Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 435
Filter
1.
Nature ; 562(7726): 277-280, 2018 10.
Article in English | MEDLINE | ID: mdl-30232454

ABSTRACT

The CRISPR system provides adaptive immunity against mobile genetic elements in prokaryotes, using small CRISPR RNAs that direct effector complexes to degrade invading nucleic acids1-3. Type III effector complexes were recently demonstrated to synthesize a novel second messenger, cyclic oligoadenylate, on binding target RNA4,5. Cyclic oligoadenylate, in turn, binds to and activates ribonucleases and other factors-via a CRISPR-associated Rossman-fold domain-and thereby induces in the cell an antiviral state that is important for immunity. The mechanism of the 'off-switch' that resets the system is not understood. Here we identify the nuclease that degrades these cyclic oligoadenylate ring molecules. This 'ring nuclease' is itself a protein of the CRISPR-associated Rossman-fold family, and has a metal-independent mechanism that cleaves cyclic tetraadenylate rings to generate linear diadenylate species and switches off the antiviral state. The identification of ring nucleases adds an important insight to the CRISPR system.


Subject(s)
Adenine Nucleotides/metabolism , CRISPR-Associated Proteins/antagonists & inhibitors , CRISPR-Associated Proteins/classification , CRISPR-Cas Systems/genetics , Endoribonucleases/chemistry , Endoribonucleases/metabolism , Oligoribonucleotides/metabolism , Sulfolobus solfataricus/enzymology , CRISPR-Associated Proteins/metabolism , Endoribonucleases/genetics , Endoribonucleases/isolation & purification , Kinetics , Models, Molecular , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Second Messenger Systems , Sulfolobus solfataricus/genetics
2.
Nucleic Acids Res ; 49(21): 12577-12590, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34850143

ABSTRACT

Type III CRISPR-Cas effector systems detect foreign RNA triggering DNA and RNA cleavage and synthesizing cyclic oligoadenylate molecules (cA) in their Cas10 subunit. cAs act as a second messenger activating auxiliary nucleases, leading to an indiscriminate RNA degradation that can end in cell dormancy or death. Standalone ring nucleases are CRISPR ancillary proteins which downregulate the strong immune response of Type III systems by degrading cA. These enzymes contain a CRISPR-associated Rossman-fold (CARF) domain, which binds and cleaves the cA molecule. Here, we present the structures of the standalone ring nuclease from Sulfolobus islandicus (Sis) 0811 in its apo and post-catalytic states. This enzyme is composed by a N-terminal CARF and a C-terminal wHTH domain. Sis0811 presents a phosphodiester hydrolysis metal-independent mechanism, which cleaves cA4 rings to generate linear adenylate species, thus reducing the levels of the second messenger and switching off the cell antiviral state. The structural and biochemical analysis revealed the coupling of a cork-screw conformational change with the positioning of key catalytic residues to proceed with cA4 phosphodiester hydrolysis in a non-concerted manner.


Subject(s)
Adenine Nucleotides/metabolism , CRISPR-Associated Proteins/metabolism , CRISPR-Cas Systems , Endonucleases/metabolism , Nucleotides, Cyclic/metabolism , Oligoribonucleotides/metabolism , Sulfolobus solfataricus/enzymology , Adenine Nucleotides/chemistry , Binding Sites/genetics , Biocatalysis , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , Chromatography, Liquid , Crystallography, X-Ray , Endonucleases/chemistry , Endonucleases/genetics , Kinetics , Mass Spectrometry/methods , Models, Molecular , Mutation , Nucleotides, Cyclic/chemistry , Oligoribonucleotides/chemistry , Protein Domains , Sulfolobus solfataricus/genetics
3.
Biochem J ; 478(9): 1769-1781, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33881499

ABSTRACT

Nucleobases within DNA are attacked by reactive oxygen species to produce 7,8-dihydro-8-oxoguanine (oxoG) and 7,8-dihydro-8-oxoadenine (oxoA) as major oxidative lesions. The high mutagenicity of oxoG is attributed to the lesion's ability to adopt syn-oxoG:anti-dA with Watson-Crick-like geometry. Recent studies have revealed that Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4) inserts nucleotide opposite oxoA in an error-prone manner and accommodates syn-oxoA:anti-dGTP with Watson-Crick-like geometry, highlighting a promutagenic nature of oxoA. To gain further insights into the bypass of oxoA by Dpo4, we have conducted kinetic and structural studies of Dpo4 extending oxoA:dT and oxoA:dG by incorporating dATP opposite templating dT. The extension past oxoA:dG was ∼5-fold less efficient than that past oxoA:dT. Structural studies revealed that Dpo4 accommodated dT:dATP base pair past anti-oxoA:dT with little structural distortion. In the Dpo4-oxoA:dG extension structure, oxoA was in an anti conformation and did not form hydrogen bonds with the primer terminus base. Unexpectedely, the dG opposite oxoA exited the primer terminus site and resided in an extrahelical site, where it engaged in minor groove contacts to the two immediate upstream bases. The extrahelical dG conformation appears to be induced by the stabilization of anti-oxoA conformation via bifurcated hydrogen bonds with Arg332. This unprecedented structure suggests that Dpo4 may use Arg332 to sense 8-oxopurines at the primer terminus site and slow the extension from the mismatch by promoting anti conformation of 8-oxopurines.


Subject(s)
Adenine/analogs & derivatives , Archaeal Proteins/chemistry , DNA Polymerase beta/chemistry , Guanine/analogs & derivatives , Sulfolobus solfataricus/enzymology , Adenine/chemistry , Adenine/metabolism , Amino Acid Sequence , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Guanine/chemistry , Guanine/metabolism , Kinetics , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/genetics , Thermodynamics
4.
Proc Natl Acad Sci U S A ; 116(33): 16378-16383, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31346089

ABSTRACT

Triosephosphate isomerase (TIM) barrel proteins have not only a conserved architecture that supports a myriad of enzymatic functions, but also a conserved folding mechanism that involves on- and off-pathway intermediates. Although experiments have proven to be invaluable in defining the folding free-energy surface, they provide only a limited understanding of the structures of the partially folded states that appear during folding. Coarse-grained simulations employing native centric models are capable of sampling the entire energy landscape of TIM barrels and offer the possibility of a molecular-level understanding of the readout from sequence to structure. We have combined sequence-sensitive native centric simulations with small-angle X-ray scattering and time-resolved Förster resonance energy transfer to monitor the formation of structure in an intermediate in the Sulfolobus solfataricus indole-3-glycerol phosphate synthase TIM barrel that appears within 50 µs and must at least partially unfold to achieve productive folding. Simulations reveal the presence of a major and 2 minor folding channels not detected in experiments. Frustration in folding, i.e., backtracking in native contacts, is observed in the major channel at the initial stage of folding, as well as late in folding in a minor channel before the appearance of the native conformation. Similarities in global and pairwise dimensions of the early intermediate, the formation of structure in the central region that spreads progressively toward each terminus, and a similar rate-limiting step in the closing of the ß-barrel underscore the value of combining simulation and experiment to unravel complex folding mechanisms at the molecular level.


Subject(s)
Indole-3-Glycerol-Phosphate Synthase/chemistry , Protein Conformation , Protein Folding , Triose-Phosphate Isomerase/chemistry , Amino Acid Sequence , Fluorescence Resonance Energy Transfer , Indole-3-Glycerol-Phosphate Synthase/genetics , Models, Molecular , Protein Structure, Secondary , Scattering, Small Angle , Sulfolobus solfataricus/enzymology , Thermodynamics , Triose-Phosphate Isomerase/genetics
5.
Biochemistry ; 60(38): 2888-2901, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34496202

ABSTRACT

Conformational dynamics are important factors in the function of enzymes, including protein tyrosine phosphatases (PTPs). Crystal structures of PTPs first revealed the motion of a protein loop bearing a conserved catalytic aspartic acid, and subsequent nuclear magnetic resonance and computational analyses have shown the presence of motions, involved in catalysis and allostery, within and beyond the active site. The tyrosine phosphatase from the thermophilic and acidophilic Sulfolobus solfataricus (SsoPTP) displays motions of its acid loop together with dynamics of its phosphoryl-binding P-loop and the Q-loop, the first instance of such motions in a PTP. All three loops share the same exchange rate, implying their motions are coupled. Further evidence of conformational flexibility comes from mutagenesis, kinetics, and isotope effect data showing that E40 can function as an alternate general acid to protonate the leaving group when the conserved acid, D69, is mutated to asparagine. SsoPTP is not the first PTP to exhibit an alternate general acid (after VHZ and TkPTP), but E40 does not correspond to the sequence or structural location of the alternate general acids in those precedents. A high-resolution X-ray structure with the transition state analogue vanadate clarifies the role of the active site arginine R102, which varied in structures of substrates bound to a catalytically inactive mutant. The coordinated motions of all three functional loops in SsoPTP, together with the function of an alternate general acid, suggest that catalytically competent conformations are present in solution that have not yet been observed in crystal structures.


Subject(s)
Protein Tyrosine Phosphatases/genetics , Sulfolobus solfataricus/enzymology , Amino Acid Sequence/genetics , Catalysis , Catalytic Domain/genetics , Crystallography, X-Ray/methods , Humans , Kinetics , Models, Molecular , Motion , Phosphorylation/genetics , Protein Conformation , Protein Tyrosine Phosphatases/metabolism , Protein Tyrosine Phosphatases/ultrastructure , Sulfolobus solfataricus/chemistry , Sulfolobus solfataricus/metabolism
6.
Phys Chem Chem Phys ; 23(37): 20841-20847, 2021 Sep 29.
Article in English | MEDLINE | ID: mdl-34533560

ABSTRACT

The Y-family DNA polymerases specialize in translesion DNA synthesis, which is essential for replicating damaged DNA. The Y-family polymerases, which are made up of four stable domains, exhibit extensive distributions of charged residues, and are responsible for the tight formation of the protein-DNA complex. However, it is still unclear how the electrostatic interactions influence the conformational dynamics of the polymerases. Here, we focus on the case of a prototype Y-family DNA polymerase, Dpo4. Using coarse-grained models including a salt-dependent electrostatic potential, we investigate the effects of the electrostatic interactions on the folding process of Dpo4. Our simulations show that strong electrostatic interactions result in a three-state folding of Dpo4, consistent with the experimental observations. This folding process exhibits low cooperativity led by low salt concentration, where the individual domains fold one by one through one single pathway. Since the refined folding order of domains in multidomain proteins can shrink the configurational space, we suggest that the electrostatic interactions facilitate the Dpo4 folding. In addition, we study the local conformational dynamics of Dpo4 in terms of fluctuation and frustration analyses. We show that the electrostatic interactions can exaggerate the local conformational properties, which are in favor of the large-scale conformational transition of Dpo4 during the functional DNA binding. Our results underline the importance of electrostatic interactions in the conformational dynamics of Dpo4 at both the global and local scale, providing useful guidance in protein engineering at the multidomain level.


Subject(s)
Bacterial Proteins/chemistry , DNA-Directed DNA Polymerase/chemistry , Bacterial Proteins/metabolism , DNA/chemistry , DNA/metabolism , DNA-Directed DNA Polymerase/metabolism , Protein Binding , Protein Conformation , Protein Domains , Protein Folding , Salts/chemistry , Static Electricity , Sulfolobus solfataricus/enzymology , Thermodynamics , Transition Temperature
7.
Bioorg Chem ; 107: 104581, 2021 02.
Article in English | MEDLINE | ID: mdl-33383321

ABSTRACT

Retaining glycosidase mutants lacking its general acid/base catalytic residue are originally termed thioglycoligases which synthesize thio-linked disaccharides using sugar acceptor bearing a nucleophilic thiol group. A few thioglycoligases derived from retaining α-glycosidases have been classified into a new class of catalysts, O-glycoligases which transfer sugar moiety to a hydroxy group of sugar acceptors, resulting in the formation of O-linked glycosides or oligosaccharides. In this study, an efficient O-α-glucosylation of flavonoids was developed using an O-α-glycoligase derived from a thermostable α-glucosidase from Sulfolobus solfataricus (MalA-D416A). The O-glycoligase exhibited efficient transglycosylation activity with a broad substrate spectrum for all kinds of tested flavonoids including flavone, flavonol, flavanone, flavanonol, flavanol and isoflavone classes in yields of higher than 90%. The glucosylation by MalA-D416A preferred alkaline conditions, suggesting that pH-promoted deprotonation of hydroxyl groups of the flavonoids would accelerate turnover of covalent enzyme intermediate via transglucosylation. More importantly, the glucosylation of flavonoids by MalA-D416A was exclusively regioselective, resulting in the synthesis of flavonoid 7-O-α-glucosides as the sole product. Kinetic analysis and molecular dynamics simulations provided insights into the acceptor specificity and the regiospecificity of O-α-glucosylation by MalA-D416A. This pH promoted transglycosylation using O-α-glycoligases may prove to be a general synthesis route to flavonoid O-α-glycosides.


Subject(s)
Flavonoids/biosynthesis , Protein Engineering , alpha-Glucosidases/metabolism , Dose-Response Relationship, Drug , Flavonoids/chemistry , Glycosylation , Hydrogen-Ion Concentration , Molecular Structure , Mutation , Structure-Activity Relationship , Substrate Specificity , Sulfolobus solfataricus/enzymology , alpha-Glucosidases/genetics
8.
Proc Natl Acad Sci U S A ; 115(26): 6697-6702, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29891690

ABSTRACT

The cellular replicative DNA polymerases cannot initiate DNA synthesis without a priming 3' OH. During DNA replication, this is supplied in the context of a short RNA primer molecule synthesized by DNA primase. The primase of archaea and eukaryotes, despite having varying subunit compositions, share sequence and structural homology. Intriguingly, archaeal primase has been demonstrated to possess the ability to synthesize DNA de novo, a property shared with the eukaryotic PrimPol enzymes. The dual RNA and DNA synthetic capabilities of the archaeal DNA primase have led to the proposal that there may be a sequential hand-off between these synthetic modes of primase. In the current work, we dissect the functional interplay between DNA and RNA synthetic modes of primase. In addition, we determine the key determinants that govern primer length definition by the archaeal primase. Our results indicate a primer measuring system that functions akin to a caliper.


Subject(s)
Archaeal Proteins/physiology , DNA Primase/physiology , DNA Primers/chemistry , Sulfolobus solfataricus/enzymology , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/metabolism , Crystallography, X-Ray , DNA Primase/chemistry , Fluorescence Polarization , Models, Molecular , Molecular Weight , Protein Conformation , Protein Subunits
9.
Int J Mol Sci ; 22(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805072

ABSTRACT

In the field of biocatalysis and the development of a bio-based economy, hemicellulases have attracted great interest for various applications in industrial processes. However, the study of the catalytic activity of the lignocellulose-degrading enzymes needs to be improved to achieve the efficient hydrolysis of plant biomasses. In this framework, hemicellulases from hyperthermophilic archaea show interesting features as biocatalysts and provide many advantages in industrial applications thanks to their stability in the harsh conditions encountered during the pretreatment process. However, the hemicellulases from archaea are less studied compared to their bacterial counterpart, and the activity of most of them has been barely tested on natural substrates. Here, we investigated the hydrolysis of xyloglucan oligosaccharides from two different plants by using, both synergistically and individually, three glycoside hydrolases from Saccharolobus solfataricus: a GH1 ß-gluco-/ß-galactosidase, a α-fucosidase belonging to GH29, and a α-xylosidase from GH31. The results showed that the three enzymes were able to release monosaccharides from xyloglucan oligosaccharides after incubation at 65 °C. The concerted actions of ß-gluco-/ß-galactosidase and the α-xylosidase on both xyloglucan oligosaccharides have been observed, while the α-fucosidase was capable of releasing all α-linked fucose units from xyloglucan from apple pomace, representing the first GH29 enzyme belonging to subfamily A that is active on xyloglucan.


Subject(s)
Glucans/chemistry , Glycoside Hydrolases/metabolism , Oligosaccharides/chemistry , Sulfolobus solfataricus/enzymology , Xylans/chemistry , Glycoside Hydrolases/chemistry , Hydrolysis , Recombinant Proteins/chemistry , Seeds/metabolism , Tamarindus/metabolism , Temperature , Xylosidases/metabolism
10.
Biochemistry ; 59(19): 1823-1831, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32338502

ABSTRACT

CYP119, a bacterial thermophilic protein from the cytochrome P450 superfamily, has previously been observed in three different conformations with different inhibitors bound using X-ray crystallography. The significance of these states in solution and in the function of the enzyme is not well-known. Double electron-electron resonance (DEER) was used to measure distances and distance distributions between spin-labels for populated conformational states in solution. DEER spectroscopy and molecular dynamics for the ligand-free enzyme suggest that the G helix is in a slightly different conformation than seen previously by crystallography, with the F/G loop in a slightly open conformation. Inhibitor-bound samples showed that this conformation remains as the predominant form, but partial conversion is indicated to a more closed conformation of the F/G loop. However, when the enzyme binds to lauric acid, the proposed substrate, it induces the conversion to a state that is characterized by increased disorder. We propose that similar to recent results with soluble CYP3A4, binding of the inhibitor to CYP119 is accompanied by only small changes in the enzyme structure, but substrate binding results in greater heterogeneity in the structure of the F/G loop region.


Subject(s)
Archaeal Proteins/chemistry , Cytochrome P-450 Enzyme System/chemistry , Electrons , Sulfolobus solfataricus/enzymology , Archaeal Proteins/isolation & purification , Archaeal Proteins/metabolism , Crystallography, X-Ray , Cytochrome P-450 Enzyme System/isolation & purification , Cytochrome P-450 Enzyme System/metabolism , Electron Spin Resonance Spectroscopy , Lauric Acids/pharmacology , Models, Molecular , Protein Conformation , Solutions , Substrate Specificity
11.
Transgenic Res ; 29(5-6): 511-527, 2020 12.
Article in English | MEDLINE | ID: mdl-32776308

ABSTRACT

The ß-glucosidase, which hydrolyzes the ß(1-4) glucosidic linkage of disaccharides, oligosaccharides and glucose-substituted molecules, has been used in many biotechnological applications. The current commercial source of ß-glucosidase is mainly microbial fermentation. Plants have been developed as bioreactors to produce various kinds of proteins including ß-glucosidase because of the potential low cost. Sulfolobus solfataricus is a thermoacidophilic archaeon that can grow optimally at high temperature, around 80 °C, and pH 2-4. We overexpressed the ß-glucosidase gene from S. solfataricus in transgenic tobacco via Agrobacteria-mediated transformation. Three transgenic tobacco lines with ß-glucosidase gene expression driven by the rbcS promoter were obtained, and the recombinant proteins were accumulated in chloroplasts, endoplasmic reticulum and vacuoles up to 1%, 0.6% and 0.3% of total soluble protein, respectively. By stacking the transgenes via crossing distinct transgenic events, the level of ß-glucosidase in plants could further increase. The plant-expressed ß-glucosidase had optimal activity at 80 °C and pH 5-6. In addition, the plant-expressed ß-glucosidase showed high thermostability; on heat pre-treatment at 80 °C for 2 h, approximately 70% residual activity remained. Furthermore, wind-dried leaf tissues of transgenic plants showed good stability in short-term storage at room temperature, with ß-glucosidase activity of about 80% still remaining after 1 week of storage as compared with fresh leaf. Furthermore, we demonstrated the possibility of using the archaebacterial ß-glucosidase gene as a reporter in plants based on alternative ß-galactosidase activity.


Subject(s)
Nicotiana/genetics , Plants, Genetically Modified/genetics , Recombinant Proteins/metabolism , Sulfolobus solfataricus/genetics , beta-Glucosidase/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Cellobiose/metabolism , Cloning, Molecular , Enzyme Stability , Genes, Reporter , Genetic Vectors , Glucose/metabolism , Hydrogen-Ion Concentration , Promoter Regions, Genetic , Recombinant Proteins/genetics , Sulfolobus solfataricus/enzymology , Temperature , Nicotiana/metabolism , beta-Glucosidase/metabolism
12.
Biotechnol Appl Biochem ; 67(4): 602-618, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32621790

ABSTRACT

The aim of this paper is to make the point on the fortieth years study on the ß-glycosidase from Sulfolobus solfataricus. This enzyme represents one of the thermophilic biocatalysts, which is more extensively studied as witnessed by the numerous literature reports available since 1980. Comprehensive biochemical studies highlighted its broad substrate specificity for ß-d-galacto-, gluco-, and fuco-sides and also showed its remarkable exo-glucosidase and transglycosidase activities. The enzyme demonstrated to be active and stable over a wide range of temperature and pHs, withstanding to several drastic conditions comprising solvents and detergents. Over the years, a great deal of studies were focused on its homotetrameric tridimensional structure, elucidating several structural features involved in the enzyme stability, such as ion pairs and post-translational modifications. Several ß-glycosidase mutants were produced in the years in order to understand its peculiar behavior in extreme conditions and/or to improve its functional properties. The ß-glycosidase overproduction was also afforded reporting numerous studies dealing with its production in the mesophilic host Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris, and Lactococcus lactis. Relevant applications in food, beverages, bioenergy, pharmaceuticals, and nutraceutical fields of this enzyme, both in free and immobilized forms, highlighted its biotechnological relevance.


Subject(s)
Archaeal Proteins/chemistry , Biotechnology/history , Glucosidases/chemistry , Sulfolobus solfataricus/enzymology , Archaeal Proteins/history , Enzyme Stability , Glucosidases/history , History, 20th Century , History, 21st Century , Substrate Specificity
13.
Nucleic Acids Res ; 46(2): 861-872, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29253195

ABSTRACT

DNA topoisomerases are essential enzymes involved in all the DNA processes and among them, type IA topoisomerases emerged as a key actor in the maintenance of genome stability. The hyperthermophilic archaeon, Sulfolobus solfataricus, contains three topoisomerases IA including one classical named TopA. SsoTopA is very efficient at unlinking DNA catenanes, grouping SsoTopA into the topoisomerase III family. SsoTopA is active over a wide range of temperatures and at temperatures of up to 85°C it produces highly unwound DNA. At higher temperatures, SsoTopA unlinks the two DNA strands. Thus depending on the temperature, SsoTopA is able to either prevent or favor DNA melting. While canonical topoisomerases III require a single-stranded DNA region or a nick in one of the circles to decatenate them, we show for the first time that a type I topoisomerase, SsoTopA, is able to efficiently unlink covalently closed catenanes, with no additional partners. By using single molecule experiments we demonstrate that SsoTopA requires the presence of a short single-stranded DNA region to be efficient. The unexpected decatenation property of SsoTopA probably comes from its high ability to capture this unwound region. This points out a possible role of TopA in S. solfataricus as a decatenase in Sulfolobus.


Subject(s)
Archaeal Proteins/metabolism , DNA Topoisomerases, Type I/metabolism , DNA, Catenated/metabolism , Sulfolobus solfataricus/enzymology , Archaeal Proteins/genetics , Base Sequence , DNA Topoisomerases, Type I/genetics , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Archaeal/metabolism , DNA, Catenated/chemistry , DNA, Catenated/genetics , DNA, Concatenated/chemistry , DNA, Concatenated/genetics , DNA, Concatenated/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Hot Temperature , Kinetics , Models, Molecular , Nucleic Acid Conformation , Sulfolobus solfataricus/genetics
14.
Int J Mol Sci ; 21(5)2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32121487

ABSTRACT

Increasing attention is more and more directed toward the thermostable Phosphotriesterase-Like-Lactonase (PLL) family of enzymes, for the efficient and reliable decontamination of toxic nerve agents. In the present study, the DNA Staggered Extension Process (StEP) technique was utilized to obtain new variants of PLL enzymes. Divergent homologous genes encoding PLL enzymes were utilized as templates for gene recombination and yielded a new variant of SsoPox from Saccharolobus solfataricus. The new mutant, V82L/C258L/I261F/W263A (4Mut) exhibited catalytic efficiency of 1.6 × 105 M-1 s-1 against paraoxon hydrolysis at 70°C, which is more than 3.5-fold and 42-fold improved in comparison with C258L/I261F/W263A (3Mut) and wild type SsoPox, respectively. 4Mut was also tested with chemical warfare nerve agents including tabun, sarin, soman, cyclosarin and VX. In particular, 4Mut showed about 10-fold enhancement in the hydrolysis of tabun and soman with respect to 3Mut. The crystal structure of 4Mut has been solved at the resolution of 2.8 Å. We propose that, reorganization of dimer conformation that led to increased central groove volume and dimer flexibility could be the major determinant for the improvement in hydrolytic activity in the 4Mut.


Subject(s)
Aryldialkylphosphatase/chemistry , Aryldialkylphosphatase/metabolism , Mutant Proteins/metabolism , Protein Multimerization , Sulfolobus solfataricus/enzymology , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Catalytic Domain , Circular Dichroism , Directed Molecular Evolution , Enzyme Stability , Hydrogen-Ion Concentration , Ions , Metals/chemistry , Models, Molecular , Nerve Agents/chemistry , Phosphoric Triester Hydrolases/chemistry , Phosphoric Triester Hydrolases/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Structural Homology, Protein , Structure-Activity Relationship , Temperature
15.
J Am Chem Soc ; 141(51): 19983-19987, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31829582

ABSTRACT

Protein functions are temperature-dependent, but protein structures are usually solved at a single (often low) temperature because of limitations on the conditions of crystal growth or protein vitrification. Here we demonstrate the feasibility of solving cryo-EM structures of proteins vitrified at high temperatures, solve 12 structures of an archaeal ketol-acid reductoisomerase (KARI) vitrified at 4-70 °C, and show that structures of both the Mg2+ form (KARI:2Mg2+) and its ternary complex (KARI:2Mg2+:NADH:inhibitor) are temperature-dependent in correlation with the temperature dependence of enzyme activity. Furthermore, structural analyses led to dissection of the induced-fit mechanism into ligand-induced and temperature-induced effects and to capture of temperature-resolved intermediates of the temperature-induced conformational change. The results also suggest that it is preferable to solve cryo-EM structures of protein complexes at functional temperatures. These studies should greatly expand the landscapes of protein structure-function relationships and enhance the mechanistic analysis of enzymatic functions.


Subject(s)
Ketol-Acid Reductoisomerase/metabolism , Temperature , Cryoelectron Microscopy , Crystallography, X-Ray , Ketol-Acid Reductoisomerase/chemistry , Models, Molecular , Molecular Conformation , Sulfolobus solfataricus/enzymology
16.
Archaea ; 2019: 9848253, 2019.
Article in English | MEDLINE | ID: mdl-30886540

ABSTRACT

A system is described which permits the efficient synthesis of proteins in vitro at high temperature. It is based on the use of an unfractionated cell lysate (S30) from Sulfolobus solfataricus previously well characterized in our laboratory for translation of pretranscribed mRNAs, and now adapted to perform coupled transcription and translation. The essential element in this expression system is a strong promoter derived from the S. solfataricus 16S/23S rRNA-encoding gene, from which specific mRNAs may be transcribed with high efficiency. The synthesis of two different proteins is reported, including the S. solfataricus DNA-alkylguanine-DNA-alkyl-transferase protein (SsOGT), which is shown to be successfully labeled with appropriate fluorescent substrates and visualized in cell extracts. The simplicity of the experimental procedure and specific activity of the proteins offer a number of possibilities for the study of structure-function relationships of proteins.


Subject(s)
Complex Mixtures/metabolism , Protein Biosynthesis , Sulfolobus solfataricus/enzymology , Transcription, Genetic , Cell-Free System , DNA, Archaeal/genetics , Hot Temperature , Promoter Regions, Genetic , RNA, Messenger/metabolism , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 23S/genetics
17.
RNA ; 23(3): 346-354, 2017 03.
Article in English | MEDLINE | ID: mdl-27932585

ABSTRACT

S-adenosylmethionine (SAM)-dependent methyltransferases regulate a wide range of biological processes through the modification of proteins, nucleic acids, polysaccharides, as well as various metabolites. TYW3/Taw3 is a SAM-dependent methyltransferase responsible for the formation of a tRNA modification known as wybutosine and its derivatives that are required for accurate decoding in protein synthesis. Here, we report the crystal structure of Taw3, a homolog of TYW3 from Sulfolobus solfataricus, which revealed a novel α/ß fold. The sequence motif (S/T)xSSCxGR and invariant aspartate and histidine, conserved in TYW3/Taw3, cluster to form the catalytic center. These structural and sequence features indicate that TYW3/Taw3 proteins constitute a distinct class of SAM-dependent methyltransferases. Using site-directed mutagenesis along with in vivo complementation assays combined with mass spectrometry as well as ligand docking and cofactor binding assays, we have identified the active site of TYW3 and residues essential for cofactor binding and methyltransferase activity.


Subject(s)
Archaeal Proteins/chemistry , Methyltransferases/chemistry , Nucleosides/chemistry , S-Adenosylmethionine/chemistry , Sulfolobus solfataricus/chemistry , Amino Acid Motifs , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Kinetics , Methyltransferases/genetics , Methyltransferases/metabolism , Molecular Docking Simulation , Mutagenesis, Site-Directed , Nucleosides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , S-Adenosylmethionine/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity , Sulfolobus solfataricus/enzymology
18.
Appl Environ Microbiol ; 85(2)2019 01 15.
Article in English | MEDLINE | ID: mdl-30446550

ABSTRACT

Sulfolobus solfataricus is an aerobic crenarchaeal hyperthermophile with optimum growth at temperatures greater than 80°C and pH 2 to 4. Within the crenarchaeal group of Sulfolobales, N-acetylglucosamine (GlcNAc) has been shown to be a component of exopolysaccharides, forming their biofilms, and of the N-glycan decorating some proteins. The metabolism of GlcNAc is still poorly understood in Archaea, and one approach to gaining additional information is through the identification and functional characterization of carbohydrate active enzymes (CAZymes) involved in the modification of GlcNAc. The screening of S. solfataricus extracts allowed the detection of a novel α-N-acetylglucosaminidase (α-GlcNAcase) activity, which has never been identified in Archaea Mass spectrometry analysis of the purified activity showed a protein encoded by the sso2901 gene. Interestingly, the purified recombinant enzyme, which was characterized in detail, revealed a novel de-N-acetylase activity specific for GlcNAc and derivatives. Thus, assays to identify an α-GlcNAcase found a GlcNAc de-N-acetylase instead. The α-GlcNAcase activity observed in S. solfataricus extracts did occur when SSO2901 was used in combination with an α-glucosidase. Furthermore, the inspection of the genomic context and the preliminary characterization of a putative glycosyltransferase immediately upstream of sso2901 (sso2900) suggest the involvement of these enzymes in the GlcNAc metabolism in S. solfataricusIMPORTANCE In this study, a preliminary screening of cellular extracts of S. solfataricus allowed the identification of an α-N-acetylglucosaminidase activity. However, the characterization of the corresponding recombinant enzyme revealed a novel GlcNAc de-N-acetylase, which, in cooperation with the α-glucosidase, catalyzed the hydrolysis of O-α-GlcNAc glycosides. In addition, we show that the product of a gene flanking the one encoding the de-N-acetylase is a putative glycosyltransferase, suggesting the involvement of the two enzymes in the metabolism of GlcNAc. The discovery and functional analysis of novel enzymatic activities involved in the modification of this essential sugar represent a powerful strategy to shed light on the physiology and metabolism of Archaea.


Subject(s)
Acetylesterase/genetics , Sulfolobus solfataricus/genetics , Acetylesterase/metabolism , Glycosides/chemistry , Hydrolysis , Substrate Specificity , Sulfolobus solfataricus/enzymology
19.
Arch Biochem Biophys ; 675: 108120, 2019 10 30.
Article in English | MEDLINE | ID: mdl-31563510

ABSTRACT

Dpo4 is a representative model of Y-family DNA polymerase and is therefore one of the most intensively studied DNA polymerase. 6 mA, an epigenetic marker, plays important roles in regulation of various biological processes. However, its effects on DNA replication by Dpo4 is completely unknown. Here, we found that 6 mA and its intermediate Hyp inhibits primer extension by Dpo4, showing an obvious blockage just one nucleotide before 6 mA or Hyp. 6 mA reduces dTTP incorporation efficiency, next-base extension efficiency, binding affinity of DNA to Dpo4, binding affinity of dTTP to Dpo4-DNA complex, the fraction of productive Dpo4 or productive ternary complex, and the burst incorporation rate, explaining the inhibition effects of 6 mA on DNA replication by Dpo4. Hyp is similar to G and dCTP is preferentially incorporated opposite Hyp by Dpo4, resulting in A:T to G:C mutation. Relative to dTTP incorporation opposite unmodified A, Hyp reduces dCTP incorporation efficiency, next-base extension efficiency, the priority in extension beyond correct pair, binding affinity of Dpo4 to DNA, binding of dCTP to Dpo4-DNA complex, and the burst incorporation efficiency, explaining the inhibition effects of Hyp on DNA replication by Dpo4. This work provides insight in the effects of epigenetically modified 6 mA and Hyp on DNA replication by a representative Y-family DNA polymerase Dpo4.


Subject(s)
Adenine/analogs & derivatives , DNA Replication/genetics , DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , Epigenesis, Genetic , Sulfolobus solfataricus/enzymology , Adenine/chemistry
20.
Nat Chem Biol ; 13(8): 874-881, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28604696

ABSTRACT

SNi-like mechanisms, which involve front-face leaving group departure and nucleophile approach, have been observed experimentally and computationally in chemical and enzymatic substitution at α-glycosyl electrophiles. Since SNi-like, SN1 and SN2 substitution pathways can be energetically comparable, engineered switching could be feasible. Here, engineering of Sulfolobus solfataricus ß-glycosidase, which originally catalyzed double SN2 substitution, changed its mode to SNi-like. Destruction of the first SN2 nucleophile through E387Y mutation created a ß-stereoselective catalyst for glycoside synthesis from activated substrates, despite lacking a nucleophile. The pH profile, kinetic and mutational analyses, mechanism-based inactivators, X-ray structure and subsequent metadynamics simulations together suggest recruitment of substrates by π-sugar interaction and reveal a quantum mechanics-molecular mechanics (QM/MM) free-energy landscape for the substitution reaction that is similar to those of natural, SNi-like glycosyltransferases. This observation of a front-face mechanism in a ß-glycosyltransfer enzyme highlights that SNi-like pathways may be engineered in catalysts with suitable environments and suggests that 'ß-SNi' mechanisms may be feasible for natural glycosyltransfer enzymes.


Subject(s)
Glycosyltransferases/metabolism , Hydrolases/metabolism , Protein Engineering , beta-Glucosidase/metabolism , Biocatalysis , Quantum Theory , Sulfolobus solfataricus/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL