release, leveraging cost-effective and readily available Sc(OTf)3 catalysis. This transformation produces a transient steroid-3-yl carbocation which readily reacts with O-, C-, N-, S-, and P-nucleophiles to generate structurally diverse steroid derivatives. DFT calculations were performed to shed light on the mechanistic details of the regioselectivity, underlying an acceptor-dependent steroidation mode. This approach can be readily extended to the etherification of sugar alcohols to enable the achievement of a diversity-oriented, pipeline-like synthesis of pseudo-steroidal glycosides in good to excellent yields with complete stereo- and regiospecific control for anti-inflammatory agent discovery. Immunological studies have demonstrated that a meticulously designed cholesteryl disaccharide can significantly suppress interleukin-6 secretion in macrophages, exhibiting up to 99% inhibition rates compared to the negative control. These findings affirm the potential of pseudo-steroidal glycosides as a prospective category of lead agents for the development of novel anti-inflammatory drugs.


Subject(s)
Anti-Inflammatory Agents , Glycosides , Steroids , Glycosides/chemistry , Glycosides/chemical synthesis , Glycosides/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemical synthesis , Steroids/chemistry , Steroids/pharmacology , Steroids/chemical synthesis , Mice , Animals , Humans , Density Functional Theory , Molecular Structure , Interleukin-6/antagonists & inhibitors , Interleukin-6/metabolism , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Macrophages/drug effects
7.
Chemistry ; 30(52): e202402268, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39024030

ABSTRACT

Nature offers a variety of structurally unique, sulfated endobiotics including sulfated glycosaminoglycans, sulfated tyrosine peptides, sulfated steroids/bile acids/catecholamines. Sulfated molecules display a large number of biological activities including antithrombotic, antimicrobial, anticancer, anti-inflammatory, and others, which arise from modulation of intracellular signaling and enhanced in vivo retention of certain hormones. These characteristics position sulfated molecules very favorably as drug-like agents. However, few have reached the clinic. Major hurdles exist in realizing sulfated molecules as drugs. This state-of-the-art has been transformed through recent works on the development of sulfate masking technologies for both alkyl (sulfated carbohydrates, sulfated steroids) and aryl (sTyr-bearing peptides/proteins, sulfated flavonoids) sulfates. This review compiles the literature on different strategies implemented for different types of sulfate groups. Starting from early efforts in protection of sulfate groups to the design of newer SuFEx, trichloroethyl, and gem-dimethyl-based protection technologies, this review presents the evolution and application of concepts in realizing highly diverse, sulfated molecules as candidate drugs and/or prodrugs. Overall, the newer strategies for sulfate masking and demasking are likely to greatly enhance the design and development of sulfated molecules as non-toxic drugs of the future.


Subject(s)
Sulfates , Sulfates/chemistry , Humans , Glycosaminoglycans/chemistry , Peptides/chemistry , Steroids/chemistry , Steroids/chemical synthesis , Prodrugs/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology
8.
Org Biomol Chem ; 22(18): 3559-3583, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38639195

ABSTRACT

Steroids are an important family of bioactive compounds. Steroid drugs are renowned for their multifaceted pharmacological activities and are the second-largest category in the global pharmaceutical market. Recent developments in biocatalysis and biosynthesis have led to the increased use of enzymes to enhance the selectivity, efficiency, and sustainability for diverse modifications of steroids. This review discusses the advancements achieved over the past five years in the enzymatic modifications of steroid scaffolds, focusing on enzymatic hydroxylation, reduction, dehydrogenation, cascade reactions, and other modifications for future research on the synthesis of novel steroid compounds and related drugs, and new therapeutic possibilities.


Subject(s)
Steroids , Steroids/chemistry , Steroids/metabolism , Humans , Biocatalysis , Enzymes/metabolism , Enzymes/chemistry , Hydroxylation , Molecular Structure
9.
J Nat Prod ; 87(2): 252-265, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38294199

ABSTRACT

Eleven new steroidal alkaloids, along with nine known related compounds, were isolated from the bulbs of Fritillaria sinica. Seven pairs of diastereomers were identified, including six and four 20-deoxy cevanine-type steroidal alkaloid diastereomers with molecular weights of 413 and 415, respectively. Structures were elucidated based on spectroscopic data analysis, chemical derivatization, and single-crystal X-ray diffraction analysis. Compounds 5, 9, 11, 12, 16, and 20 exhibited significant in vitro cytotoxic activity against non-small-cell lung cancer with CC50 values from 6.8 ± 3.9 to 12 ± 5 µM.


Subject(s)
Alkaloids , Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Fritillaria , Lung Neoplasms , Humans , Fritillaria/chemistry , Carcinoma, Non-Small-Cell Lung/drug therapy , Molecular Structure , Lung Neoplasms/drug therapy , Alkaloids/chemistry , Steroids/chemistry
10.
Bioorg Chem ; 143: 107029, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38091717

ABSTRACT

Prostate cancer is one of the most prevalent cancers in men leading to second most death causing cancer in men. Despite the availability of multiple treatment still the prevalence is high for prostate cancer. Steroidal antagonists associated with poor bioavailability, side effects while non-steroidal antagonists show serious side effects like gynecomastia. Therefore, there is a need of potential candidate for the treatment of prostate cancer with better bioavailability, good therapeutic effect and minimal side effects. In the same context, we have designed the series, SP1-SP25 based 3-phenyl-5-styryl-1,2,4-oxadiazole as the core structure. We successfully synthesized all 25 molecules in this series and characterized them using 1H, 13C NMR, and mass spectroscopy. Subsequently, we conducted MTT assays using PC-3 cells and observed that all the compounds exhibited a dose-dependent decrease in cell viability. Notably, compounds SP04, SP16, and SP19 demonstrated a significant decrease in cell viability and exhibited potent activity compared to the other synthesized molecules and standard drug bicalutamide. Among them, SP04 emerged as the one of the most potent compounds with an IC50 value of 238.13 nM and an 89.99 % inhibition of PC-3 cells, compared to synthesized molecules and standard drug bicalutamide. Furthermore, we conducted ROS assays and androgen receptor inhibition assays using the potent compound SP04 and bicalutamide. The results indicated that SP04 increased ROS production and decreased androgen receptor expression dose-dependent manner. Additionally, we conducted a docking study to analyse the interaction patterns within the active site of the androgen receptor. ADMET analysis revealed that all the compounds exhibited favorable physicochemical properties and manageable toxicity profiles.


Subject(s)
Anilides , Antineoplastic Agents , Nitriles , Prostatic Neoplasms , Tosyl Compounds , Male , Humans , Molecular Docking Simulation , Receptors, Androgen/chemistry , Antineoplastic Agents/chemistry , Reactive Oxygen Species , Steroids/chemistry , Prostatic Neoplasms/drug therapy , Molecular Structure , Cell Proliferation , Structure-Activity Relationship , Drug Screening Assays, Antitumor , Cell Line, Tumor
11.
Bioorg Chem ; 151: 107654, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39029319

ABSTRACT

Cephalostatins and ritterazines represent fascinating classes of dimeric marine derived steroidal alkaloids with unique chemical structures and promising biological activities. Originally isolated from marine tube worms and the tunicate Ritterella tokioka collected off the coast of Japan, cephalostatins and ritterazines display potent anticancer effects by inducing apoptosis, disrupting cell cycle progression, and targeting multiple molecular pathways. This review covers the chemistry and bioactivities of 45 cephalostatins and ritterazines from 1988 to 2024, highlighting their complex structures and medicinal contributions. With insights into their structure activity relationships (SAR). Key structural elements, such as the pyrazine ring and 5/6 spiroketal moieties, are found crucial for their biological effects, suggesting interactions with lipid membranes or hydrophobic protein domains. Additionally, the formation of oxocarbenium ions from spiroketal cleavage may enhance their potency by covalently modifying DNA. The pharmacokinetics, ADMET and Drug likeness properties of these steroidal alkaloids are thoroughly addressed. Drug likeness analysis shows that these compounds fit well with the Rule of 4 (Ro4) for Protein-Protein Interaction Drugs (PPIDs), underscoring their potential in this area. Ten compounds (20, 27, 33, 34, 39, 40, 41, 42, 43, and 45) have demonstrated favourable pharmacokinetic and ADMET profiles, making them promising candidates for further research. Future efforts should focus on alternative administration routes, structural modifications, and innovative delivery systems, such as prodrugs and nanoparticles, to improve bioavailability and therapeutic effects. Advances in synthetic chemistry, mechanistic insights, and interdisciplinary collaborations will be essential for translating cephalostatins and ritterazines into effective anticancer therapies.


Subject(s)
Antineoplastic Agents , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Humans , Animals , Structure-Activity Relationship , Alkaloids/chemistry , Alkaloids/pharmacology , Alkaloids/isolation & purification , Molecular Structure , Pyrazines/chemistry , Pyrazines/pharmacology , Pyrazines/isolation & purification , Steroids/chemistry , Steroids/pharmacology , Steroids/isolation & purification , Cell Proliferation/drug effects , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/isolation & purification , Aquatic Organisms/chemistry , Drug Screening Assays, Antitumor , Phenazines
12.
Bioorg Chem ; 151: 107619, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39024806

ABSTRACT

Two rare 8-hydroxysteroid glycosides (6-7), and their downstream metabolites (1-5) with an unprecedented 6/6/5/5/5-pentacyclic scaffold, together with seven known analogues (8-14) were isolated from the twigs and leaves of Strophanthus divaricatus. Their structures were fully assigned by analysis of the spectroscopic and ECD data, NMR calculations, X-ray crystallographic study, and chemical methods. In addition, the inhibitory effects of 1-14 on liver and lung cancer cell lines were evaluated, and preliminary structure-activity relationship was discussed. Data-independent acquisition (DIA)-based quantitative proteomic analysis and biological verification of H1299 cells suggested that this family of compounds may play an anticancer role by suppressing both DNA damage response (DDR) and mTOR/S6K signaling pathways.


Subject(s)
DNA Damage , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glycosides , Signal Transduction , TOR Serine-Threonine Kinases , Humans , TOR Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , Structure-Activity Relationship , Glycosides/chemistry , Glycosides/pharmacology , Glycosides/isolation & purification , DNA Damage/drug effects , Signal Transduction/drug effects , Molecular Structure , Cell Proliferation/drug effects , Steroids/chemistry , Steroids/pharmacology , Steroids/isolation & purification , Ribosomal Protein S6 Kinases/metabolism , Ribosomal Protein S6 Kinases/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
13.
Mar Drugs ; 22(9)2024 Sep 02.
Article in English | MEDLINE | ID: mdl-39330283

ABSTRACT

There has been no specific review on the secondary metabolites from soft corals of the genus Capnella till now. In this work, all secondary metabolites from different species of the title genus were described. It covered the first work from 1974 to May 2024, spanning five decades. In the viewpoint of the general structural features, these chemical constituents were classified into four groups: sesquiterpenes, diterpenes, steroids, and lipids. Additionally, the 1H and 13C NMR data of these metabolites were provided when available in the literature. Among them, sesquiterpenes were the most abundant chemical compositions from soft corals of the genus Capnella. A variety of pharmacological activities of these compounds were evaluated, such as cytotoxic, antibacterial, antifungal, and anti-inflammatory activities. In addition, the chemical synthesis works of several representative sesquiterpenes were provided. This review aims to provide an up-to-date knowledge of the chemical structures, pharmacological activities, and chemical synthesis of the chemical constituents from soft corals of the genus Capnella.


Subject(s)
Anthozoa , Anthozoa/chemistry , Animals , Magnetic Resonance Spectroscopy , Secondary Metabolism , Humans , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Molecular Structure , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Steroids/chemistry , Steroids/pharmacology
14.
Mar Drugs ; 22(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39057403

ABSTRACT

Three new monosulfated polyhydroxysteroid glycosides, spiculiferosides A (1), B (2), and C (3), along with new related unsulfated monoglycoside, spiculiferoside D (4), were isolated from an ethanolic extract of the starfish Henricia leviuscula spiculifera collected in the Sea of Okhotsk. Compounds 1-3 contain two carbohydrate moieties, one of which is attached to C-3 of the steroid tetracyclic core, whereas another is located at C-24 of the side chain of aglycon. Two glycosides (2, 3) are biosides, and one glycoside (1), unlike them, includes three monosaccharide residues. Such type triosides are a rare group of polar steroids of sea stars. In addition, the 5-substituted 3-OSO3-α-L-Araf unit was found in steroid glycosides from starfish for the first time. Cell viability analysis showed that 1-3 (at concentrations up to 100 µM) had negligible cytotoxicity against human embryonic kidney HEK293, melanoma SK-MEL-28, breast cancer MDA-MB-231, and colorectal carcinoma HCT 116 cells. These compounds significantly inhibited proliferation and colony formation in HCT 116 cells at non-toxic concentrations, with compound 3 having the greatest effect. Compound 3 exerted anti-proliferative effects on HCT 116 cells through the induction of dose-dependent cell cycle arrest at the G2/M phase, regulation of expression of cell cycle proteins CDK2, CDK4, cyclin D1, p21, and inhibition of phosphorylation of protein kinases c-Raf, MEK1/2, ERK1/2 of the MAPK/ERK1/2 pathway.


Subject(s)
Antineoplastic Agents , Glycosides , Starfish , Animals , Humans , Starfish/chemistry , Glycosides/pharmacology , Glycosides/chemistry , Glycosides/isolation & purification , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Steroids/pharmacology , Steroids/chemistry , Steroids/isolation & purification , Cell Proliferation/drug effects
15.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article in English | MEDLINE | ID: mdl-33723068

ABSTRACT

Virtually all land plants are coated in a cuticle, a waxy polyester that prevents nonstomatal water loss and is important for heat and drought tolerance. Here, we describe a likely genetic basis for a divergence in cuticular wax chemistry between Sorghum bicolor, a drought tolerant crop widely cultivated in hot climates, and its close relative Zea mays (maize). Combining chemical analyses, heterologous expression, and comparative genomics, we reveal that: 1) sorghum and maize leaf waxes are similar at the juvenile stage but, after the juvenile-to-adult transition, sorghum leaf waxes are rich in triterpenoids that are absent from maize; 2) biosynthesis of the majority of sorghum leaf triterpenoids is mediated by a gene that maize and sorghum both inherited from a common ancestor but that is only functionally maintained in sorghum; and 3) sorghum leaf triterpenoids accumulate in a spatial pattern that was previously shown to strengthen the cuticle and decrease water loss at high temperatures. These findings uncover the possibility for resurrection of a cuticular triterpenoid-synthesizing gene in maize that could create a more heat-tolerant water barrier on the plant's leaf surfaces. They also provide a fundamental understanding of sorghum leaf waxes that will inform efforts to divert surface carbon to intracellular storage for bioenergy and bioproduct innovations.


Subject(s)
Gene Expression Regulation, Plant , Plant Leaves/metabolism , Sorghum/genetics , Sorghum/metabolism , Steroids/biosynthesis , Waxes/metabolism , Adaptation, Biological , Computational Biology , Droughts , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Genome, Plant , Molecular Structure , Phylogeny , Sorghum/classification , Steroids/chemistry , Triterpenes/metabolism , Waxes/chemistry , Zea mays/genetics , Zea mays/metabolism
16.
Chem Biodivers ; 21(4): e202301993, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342755

ABSTRACT

A new alkaloids, aplysingoniopora A (1), and new configuration pregnane type steroid compound, 9,17-α-pregn-1,4,20-en-3-one (2), and two known pregnane type steroid compounds (3 and 4) were isolated from hydranth of Goniopora columna corals. The compounds structures and absolute configurations were determined by extensive spectroscopic analysis, MS data, single-crystal X-ray diffraction analysis and quantum chemical calculation. The anticancer effect of the compounds were explored in human non-small-cell lung cancer (NSCLC) A549 cell lines. As the results, the compound 3 and 4 induces toxicity and has proliferation inhibitory effects on A549 cells (IC50=58.99 µM and 58.77 µM, respectively) in vitro.


Subject(s)
Alkaloids , Anthozoa , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Humans , Lung Neoplasms/drug therapy , Alkaloids/pharmacology , Alkaloids/chemistry , Steroids/pharmacology , Steroids/chemistry , Pregnanes/pharmacology , Molecular Structure
17.
Chem Biodivers ; 21(6): e202400588, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651315

ABSTRACT

Trillium govanianum, a medicinal herb, exhibiting diverse morphometric traits and phytochemicals across developmental stages of plants. The changes in the chemical profile and steroidal saponin levels in the rhizome of T. govanianum across different developmental stages were previously unknown. This study categorizes rhizomes into three types based on scar presence: juvenile (5-10 scars, Type I), young (11-19 scars, Type II), and mature (21-29 scars, Type III). Rhizomes show varying sizes (length 1.2-4.7 cm, girth 0.3-1.6 cm), weight (0.18-5.0 g), and extractive yields (9.7-16.1 % w w-1), with notable differences in saponin content (5.95-21.9 mg g-1). Ultra-high performance liquid chromatography-MS/MS (UHPLC-QTOF-MS/MS)-based chemical profiling identifies 31 phytochemicals, mainly including diverse saponins. Ultra-high performance liquid chromatography coupled with evaporative light scattering detection (UHPLC-ELSD)-based quantitative analysis of seven key saponins reveals stage-specific accumulation patterns, with protodioscin (P) and dioscin (DS) predominant in mature rhizomes. Statistical analysis confirms significant variation (p=0.001) in saponin levels across developmental stages with chemical constituent protodioscin (P=4.03±0.03-15.76±0.14 mg g-1, PAve=9.79±3.03 mg g-1) and dioscin (DS=1.23±0.06-3.93±0.07 mg g-1, DSAve=2.59±0.70 mg g-1), with acceptable power (p=0.738; |δ|>0.5) statistics for effective sample size (n=27 samples used in the study) of T. govanianum. Principal Component Analysis (PCA) and Euclidean clustering further highlighted chemotype distinctions.


Subject(s)
Rhizome , Saponins , Steroids , Trillium , Trillium/chemistry , Saponins/chemistry , Saponins/isolation & purification , Rhizome/chemistry , Chromatography, High Pressure Liquid , Steroids/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Tandem Mass Spectrometry , Humans
18.
Chem Biodivers ; 21(6): e202400519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38576052

ABSTRACT

One new highly degraded steroid, namely 21-nor-4-ene-chaxine A (1) furnishing a 5/6/5-tricyclic, along with one known related analogue (2), were isolated from the South China Sea sponge Spongia officinalis. Their structures including absolute configurations were established by extensive spectroscopic data analysis, TDDFT-ECD calculation, and comparison with the spectral data previously reported in the literature. Compound 1 represent the new member of incisterols family with a highly degradation in ring B. In vitro bioassays revealed compound 2 exhibited significant anti-microglial inflammatory effect on lipopolysaccharide (LPS)-induced inflammation in BV-2 microglial cells.


Subject(s)
Anti-Inflammatory Agents , Lipopolysaccharides , Porifera , Steroids , Animals , Porifera/chemistry , Steroids/chemistry , Steroids/isolation & purification , Steroids/pharmacology , Lipopolysaccharides/pharmacology , Lipopolysaccharides/antagonists & inhibitors , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , China , Microglia/drug effects , Microglia/metabolism , Microglia/cytology , Cell Line , Molecular Conformation , Molecular Structure
19.
J Asian Nat Prod Res ; 26(10): 1254-1260, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38945154

ABSTRACT

A new steroid, 2a-oxa-2-oxo-5ß-hydroxy-3,4-dinor-24-methylcholesta-22E-ene (1), together with 10 known ones (2-11), was isolated from the marine sponge Cliona sp. The structures of these compounds were determined by the spectroscopic methods (UV, IR, MS, and NMR) and X-ray diffraction analysis. Compound 1 was the third example of 3,4-dinorsteroid with a hemiketal at C-5 that was isolated from the natural source. In addition, the antibacterial activities of these compounds were also evaluated. However, none of them exhibited significant inhibition effects.


Subject(s)
Anti-Bacterial Agents , Marine Biology , Porifera , Animals , Porifera/chemistry , Molecular Structure , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Microbial Sensitivity Tests , Nuclear Magnetic Resonance, Biomolecular , Steroids/chemistry , Steroids/pharmacology , Steroids/isolation & purification , Crystallography, X-Ray
20.
Int J Mol Sci ; 25(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-39000144

ABSTRACT

A growing body of experimental data indicates that ceragenins (CSAs), which mimic the physicochemical properties of the host's cationic antimicrobial peptide, hold promise for the development of a new group of broad-spectrum antimicrobials. Here, using a set of in vivo experiments, we assessed the potential of ceragenins in the eradication of an important etiological agent of nosocomial infections, Acinetobacter baumannii. Assessment of the bactericidal effect of ceragenins CSA-13, CSA-44, and CSA-131 on clinical isolates of A. baumannii (n = 65) and their effectiveness against bacterial cells embedded in the biofilm matrix after biofilm growth on abiotic surfaces showed a strong bactericidal effect of the tested molecules regardless of bacterial growth pattern. AFM assessment of bacterial cell topography, bacterial cell stiffness, and adhesion showed significant membrane breakdown and rheological changes, indicating the ability of ceragenins to target surface structures of A. baumannii cells. In the cell culture of A549 lung epithelial cells, ceragenin CSA-13 had the ability to inhibit bacterial adhesion to host cells, suggesting that it interferes with the mechanism of bacterial cell invasion. These findings highlight the potential of ceragenins as therapeutic agents in the development of antimicrobial strategies against bacterial infections caused by A. baumannii.


Subject(s)
Acinetobacter baumannii , Bacterial Adhesion , Biofilms , Steroids , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Humans , Biofilms/drug effects , Biofilms/growth & development , Steroids/pharmacology , Steroids/chemistry , Bacterial Adhesion/drug effects , A549 Cells , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL