Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.464
Filter
1.
Cell ; 144(5): 810-23, 2011 Mar 04.
Article in English | MEDLINE | ID: mdl-21376239

ABSTRACT

We report that, in the rat hippocampus, learning leads to a significant increase in extracellular lactate levels that derive from glycogen, an energy reserve selectively localized in astrocytes. Astrocytic glycogen breakdown and lactate release are essential for long-term but not short-term memory formation, and for the maintenance of long-term potentiation (LTP) of synaptic strength elicited in vivo. Disrupting the expression of the astrocytic lactate transporters monocarboxylate transporter 4 (MCT4) or MCT1 causes amnesia, which, like LTP impairment, is rescued by L-lactate but not equicaloric glucose. Disrupting the expression of the neuronal lactate transporter MCT2 also leads to amnesia that is unaffected by either L-lactate or glucose, suggesting that lactate import into neurons is necessary for long-term memory. Glycogenolysis and astrocytic lactate transporters are also critical for the induction of molecular changes required for memory formation, including the induction of phospho-CREB, Arc, and phospho-cofilin. We conclude that astrocyte-neuron lactate transport is required for long-term memory formation.


Subject(s)
Astrocytes/metabolism , Lactic Acid/metabolism , Memory, Long-Term , Monocarboxylic Acid Transporters/metabolism , Neurons/metabolism , Animals , Arabinose , Glycogen/metabolism , Hippocampus/metabolism , Imino Furanoses , Memory, Long-Term/drug effects , Muscle Proteins/metabolism , Rats , Sugar Alcohols/pharmacology , Symporters/metabolism
2.
Bioorg Med Chem ; 99: 117563, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38215623

ABSTRACT

A series of 1H-imidazo [4,5-f][1,10] phenanthroline derivatives functionalized at 2-position with chiral, and conformationally flexible polyhydroxy alkyl chains derived from carbohydrates (alditol-based imidazophenanthrolines, aldo-IPs) is presented herein. These novel glycomimetics showed relevant and differential cytotoxic activity against several cultured tumor cell lines (PC3, HeLa and HT-29), dependent on the nature and stereochemistry of the polyhydroxy alkyl chain. The mannose-based aldo-IP demonstrated the higher cytotoxicity in the series, substantially better than cisplatin metallo-drug in all cell lines tested, and better than G-quadruplex ligand 360A in HeLa and HT29 cells. Cell cycle experiments and Annexin V-PI assays revealed that aldo-IPs induce apoptosis in HeLa cells. Initial study of DNA interactions by DNA FRET melting assays proved that the aldo-IPs produce only a slight thermal stabilization of DNA secondary structures, more pronounced in the case of quadruplex DNA. Viscosity titrations with CT dsDNA suggest that the compounds behave as DNA groove binders, whereas equilibrium dialysis assays showed that the compounds bind CT with Ka values in the range 104-105 M-1. The aldo-IP derivatives were obtained with synthetically useful yields through a feasible one-pot multistep process, by aerobic oxidative cyclization of 1,10-phenanthroline-5,6-diamine with a selection of unprotected aldoses using (NH4)2SO4 as promoter.


Subject(s)
Antineoplastic Agents , Sugar Alcohols , Humans , HeLa Cells , Sugar Alcohols/pharmacology , Antineoplastic Agents/chemistry , Apoptosis , DNA/chemistry , Drug Screening Assays, Antitumor
3.
Appl Microbiol Biotechnol ; 108(1): 61, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38183484

ABSTRACT

Alditol oxidases are promising tools for the biocatalytic oxidation of glycerol to more valuable chemicals. By integrating in silico bioprospecting with cell-free protein synthesis and activity screening, an effective pipeline was developed to rapidly identify enzymes that are active on glycerol. Three thermostable alditol oxidases from Actinobacteria Bacterium, Streptomyces thermoviolaceus, and Thermostaphylospora chromogena active on glycerol were discovered. The characterization of these three flavoenzymes demonstrated their glycerol oxidation activities, preference for alkaline conditions, and excellent thermostabilities with melting temperatures higher than 75 °C. Structural elucidation of the alditol oxidase from Actinobacteria Bacterium highlighted a constellation of side chains that engage the substrate through several hydrogen bonds, a histidine residue covalently bound to the FAD prosthetic group, and a tunnel leading to the active site. Upon computational simulations of substrate binding, a double mutant targeting a residue pair at the tunnel entrance was created and found to display an improved thermal stability and catalytic efficiency for glycerol oxidation. The hereby described alditol oxidases form a valuable panel of oxidative biocatalysts that can perform regioselective oxidation of glycerol and other polyols. KEY POINTS: • Rapid pipeline designed to identify putative oxidases • Biochemical and structural characterization of alditol oxidases • Glycerol oxidation to more valuable derivatives.


Subject(s)
Glycerol , Sugar Alcohols , Biocatalysis , Bioprospecting , Catalysis
4.
Biosci Biotechnol Biochem ; 88(9): 1102-1108, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-38802125

ABSTRACT

d-Arabitol, an alternative sweetener to sugar, has low calorie content, high sweetness, low glycemic index, and insulin resistance-improving ability. In this study, d-arabitol-producing yeast strains were isolated from various commercial types of miso, and strain Gz-5 was selected among these strains. Phylogenetic tree analysis of the internal transcribed spacer sequence revealed that strain Gz-5 was distinct from Zygosaccharomyces rouxii, a major fermenting yeast of miso. The strain, identified as Zygosaccharomyces sp. Gz-5, grew better than other Z. rouxii in 150 g/L NaCl and produced 114 g/L d-arabitol from 295 g/L glucose in a batch culture for 8 days (0.386 g/g-consumed glucose). In a fed-batch culture, the yeast produced 133 g/L d-arabitol for 14 days, and the total d-arabitol amount increased by 1.75-fold. These results indicated that Zygosaccharomyces sp. Gz-5, a non-genetically modified strain, has excellent potential for the industrial production of d-arabitol.


Subject(s)
Fermentation , Phylogeny , Sugar Alcohols , Zygosaccharomyces , Zygosaccharomyces/metabolism , Zygosaccharomyces/genetics , Zygosaccharomyces/isolation & purification , Sugar Alcohols/metabolism , Soy Foods/microbiology , Glucose/metabolism , Batch Cell Culture Techniques
5.
Int J Mol Sci ; 25(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38473992

ABSTRACT

Multi-enzymatic strategies have shown improvement in bioconversion during cofactor regeneration. In this study, purified l-arabinitol 4-dehydrogenase (LAD) and nicotinamide adenine dinucleotide oxidase (Nox) were immobilized via individual, mixed, and sequential co-immobilization approaches on magnetic nanoparticles, and were evaluated to enhance the conversion of l-arabinitol to l-xylulose. Initially, the immobilization of LAD or Nox on the nanoparticles resulted in a maximum immobilization yield and relative activity of 91.4% and 98.8%, respectively. The immobilized enzymes showed better pH and temperature profiles than the corresponding free enzymes. Furthermore, co-immobilization of these enzymes via mixed and sequential methods resulted in high loadings of 114 and 122 mg/g of support, respectively. Sequential co-immobilization of these enzymes proved more beneficial for higher conversion than mixed co-immobilization because of better retaining Nox residual activity. Sequentially co-immobilized enzymes showed a high relative conversion yield with broader pH, temperature, and storage stability profiles than the controls, along with high reusability. To the best of our knowledge, this is the first report on the mixed or sequential co-immobilization of LAD and Nox on magnetic nanoparticles for l-xylulose production. This finding suggests that selecting a sequential co-immobilization strategy is more beneficial than using individual or mixed co-immobilized enzymes on magnetic nanoparticles for enhancing conversion applications.


Subject(s)
Enzymes, Immobilized , Magnetite Nanoparticles , Sugar Alcohols , Enzymes, Immobilized/metabolism , Xylulose , Temperature , Hydrogen-Ion Concentration , Enzyme Stability
6.
Int J Mol Sci ; 25(6)2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38542352

ABSTRACT

Previously, we found for the first time the participation of osmolytes in adaptation to acidic conditions in three acidophilic fungi. Because trehalose can protect membranes, we hypothesized a relationship between osmolyte and membrane systems in adaptation to stressors. In the mycelium of Phlebiopsis gigantea, the level of osmolytes reaches 8% of the dry mass, while trehalose and arabitol make up 60% and 33% of the sum, respectively. Cold shock does not change the composition of osmolytes, heat shock causes a twofold increase in the trehalose level, and osmotic shock leads to a marked increase in the amount of trehalose and arabitol. Predominance of phospholipids (89% of the sum) and low proportions of sterols and sphingolipids are characteristic features of the membrane lipids' composition. Phosphatidic acids, along with phosphatidylethanolamines and phosphatidylcholines, are the main membrane lipids. The composition of the membrane lipids remains constant under all shocks. The predominance of linoleic (75% of the sum) and palmitic (20%) acids in phospholipids results in a high degree of unsaturation (1.5). Minor fluctuations in the fatty acid composition are observed under all shocks. The results demonstrate that maintaining or increasing the trehalose level provides stability in the membrane lipid composition during adaptation.


Subject(s)
Basidiomycota , Membrane Lipids , Polyporales , Sugar Alcohols , Trehalose , Osmotic Pressure , Phospholipids
7.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474585

ABSTRACT

Ribitol (C5H12O5) is an acyclic sugar alcohol that was recently identified in O-mannose glycan on mammalian α-dystroglycan. The conformation and dynamics of acyclic sugar alcohols such as ribitol are dependent on the stereochemistry of the hydroxyl groups; however, the dynamics are not fully understood. To gain insights into the conformation and dynamics of sugar alcohols, we carried out comparative analyses of ribitol, d-arabitol and xylitol by a crystal structure database search, solution NMR analysis and molecular dynamics (MD) simulations. The crystal structures of the sugar alcohols showed a limited number of conformations, suggesting that only certain stable conformations are prevalent among all possible conformations. The three-bond scholar coupling constants and exchange rates of hydroxyl protons were measured to obtain information on the backbone torsion angle and possible hydrogen bonding of each hydroxyl group. The 100 ns MD simulations indicate that the ribitol backbone has frequent conformational transitions with torsion angles between 180∘ and ±60∘, while d-arabitol and xylitol showed fewer conformational transitions. Taking our experimental and computational data together, it can be concluded that ribitol is more flexible than d-arabitol or xylitol, and the flexibility is at least in part defined by the configuration of the OH groups, which may form intramolecular hydrogen bonds.


Subject(s)
Ribitol , Xylitol , Molecular Dynamics Simulation , Sugar Alcohols
8.
Molecules ; 29(11)2024 May 26.
Article in English | MEDLINE | ID: mdl-38893389

ABSTRACT

Aspergillus cristatus is a crucial edible fungus used in tea fermentation. In the industrial fermentation process, the fungus experiences a low to high osmotic pressure environment. To explore the law of material metabolism changes during osmotic pressure changes, NaCl was used here to construct different osmotic pressure environments. Liquid chromatography-mass spectrometry (LC-MS) combined with multivariate analysis was performed to analyze the distribution and composition of A. cristatus under different salt concentrations. At the same time, the in vitro antioxidant activity was evaluated. The LC-MS metabolomics analysis revealed significant differences between three A. cristatus mycelium samples grown on media with and without NaCl concentrations of 8% and 18%. The contents of gibberellin A3, A124, and prostaglandin A2 related to mycelial growth and those of arabitol and fructose-1,6-diphosphate related to osmotic pressure regulation were significantly reduced at high NaCl concentrations. The biosynthesis of energy-related pantothenol and pantothenic acid and antagonism-related fluvastatin, aflatoxin, and alternariol significantly increased at high NaCl concentrations. Several antioxidant capacities of A. cristatus mycelia were directly related to osmotic pressure and exhibited a significant downward trend with an increase in environmental osmotic pressure. The aforementioned results indicate that A. cristatus adapts to changes in salt concentration by adjusting their metabolite synthesis. At the same time, a unique set of strategies was developed to cope with high salt stress, including growth restriction, osmotic pressure balance, oxidative stress response, antioxidant defense, and survival competition.


Subject(s)
Antioxidants , Aspergillus , Metabolomics , Salt Stress , Aspergillus/metabolism , Aspergillus/growth & development , Metabolomics/methods , Chromatography, Liquid , Antioxidants/metabolism , Metabolome , Osmotic Pressure , Mycelium/metabolism , Mycelium/growth & development , Mycelium/chemistry , Mass Spectrometry , Sodium Chloride/pharmacology , Liquid Chromatography-Mass Spectrometry , Sugar Alcohols
9.
J Sci Food Agric ; 104(6): 3749-3756, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38234140

ABSTRACT

BACKGROUND: Laboratory scale experiments have shown that curdlan and gellan gum gelled together as curdlan/gellan gum (CG) hybrid gels showed better gel properties than the individual curdlan and gellan gum. In this study, CG and black wolfberry anthocyanin (BWA), CG and maltitol (ML) hybrid gels were constructed using CG hybrid gel as matrix. The effects of BWA or ML on the gel properties and microstructure of CG hybrid gels were investigated and a confectionery gel was developed. RESULTS: The presence of BWA increased the storage modulus (G') value of CG at 0.1 Hz, whereas ML had little effect on the G' value of CG. The addition of BWA (5 g L-1 ) and ML (0.3 mol L-1 ) increased the melting and gelling temperatures of CG hybrid gels to 42.4 °C and 34.1 °C and 44.2 °C and 33.2 °C, respectively. Meanwhile, the relaxation time T22 in CG-ML and CG-BWA hybrid gels was reduced to 91.96 and 410.27 ms, indicating the strong binding between BWA and CG, ML and CG. The hydrogen bond interaction between BWA or ML and CG was confirmed by the shift in the hydroxyl stretching vibration peak. Moreover, the microstructures of CG-ML and CG-BWA hybrid gels were denser than that of CG. In addition, confectionery gel containing CG-BWA-ML has good chewing properties. CONCLUSION: These results indicated that the incorporation of BWA or ML could improve the structure of CG hybrid gels and assign a sustainability potential for the development of confectionery gels based on CG complex. © 2024 Society of Chemical Industry.


Subject(s)
Lycium , Maltose/analogs & derivatives , Sugar Alcohols , beta-Glucans , Anthocyanins , Polysaccharides, Bacterial/chemistry , Gels/chemistry , Rheology
10.
J Biol Chem ; 298(10): 102445, 2022 10.
Article in English | MEDLINE | ID: mdl-36055403

ABSTRACT

Two dimensional GC (GC × GC)-time-of-flight mass spectrometry (TOFMS) has been used to improve accurate metabolite identification in the chemical industry, but this method has not been applied as readily in biomedical research. Here, we evaluated and validated the performance of high resolution GC × GC-TOFMS against that of GC-TOFMS for metabolomics analysis of two different plasma matrices, from healthy controls (CON) and diabetes mellitus (DM) patients with kidney failure (DM with KF). We found GC × GC-TOFMS outperformed traditional GC-TOFMS in terms of separation performance and metabolite coverage. Several metabolites from both the CON and DM with KF matrices, such as carbohydrates and carbohydrate-conjugate metabolites, were exclusively detected using GC × GC-TOFMS. Additionally, we applied this method to characterize significant metabolites in the DM with KF group, with focused analysis of four metabolite groups: sugars, sugar alcohols, amino acids, and free fatty acids. Our plasma metabolomics results revealed 35 significant metabolites (12 unique and 23 concentration-dependent metabolites) in the DM with KF group, as compared with those in the CON and DM groups (N = 20 for each group). Interestingly, we determined 17 of the 35 (14/17 verified with reference standards) significant metabolites identified from both the analyses were metabolites from the sugar and sugar alcohol groups, with significantly higher concentrations in the DM with KF group than in the CON and DM groups. Enrichment analysis of these 14 metabolites also revealed that alterations in galactose metabolism and the polyol pathway are related to DM with KF. Overall, our application of GC × GC-TOFMS identified key metabolites in complex plasma matrices.


Subject(s)
Diabetic Neuropathies , Gas Chromatography-Mass Spectrometry , Metabolomics , Renal Insufficiency , Sugar Alcohols , Sugars , Humans , Gas Chromatography-Mass Spectrometry/methods , Metabolomics/methods , Renal Insufficiency/blood , Sugar Alcohols/blood , Sugars/blood , Diabetic Neuropathies/blood
11.
Int J Mol Sci ; 24(15)2023 Jul 30.
Article in English | MEDLINE | ID: mdl-37569590

ABSTRACT

Drought stress is a major threat to sustainable crop production worldwide. Despite the positive role of calcium (Ca2+) in improving plant drought tolerance in different crops, little attention has been paid to its role in mitigating drought stress in potatoes. In the present study, we studied the effect of foliar chelated sugar alcohol calcium treatments on two potato cultivars with different drought responses applied 15 and 30 days after limiting soil moisture. The results showed that the foliar application of calcium treatments alleviated the SPAD chlorophyll loss of the drought-sensitive cultivar 'Atlantic' (Atl) and reduced the inhibition of photosynthetic parameters, leaf anatomy deformation, and MDA and H2O2 content of both cultivars under drought stress. The Ca2+ treatments changed the expression of several Calcium-Dependent Protein Kinase (StCDPK) genes involved in calcium sensing and signaling and significantly increased antioxidant enzyme activities, average tuber weight per plant, and tuber quality of both cultivars. We conclude that calcium spray treatments improved the drought tolerance of both potato cultivars and were especially effective for the drought-sensitive cultivar. The present work suggests that the foliar application of calcium is a promising strategy to improve commercial potato yields and the economic efficiency of potato production under drought stress conditions.


Subject(s)
Solanum tuberosum , Solanum tuberosum/genetics , Calcium/metabolism , Droughts , Sugar Alcohols/pharmacology , Hydrogen Peroxide/metabolism , Photosynthesis
12.
Int J Mol Sci ; 24(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36834595

ABSTRACT

Policosanols from various sources, such as sugar cane, rice bran, and insects, have been marketed to prevent dyslipidemia, diabetes, and hypertension by increasing the blood high-density lipoproteins cholesterol (HDL-C) levels. On the other hand, there has been no study on how each policosanol influences the quality of HDL particles and their functionality. Reconstituted high-density lipoproteins (rHDLs) with apolipoprotein (apo) A-I and each policosanol were synthesized using the sodium cholate dialysis method to compare the policosanols in lipoprotein metabolism. Each rHDL was compared regarding the particle size and shape, antioxidant activity, and anti-inflammatory activity in vitro and in zebrafish embryos. This study compared four policosanols including one policosanol from Cuba (Raydel® policosanol) and three policosanols from China (Xi'an Natural sugar cane, Xi'an Realin sugar cane, and Shaanxi rice bran). The synthesis of rHDLs with various policosanols (PCO) from Cuba or China using a molar ratio of 95:5:1:1 with palmitoyloleoyl phosphatidylcholine (POPC): free cholesterol (FC): apoA-I:PCO (wt:wt) showed that rHDL containing Cuban policosanol (rHDL-1) showed the largest particle size and the most distinct particle shape. The rHDL-1 showed a 23% larger particle diameter and increased apoA-I molecular weight with a 1.9 nm blue shift of the maximum wavelength fluorescence than rHDL alone (rHDL-0). Other rHDLs containing Chinese policosanols (rHDL-2, rHDL-3, and rHDL-4) showed similar particle sizes with an rHDL-0 and 1.1-1.3 nm blue shift of wavelength maximum fluorescence (WMF). Among all rHDLs, the rHDL-1 showed the strongest antioxidant ability to inhibit cupric ion-mediated LDL oxidation. The rHDL-1-treated LDL showed the most distinct band intensity and particle morphology compared with the other rHDLs. The rHDL-1 also exerted the highest anti-glycation activity to inhibit the fructose-mediated glycation of human HDL2 with the protection of apoA-I from proteolytic degradation. At the same time, other rHDLs showed a loss of anti-glycation activity with severe degradation. A microinjection of each rHDL alone showed that rHDL-1 had the highest survivability of approximately 85 ± 3%, with the fastest developmental speed and morphology. In contrast, rHDL-3 showed the lowest survivability, around 71 ± 5%, with the slowest developmental speed. A microinjection of carboxymethyllysine (CML), a pro-inflammatory advanced glycated end product, into zebrafish embryos resulted in severe embryo death of approximately 30 ± 3% and developmental defects with the slowest developmental speed. On the other hand, the phosphate buffered saline (PBS)-injected embryo showed 83 ± 3% survivability. A co-injection of CML and each rHDL into adult zebrafish showed that rHDL-1 (Cuban policosanol) induced the highest survivability, around 85 ± 3%, while rHDL-0 showed 67 ± 7% survivability. In addition, rHDL-2, rHDL-3, and rHDL-4 showed 67 ± 5%, 62 ± 37, and 71 ± 6% survivability, respectively, with a slower developmental speed and morphology. In conclusion, Cuban policosanol showed the strongest ability to form rHDLs with the most distinct morphology and the largest size. The rHDL-containing Cuban policosanol (rHDL-1) showed the strongest antioxidant ability against LDL oxidation, anti-glycation activity to protect apoA-I from degradation, and the highest anti-inflammatory activity to protect embryo death under the presence of CML.


Subject(s)
Antioxidants , Saccharum , Animals , Humans , Anti-Inflammatory Agents , Antioxidants/metabolism , Apolipoprotein A-I/metabolism , Cholesterol/metabolism , Embryo Loss , Ethanol , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Saccharum/metabolism , Sugar Alcohols , Zebrafish/metabolism
13.
Molecules ; 28(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37764370

ABSTRACT

Most of the world's annual production of mannitol is by chemical means, but, due to increasing demand for natural sweeteners, alternative production methods are being sought. The aim of the study was to screen Yarrowia lipolytica yeast strains and select culture conditions for the efficient and selective biosynthesis of mannitol from glycerol. From 21 strains examined in the shake-flask culture for mannitol biosynthesis from glycerol (100 g/L), three strains were selected-S2, S3, and S4-and further evaluated in batch bioreactor cultures with technical and raw glycerol (150 g/L). The best production parameters were observed for strain S3, which additionally was found to be the most resistant to NaCl concentration. Next, strain S3 was examined in batch culture with regard to the initial glycerol concentration (from 50 to 250 g/L). It was found that the substrate concentrations of 50 and 75 g/L resulted in the highest mannitol selectivity, about 70%. The fed-batch culture system proposed in this paper (performed in two variants in which glycerol was dosed in four portions of about 50 or 75 g/L) resulted in increased mannitol production, up to 78.5 g/L.


Subject(s)
Glycerol , Yarrowia , Sugar Alcohols , Sweetening Agents , Mannitol , Excipients
14.
J Am Chem Soc ; 144(30): 13717-13728, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35867993

ABSTRACT

Alditols, which have a sweet taste but produce much lower calories than natural sugars, are widely used as artificial sweeteners. Alditols are the reduced forms of monosaccharide aldoses, and different alditols are diastereomers or epimers of each other and direct and rapid identification by conventional methods is difficult. Nanopores, which are emerging single-molecule sensors with exceptional resolution when engineered appropriately, are useful for the recognition of diastereomers and epimers. In this work, direct distinguishing of alditols corresponding to all 15 monosaccharide aldoses was achieved by a boronic acid-appended hetero-octameric Mycobacterium smegmatis porin A (MspA) nanopore (MspA-PBA). Thirteen alditols including glycerol, erythritol, threitol, adonitol, arabitol, xylitol, mannitol, sorbitol, allitol, dulcitol, iditol, talitol, and gulitol (l-sorbitol) could be fully distinguished, and their sensing features constitute a complete nanopore alditol database. To automate event classification, a custom machine-learning algorithm was developed and delivered a 99.9% validation accuracy. This strategy was also used to identify alditol components in commercially available "zero-sugar" drinks and healthcare products, suggesting their use in rapid and sensitive quality control for the food and medical industry.


Subject(s)
Nanopores , Delivery of Health Care , Monosaccharides , Mycobacterium smegmatis , Porins , Sorbitol , Sugar Alcohols
15.
Plant Cell Physiol ; 63(5): 658-670, 2022 May 16.
Article in English | MEDLINE | ID: mdl-35243499

ABSTRACT

Sugar alcohols are major photosynthetic products in plant species from the Apiaceae and Plantaginaceae families. Mannose-6-phosphate reductase (Man6PRase) and aldose-6-phosphate reductase (Ald6PRase) are key enzymes for synthesizing mannitol and glucitol in celery (Apium graveolens) and peach (Prunus persica), respectively. In this work, we report the first crystal structures of dimeric plant aldo/keto reductases (AKRs), celery Man6PRase (solved in the presence of mannonic acid and NADP+) and peach Ald6PRase (obtained in the apo form). Both structures displayed the typical TIM barrel folding commonly observed in proteins from the AKR superfamily. Analysis of the Man6PRase holo form showed that residues putatively involved in the catalytic mechanism are located close to the nicotinamide ring of NADP+, where the hydride transfer to the sugar phosphate should take place. Additionally, we found that Lys48 is important for the binding of the sugar phosphate. Interestingly, the Man6PRase K48A mutant had a lower catalytic efficiency with mannose-6-phosphate but a higher catalytic efficiency with mannose than the wild type. Overall, our work sheds light on the structure-function relationships of important enzymes to synthesize sugar alcohols in plants.


Subject(s)
Phosphates , Sugar Alcohols , Alcohol Oxidoreductases/metabolism , Aldehyde Reductase/metabolism , Amino Acid Sequence , Humans , Mannosephosphates , NADP/metabolism , Plants/metabolism , Sugars
16.
Planta ; 256(1): 13, 2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35713726

ABSTRACT

MAIN CONCLUSION: Sorbitol metabolism plays multiple roles in many plants, including energy and carbon enrichment, effective defence against various stresses and other emerging specific roles. The underlying mechanisms are, however, incompletely understood. This review provides the current state-of-the-art, highlights missing knowledge and poses several remaining questions. The basic properties of sugar alcohols are summarised and pathways of sorbitol metabolism, including biosynthesis, degradation and key enzymes are described. Sorbitol transport within the plant body is discussed and individual roles of sorbitol in different organs, specific cells or even cellular compartments, are elaborated, clarifying the critical importance of sorbitol allocation and distribution. In addition to plants that accumulate and transport significant quantities of sorbitol (usual producers), there are some that synthesize small amounts of sorbitol or only possess sorbitol metabolising enzymes (non-usual producers). Modern analytical methods have recently enabled large amounts of data to be acquired on this topic, although numerous uncertainties and questions remain. For a long time, it has been clear that enriching carbohydrate metabolism with a sorbitol branch improves plant fitness under stress. Nevertheless, this is probably valid only when appropriate growth and defence trade-offs are ensured. Information on the ectopic expression of sorbitol metabolism genes has contributed substantially to our understanding of the sorbitol roles and raises new questions regarding sorbitol signalling potential. We finally examine strategies in plants producing sorbitol compared with those producing mannitol. Providing an in-depth understanding of sugar alcohol metabolism is essential for the progress in plant physiology as well as in targeted, knowledge-based crop breeding.


Subject(s)
Sorbitol , Sugar Alcohols , Carbohydrate Metabolism , Mannitol/metabolism , Sugar Alcohols/metabolism
17.
Microb Pathog ; 171: 105724, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35988883

ABSTRACT

Oral microbes coexist with each other in a symbiotic relationship or as commensals in healthy body. Teeth and oral cavity harbor diverse community of fungi and bacteria. This study focused on bacterial and fungal component of gingiva, where the last occupy little attention. In addition to study the antimicrobial activity of toothpastes, mouth washes and natural oils against microorganisms. Sixty swabs from outer surfaces of gingiva in healthy persons, as well as patients complaining of gingivitis and periodontitis were collected for fungal and bacterial analyses. Sensitivity of the isolated microorganisms to some pharmaceutical preparations and natural oils was also performed. Ten fungal and 9 bacterial species were identified. There is a highly significant variation in the frequency of Klebsiella pneumonia among healthy, gingivitis and periodontitis. Also, Candida tropicalis and cocci bacteria showed significant diversity among the three tested groups. Among pharmaceutical preparations (toothpastes and mouth washes) and natural oils, Paradontax, Hexitol and clove oil showed the best antimicrobial activity against tested fungal and bacterial strains. Although, minimum inhibition concentrations (MICs) of clove oil were high compared to Paradontax and Hexitol, nevertheless, it is highly recommended as both antifungal and antibacterial agent against oral pathogenic microorganisms, because it is a natural compound and nearly devoid of side effects.


Subject(s)
Gingivitis , Microbiota , Periodontitis , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacteria , Clove Oil/pharmacology , Gingiva/microbiology , Gingivitis/microbiology , Humans , Periodontitis/microbiology , Pharmaceutical Preparations , Plant Oils , Sugar Alcohols , Toothpastes
18.
Toxicol Appl Pharmacol ; 442: 115949, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35227738

ABSTRACT

Nrf2 encodes a transcription factor best known for regulating the expression of antioxidant and detoxification genes. Recent evidence suggested that Nrf2 mediates metabolic reprogramming in cancer cells. However, the role of Nrf2 in the biochemical metabolism of cardiac cells has not been studied. Using LC-MS/MS-based metabolomics, we addressed whether knocking out the Nrf2 gene in AC16 human cardiomyocytes affects metabolic reprogramming by oxidative stress. Profiling the basal level metabolites showed an elevated pentose phosphate pathway and increased levels of sugar alcohols, sorbitol, L-arabitol, xylitol and xylonic acid, in Nrf2 KO cells. With sublethal levels of oxidative stress, depletion of NAD, an increase of GDP and elevation of sugar alcohols, sorbitol and dulcitol, were detected in parent wild type (WT) cells. Knocking out Nrf2 did not affect these changes. Biochemical assays confirmed depletion of NAD in WT and Nrf2 KO cells due to H2O2 treatment. These data support that although Nrf2 deficiency caused baseline activation of the pentose phosphate pathway and sugar alcohol synthesis, a brief exposure to none-lethal doses of H2O2 caused NAD depletion in an Nrf2 independent manner. Loss of NAD may contribute to oxidative stress associated cell degeneration as observed with aging, diabetes and heart failure.


Subject(s)
NAD , NF-E2-Related Factor 2 , Oxidative Stress , Sugar Alcohols , Humans , Chromatography, Liquid , Hydrogen Peroxide , Metabolomics , NAD/metabolism , NF-E2-Related Factor 2/metabolism , Sorbitol , Sugar Alcohols/metabolism , Tandem Mass Spectrometry
19.
Chem Res Toxicol ; 35(9): 1541-1557, 2022 09 19.
Article in English | MEDLINE | ID: mdl-36066868

ABSTRACT

Wood burning contributes to indoor and ambient particulate matter (PM) pollution and has been associated with increased morbidity and mortality. Here, we present an integrated methodology that allows to generate, sample, and characterize wood smoke derived from different moisture contents and representative combustion conditions using pine wood as a model. Flaming, smoldering, and incomplete combustion were assessed for low-moisture pine, whereas both low-moisture pine and high-moisture pine were investigated under flaming conditions. Real-time monitoring of carbon monoxide, volatile organic compounds, and aerosol number concentration/size in wood smoke was performed. The PM was size-fractionated, sampled, and characterized for elemental/organic carbon, organic functional groups, and inorganic elements. Bioactivity of PM was assessed by measuring the sterile alpha motif (SAM) pointed domain containing ETS (E-twenty-six) transcription factor (SPDEF) gene promoter activity in human embryonic kidney 293 (HEK-293T) cells, a biomarker for mucin gene expression. Findings showed that moisture content and combustion condition significantly affected the organic and inorganic elemental composition of PM0.1 as well as its bioactivity. Also, for a given moisture and combustion scenario, PM chemistry and bioactivity differed considerably with PM size. Importantly, PM0.1 from flaming combustion of low-moisture pine contained the highest abundance of the oxygenated saturated aliphatic functional group [H-C-O] and was also biologically most potent in stimulating SPDEF promoter activity, suggesting the role of organic compounds such as carbohydrates and sugar alcohols (that contain [H-C-O]) in driving mucus-related respiratory outcomes. Our platform enables further well-controlled parametric studies using a combination of in vitro and in vivo approaches to link wood burning parameters with acute and chronic inhalation health effects of wood smoke.


Subject(s)
Air Pollutants , Particulate Matter , Smoke , Volatile Organic Compounds , Air Pollutants/analysis , Air Pollutants/toxicity , Carbohydrates/analysis , Carbon Monoxide/analysis , Carbon Monoxide/toxicity , Humans , Mucins/analysis , Particulate Matter/analysis , Particulate Matter/toxicity , Smoke/adverse effects , Smoke/analysis , Sugar Alcohols/analysis , Transcription Factors , Volatile Organic Compounds/analysis , Volatile Organic Compounds/toxicity , Wood/chemistry
20.
Microb Cell Fact ; 21(1): 179, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36058916

ABSTRACT

BACKGROUND: D-Arabitol, a five-carbon sugar alcohol, represents a main target of microbial biorefineries aiming to valorize cheap substrates. The yeast Wickerhamomyces anomalus WC 1501 is known to produce arabitol in a glycerol-based nitrogen-limited medium and preliminary fed-batch processes with this yeast were reported to yield 18.0 g/L arabitol. RESULTS: Fed-batch fermentations with W. anomalus WC 1501 were optimized using central composite design (CCD). Dissolved oxygen had not a significant effect, while optimum values were found for glycerol concentration (114.5 g/L), pH (5.9), and temperature (32.5 °C), yielding 29 g/L D-arabitol in 160 h, a conversion yield of 0.25 g of arabitol per g of consumed glycerol, and a volumetric productivity of 0.18 g/L/h. CCD optimal conditions were the basis for further improvement, consisting in increasing the cellular density (3✕), applying a constant feeding of glycerol, and increasing temperature during production. The best performing fed-batch fermentations achieved 265 g/L D-arabitol after 325 h, a conversion yield of 0.74 g/g, and a volumetric productivity of 0.82 g/L/h. CONCLUSION: W. anomalus WC 1501 confirmed as an excellent producer of D-arabitol, exhibiting a remarkable capability of transforming pure glycerol. The study reports among the highest values ever reported for microbial transformation of glycerol into D-arabitol, in terms of arabitol titer, conversion yield, and productivity.


Subject(s)
Glucose , Glycerol , Saccharomycetales , Sugar Alcohols
SELECTION OF CITATIONS
SEARCH DETAIL