Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Int J Mol Sci ; 25(16)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39201372

ABSTRACT

Accumulating evidence suggests an involvement of sphingolipids, vital components of cell membranes and regulators of cellular processes, in the pathophysiology of both Parkinson's disease and major depressive disorder, indicating a potential common pathway in these neuropsychiatric conditions. Based on this interaction of sphingolipids and synuclein proteins, we explored the gene expression patterns of α-, ß-, and γ-synuclein in a knockout mouse model deficient for acid sphingomyelinase (ASM), an enzyme catalyzing the hydrolysis of sphingomyelin to ceramide, and studied associations with behavioral parameters. Normalized Snca, Sncb, and Sncg gene expression was determined by quantitative PCR in twelve brain regions of sex-mixed homozygous (ASM-/-, n = 7) and heterozygous (ASM+/-, n = 7) ASM-deficient mice, along with wild-type controls (ASM+/+, n = 5). The expression of all three synuclein genes was brain region-specific but independent of ASM genotype, with ß-synuclein showing overall higher levels and the least variation. Moreover, we discovered correlations of gene expression levels between brain regions and depression- and anxiety-like behavior and locomotor activity, such as a positive association between Snca mRNA levels and locomotion. Our results suggest that the analysis of synuclein genes could be valuable in identifying biomarkers and comprehending the common pathological mechanisms underlying various neuropsychiatric disorders.


Subject(s)
Anxiety , Brain , Depression , Disease Models, Animal , Locomotion , Mice, Knockout , Sphingomyelin Phosphodiesterase , Animals , Sphingomyelin Phosphodiesterase/genetics , Sphingomyelin Phosphodiesterase/metabolism , Mice , Brain/metabolism , Depression/genetics , Depression/metabolism , Anxiety/genetics , Anxiety/metabolism , Locomotion/genetics , Male , Synucleins/metabolism , Synucleins/genetics , Behavior, Animal , Female , Genotype , alpha-Synuclein/genetics , alpha-Synuclein/metabolism , Mice, Inbred C57BL
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39125972

ABSTRACT

In this work, we explored the intrinsic disorder status of the three members of the synuclein family of proteins-α-, ß-, and γ-synucleins-and showed that although all three human synucleins are highly disordered, the highest levels of disorder are observed in γ-synuclein. Our analysis of the peculiarities of the amino acid sequences and modeled 3D structures of the human synuclein family members revealed that the pathological mutations A30P, E46K, H50Q, A53T, and A53E associated with the early onset of Parkinson's disease caused some increase in the local disorder propensity of human α-synuclein. A comparative sequence-based analysis of the synuclein proteins from various evolutionary distant species and evaluation of their levels of intrinsic disorder using a set of commonly used bioinformatics tools revealed that, irrespective of their origin, all members of the synuclein family analyzed in this study were predicted to be highly disordered proteins, indicating that their intrinsically disordered nature represents an evolutionary conserved and therefore functionally important feature. A detailed functional disorder analysis of the proteins in the interactomes of the human synuclein family members utilizing a set of commonly used disorder analysis tools showed that the human α-synuclein interactome has relatively higher levels of intrinsic disorder as compared with the interactomes of human ß- and γ- synucleins and revealed that, relative to the ß- and γ-synuclein interactomes, α-synuclein interactors are involved in a much broader spectrum of highly diversified functional pathways. Although proteins interacting with three human synucleins were characterized by highly diversified functionalities, this analysis also revealed that the interactors of three human synucleins were involved in three common functional pathways, such as the synaptic vesicle cycle, serotonergic synapse, and retrograde endocannabinoid signaling. Taken together, these observations highlight the critical importance of the intrinsic disorder of human synucleins and their interactors in various neuronal processes.


Subject(s)
alpha-Synuclein , Humans , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Amino Acid Sequence , beta-Synuclein/metabolism , beta-Synuclein/genetics , beta-Synuclein/chemistry , gamma-Synuclein/metabolism , gamma-Synuclein/genetics , Parkinson Disease/metabolism , Parkinson Disease/genetics , Synucleins/metabolism , Synucleins/genetics , Models, Molecular , Mutation
3.
Proc Natl Acad Sci U S A ; 117(3): 1762-1771, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31900358

ABSTRACT

The pathological hallmark of synucleinopathies, including Lewy body dementia and Parkinson's disease (PD), is the presence of Lewy bodies, which are primarily composed of intracellular inclusions of misfolded α-synuclein (α-syn) among other proteins. α-Syn is found in extracellular biological fluids in PD patients and has been implicated in modulating immune responses in the central nervous system (CNS) and the periphery. Natural killer (NK) cells are innate effector lymphocytes that are present in the CNS in homeostatic and pathological conditions. NK cell numbers are increased in the blood of PD patients and their activity is associated with disease severity; however, the role of NK cells in the context of α-synucleinopathies has never been explored. Here, we show that human NK cells can efficiently internalize and degrade α-syn aggregates via the endosomal/lysosomal pathway. We demonstrate that α-syn aggregates attenuate NK cell cytotoxicity in a dose-dependent manner and decrease the release of the proinflammatory cytokine, IFN-γ. To address the role of NK cells in PD pathogenesis, NK cell function was investigated in a preformed fibril α-syn-induced mouse PD model. Our studies demonstrate that in vivo depletion of NK cells in a preclinical mouse PD model resulted in exacerbated motor deficits and increased phosphorylated α-syn deposits. Collectively, our data provide a role of NK cells in modulating synuclein pathology and motor symptoms in a preclinical mouse model of PD, which could be developed into a therapeutic for PD and other synucleinopathies.


Subject(s)
Killer Cells, Natural/metabolism , Synucleinopathies/metabolism , Synucleins/metabolism , alpha-Synuclein/metabolism , Animals , Brain/metabolism , Brain/pathology , Central Nervous System/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , Lewy Bodies/metabolism , Lewy Body Disease/metabolism , Lysosomes/metabolism , Male , Mice , Mice, Transgenic , Parkinson Disease/metabolism , Synucleinopathies/genetics , Synucleinopathies/pathology
4.
J Cell Physiol ; 236(1): 440-457, 2021 01.
Article in English | MEDLINE | ID: mdl-32557610

ABSTRACT

Parkinsonism is one of the most common aging neurodegenerative disorders. This study aims to compare the therapeutic effect of stem cell versus its conditioned medium in the Parkinsonism model. Parkinsonism was induced by daily subcutaneous injection of 0.5 mg/kg of rotenone dissolved in dimethyl sulfoxide for 28 days. Fifty rats were divided randomly into five groups: control, dimethyl sulfoxide, Parkinsonism, stem cell-treated, and conditioned medium-treated groups. Midbrain specimens were obtained for histological, immunohistochemical, and biochemical studies. Lewy bodies were observed in the Parkinsonism group in the dopaminergic neuron and neuropil as well. Almost all of the pathological changes were clearly ameliorated in both stem cell- and conditioned medium-treated groups as confirmed by biochemical, histological, and immunohistochemical (anti-nestin, anti-glial fibrillary acidic protein, and anti-α synuclein) studies. However, the conditioned medium showed more superior therapeutic effect establishing nearly the normal histological architecture of substantia nigra. These results may pave the future for using stem cell-conditioned medium as a more convenient and effective adjuvant therapy in Parkinsonism and other neurodegenerative disorders.


Subject(s)
Bone Marrow Cells/metabolism , Culture Media, Conditioned/metabolism , Mesenchymal Stem Cells/metabolism , Parkinsonian Disorders/metabolism , Animals , Bone Marrow Cells/drug effects , Cells, Cultured , Disease Models, Animal , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Glial Fibrillary Acidic Protein/metabolism , Male , Mesencephalon/metabolism , Mesenchymal Stem Cells/drug effects , Nestin/metabolism , Neuropil/drug effects , Neuropil/metabolism , Parkinsonian Disorders/drug therapy , Rats , Rotenone/pharmacology , Stem Cells/drug effects , Stem Cells/metabolism , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Synucleins/metabolism
5.
Brain ; 143(3): 920-931, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32025699

ABSTRACT

A variety of cellular processes, including vesicle clustering in the presynaptic compartment, are impaired in Parkinson's disease and have been closely associated with α-synuclein oligomerization. Emerging evidence proves the existence of α-synuclein-related pathology in the peripheral nervous system, even though the presence of α-synuclein oligomers in situ in living patients remains poorly investigated. In this case-control study, we show previously undetected α-synuclein oligomers within synaptic terminals of autonomic fibres in skin biopsies by means of the proximity ligation assay and propose a procedure for their quantification (proximity ligation assay score). Our study revealed a significant increase in α-synuclein oligomers in consecutive patients with Parkinson's disease compared to consecutive healthy controls (P < 0.001). Proximity ligation assay score (threshold value > 96 using receiver operating characteristic) was found to have good sensitivity, specificity and positive predictive value (82%, 86% and 89%, respectively). Furthermore, to disclose the role of putative genetic predisposition in Parkinson's disease aetiology, we evaluated the differential accumulation of oligomers in a unique cohort of 19 monozygotic twins discordant for Parkinson's disease. The significant difference between patients and healthy subjects was confirmed in twins. Intriguingly, although no difference in median values was detected between consecutive healthy controls and healthy twins, the prevalence of healthy subjects positive for proximity ligation assay score was significantly greater in twins than in the consecutive cohort (47% versus 14%, P = 0.019). This suggests that genetic predisposition is important, but not sufficient, in the aetiology of the disease and strengthens the contribution of environmental factors. In conclusion, our data provide evidence that α-synuclein oligomers accumulate within synaptic terminals of autonomic fibres of the skin in Parkinson's disease for the first time. This finding endorses the hypothesis that α-synuclein oligomers could be used as a reliable diagnostic biomarker for Parkinson's disease. It also offers novel insights into the physiological and pathological roles of α-synuclein in the peripheral nervous system.


Subject(s)
Immunoassay/methods , Parkinson Disease/metabolism , Skin/metabolism , Synucleins/metabolism , Twins, Monozygotic/genetics , Autonomic Nervous System/metabolism , Case-Control Studies , Female , Genetic Predisposition to Disease/genetics , Humans , Male , Middle Aged , Presynaptic Terminals/metabolism
6.
Int J Neurosci ; 130(6): 574-582, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31771386

ABSTRACT

Aim: The aim of this study is to investigate the possible protective effects of mitoquinone and oleandrin on rotenone induced Parkinson's disease in zebrafish. Materials and methods: Adult zebrafish were exposed to rotenone and mitoquinone for 30 days. Biochemical parameters were determined by spectrophotometric method and Parkinson's disease-related gene expressions were determined by reverse transcription polymerase chain reaction method. Measurement of neurotransmitters was performed by liquid chromatography tandem-mass spectrometry instrument. The accumulation of synuclein was demonstrated by immunohistochemical staining. In vitro thiazolyl blue tetrazolium bromide method was applied to determine the mitochondrial function of synaptosomal brain fractions using rotenone as a neurotoxic agent and mitoquinone and oleandrin as neuroprotective agents. Results: Mitoquinone improved the oxidant-antioxidant balance and neurotransmitter levels that were disrupted by rotenone. Mitoquinone also ameliorated the expressions of Parkinson's disease-related gene expressions that were disrupted by rotenone. According to thiazolyl blue tetrazolium bromide assay results, mitoquinone and oleandrin increased mitochondrial function which was decreased due to rotenone exposure. Conclusion: Based on the results of our study, positive effects of mitoquinone were observed in Parkinson's disease model induced by rotenone in zebrafish.


Subject(s)
Cardenolides/administration & dosage , Gene Expression/drug effects , Neuroprotective Agents/administration & dosage , Organophosphorus Compounds/administration & dosage , Parkinson Disease/metabolism , Ubiquinone/analogs & derivatives , Animals , Disease Models, Animal , Female , Fish Proteins/metabolism , Locomotion/drug effects , Male , Mitochondria/drug effects , Parkinsonian Disorders/chemically induced , Rotenone/administration & dosage , Synucleins/metabolism , Ubiquinone/administration & dosage , Zebrafish
7.
J Biol Chem ; 293(22): 8554-8568, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29650757

ABSTRACT

As newly synthesized polypeptides emerge from the ribosome, it is crucial that they fold correctly. To prevent premature aggregation, nascent chains interact with chaperones that facilitate folding or prevent misfolding until protein synthesis is complete. Nascent polypeptide-associated complex (NAC) is a ribosome-associated chaperone that is important for protein homeostasis. However, how NAC binds its substrates remains unclear. Using native electrospray ionization MS (ESI-MS), limited proteolysis, NMR, and cross-linking, we analyzed the conformational properties of NAC from Caenorhabditis elegans and studied its ability to bind proteins in different conformational states. Our results revealed that NAC adopts an array of compact and expanded conformations and binds weakly to client proteins that are unfolded, folded, or intrinsically disordered, suggestive of broad substrate compatibility. Of note, we found that this weak binding retards aggregation of the intrinsically disordered protein α-synuclein both in vitro and in vivo These findings provide critical insights into the structure and function of NAC. Specifically, they reveal the ability of NAC to exploit its conformational plasticity to bind a repertoire of substrates with unrelated sequences and structures, independently of actively translating ribosomes.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/metabolism , Molecular Chaperones/chemistry , Peptides/metabolism , Protein Biosynthesis , Synucleins/chemistry , Animals , Caenorhabditis elegans Proteins/metabolism , Crystallography, X-Ray , Molecular Chaperones/metabolism , Peptides/chemistry , Protein Binding , Protein Folding , Protein Interaction Domains and Motifs , Synucleins/metabolism
8.
J Neurosci ; 37(7): 1675-1684, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28039370

ABSTRACT

Despite considerable research to uncover them, the anatomic and neuropathologic correlates of memory impairment in dementia with Lewy bodies (DLB) remain unclear. While some studies have implicated Lewy bodies in the neocortex, others have pointed to α-synuclein pathology in the hippocampus. We systematically examined hippocampal Lewy pathology and its distribution in hippocampal subfields in 95 clinically and neuropathologically characterized human cases of DLB, finding that α-synuclein pathology was highest in two hippocampal-related subregions: the CA2 subfield and the entorhinal cortex (EC). While the EC had numerous classic somatic Lewy bodies, CA2 contained mainly Lewy neurites in presumed axon terminals, suggesting the involvement of the EC → CA2 circuitry in the pathogenesis of DLB symptoms. Clinicopathological correlations with measures of verbal and visual memory supported a role for EC Lewy pathology, but not CA2, in causing these memory deficits. Lewy pathology in CA1-the main output region for CA2-correlated best with results from memory testing despite a milder pathology. This result indicates that CA1 may be more functionally relevant than CA2 in the context of memory impairment in DLB. These correlations remained significant after controlling for several factors, including concurrent Alzheimer's pathology (neuritic plaques and neurofibrillary tangles) and the interval between time of testing and time of death. Our data suggest that although hippocampal Lewy pathology in DLB is predominant in CA2 and EC, memory performance correlates most strongly with CA1 burden.SIGNIFICANCE STATEMENT This study provides a detailed neuropathologic analysis of hippocampal Lewy pathology in human patients with autopsy-confirmed dementia with Lewy bodies. The approach-informed by regional molecular markers, concurrent Alzheimer's pathology analysis, and relevant clinical data-helps tease out the relative contribution of Lewy pathology to memory dysfunction in the disease. Levels of Lewy pathology were found to be highest in the hippocampal CA2 subregion and entorhinal cortex, implicating a potentially overlooked circuit in disease pathogenesis. However, correlation with memory performance was strongest with CA1. This unexpected finding suggests that Lewy pathology must reach a critical burden across hippocampal circuitry to contribute to memory dysfunction beyond that related to other factors, notably coexisting Alzheimer's disease tau pathology.


Subject(s)
Hippocampus/metabolism , Lewy Body Disease/complications , Memory Disorders/etiology , Memory Disorders/pathology , alpha-Synuclein/metabolism , Aged , Aged, 80 and over , Autopsy , Cation Transport Proteins/metabolism , Female , Humans , Male , Neuropsychological Tests , Psychiatric Status Rating Scales , Regression Analysis , Synucleins/metabolism
9.
Ann Neurol ; 82(3): 419-428, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28833467

ABSTRACT

OBJECTIVE: To determine the usefulness of dopamine transporter (DAT) imaging to identify idiopathic rapid eye movement sleep behavior disorder (IRBD) patients at risk for short-term development of clinically defined synucleinopathy. METHODS: Eighty-seven patients with polysomnography-confirmed IRBD underwent 123 I-FP-CIT DAT-SPECT. Results were compared to 20 matched controls without RBD who underwent DAT-SPECT. In patients, FP-CIT uptake was considered abnormal when values were two standard deviations below controls' mean uptake. After DAT-SPECT, patients were followed up during 5.7 ± 2.2 (range, 2.6-9.9) years. RESULTS: Baseline DAT deficit was found in 51 (58.6%) patients. During follow-up, 25 (28.7%) subjects developed clinically defined synucleinopathy (Parkinson's disease in 11, dementia with Lewy bodies in 13, and multiple system atrophy in 1) with mean latency of 3.2 ± 1.9 years from imaging. Kaplan-Meier survival analysis showed increased risk of incident synucleinopathy in patients with abnormal DAT-SPECT than with normal DAT-SPECT (20% vs 6% at 3 years, 33% vs 18% at 5 years; log rank test, p = 0.006). Receiver operating characteristics curve revealed that reduction of FP-CIT uptake in putamen greater than 25% discriminated patients with DAT deficit who developed synucleinopathy from patients with DAT deficit that remained disease free after 3 years of follow-up. At 5-year follow-up, DAT-SPECT had 75% sensitivity, 51% specificity, 44% positive predictive value, 80% negative predictive value, and likelihood ratio 1.54 to predict synucleinopathy. INTERPRETATION: DAT-SPECT identifies IRBD patients at short-term risk for synucleinopathy. Decreased FP-CIT putamen uptake greater than 25% predicts synucleinopathy after 3 years' follow-up. These observations may be useful to select candidates for disease modification trials in IRBD. Ann Neurol 2017;82:419-428.


Subject(s)
Brain/diagnostic imaging , Dopamine Plasma Membrane Transport Proteins/metabolism , Lewy Body Disease/diagnostic imaging , Parkinson Disease/diagnostic imaging , REM Sleep Behavior Disorder/diagnostic imaging , Synucleins/metabolism , Aged , Aged, 80 and over , Biomarkers , Brain/metabolism , Disease Progression , Female , Humans , Lewy Body Disease/metabolism , Male , Middle Aged , Parkinson Disease/metabolism , Polysomnography , REM Sleep Behavior Disorder/metabolism , Tomography, Emission-Computed, Single-Photon
10.
Mov Disord ; 33(3): 372-390, 2018 03.
Article in English | MEDLINE | ID: mdl-29508455

ABSTRACT

Dysfunction of the autonomic nervous system afflicts most patients with Parkinson disease and other synucleinopathies such as dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure, reducing quality of life and increasing mortality. For example, gastrointestinal dysfunction can lead to impaired drug pharmacodynamics causing a worsening in motor symptoms, and neurogenic orthostatic hypotension can cause syncope, falls, and fractures. When recognized, autonomic problems can be treated, sometimes successfully. Discontinuation of potentially causative/aggravating drugs, patient education, and nonpharmacological approaches are useful and should be tried first. Pathophysiology-based pharmacological treatments that have shown efficacy in controlled trials of patients with synucleinopathies have been approved in many countries and are key to an effective management. Here, we review the treatment of autonomic dysfunction in patients with Parkinson disease and other synucleinopathies, summarize the nonpharmacological and current pharmacological therapeutic strategies including recently approved drugs, and provide practical advice and management algorithms for clinicians, with focus on neurogenic orthostatic hypotension, supine hypertension, dysphagia, sialorrhea, gastroparesis, constipation, neurogenic overactive bladder, underactive bladder, and sexual dysfunction. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/therapy , Parkinson Disease/complications , Synucleins/metabolism , Humans
11.
Mov Disord ; 33(3): 349-358, 2018 03.
Article in English | MEDLINE | ID: mdl-29297596

ABSTRACT

The synucleinopathies-Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and pure autonomic failure-result from distinct patterns of abnormal α-synuclein aggregation throughout the nervous system. Autonomic dysfunction in these disorders results from variable involvement of the central and peripheral autonomic networks. The major pathologic hallmark of Parkinson's disease and dementia with Lewy bodies is Lewy bodies and Lewy neurites; of multiple system atrophy, oligodendroglial cytoplasmic inclusions; and of pure autonomic failure, peripheral neuronal cytoplasmic inclusions. Clinical manifestations include orthostatic hypotension, thermoregulatory dysfunction, gastrointestinal dysmotility, and urogenital dysfunction with neurogenic bladder and sexual dysfunction. Strong evidence supports isolated idiopathic rapid eye movement sleep disorder as a significant risk factor for the eventual development of synucleinopathies with autonomic and/or motor involvement. In contrast, some neurologically normal elderly individuals have Lewy-related pathology. Future work may reveal protective or vulnerability factors that allow some patients to harbor Lewy pathology without overt autonomic dysfunction. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Autonomic Nervous System Diseases , Neuropathology , Parkinson Disease/complications , Synucleins/metabolism , Autonomic Nervous System Diseases/etiology , Autonomic Nervous System Diseases/metabolism , Autonomic Nervous System Diseases/pathology , Humans
12.
Phys Chem Chem Phys ; 20(31): 20315-20333, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30044456

ABSTRACT

Many studies aimed at advancing our understanding of the mechanisms of protein stabilization that support the survival of organisms under harsh environmental conditions are focused on deciphering the role of osmolytes as additives in the stabilization of protein. The exact interaction of an osmolyte with protein has been a matter of debate for a long time, but a clear unifying statement still cannot be provided regarding the actual behavior of the osmolyte. A literature survey reveals that there exist a large number of scholarly articles as well as elegant reviews that could aid a resolution of some problems of understanding systems comprising osmolytes and proteins. Additionally, there is no doubt from a vast literature survey that osmolytes display stabilizing behavior toward proteins. However, there are also a number of research articles available in the open literature that emphasize the destabilizing effects of osmolytes on protein stability and function. Therefore, a complete acquaintance of each osmolyte with respect to each protein is one of the most challenging tasks in the development of protein formulation and may be still needed in order to reliably administer the correct protein formulations through injection only. The lack of a comprehensive evaluation of a broad range of these osmolytes in protein systems stimulated our interest for the present perspective in this research field. To the best of our knowledge, this perspective delineates the most recent successful advances in the open literature and also on the basis of our research experience and should aid current researchers in the field of protein stabilization to develop new strategies.


Subject(s)
Proteins/metabolism , Amino Acids/chemistry , Guanidine/chemistry , Hydrophobic and Hydrophilic Interactions , Methylamines/chemistry , Molecular Dynamics Simulation , Polymers/chemistry , Protein Denaturation , Protein Folding , Protein Stability , Proteins/chemistry , Synucleins/chemistry , Synucleins/metabolism , Thermodynamics , Urea/chemistry
13.
J Neurosci ; 36(28): 7415-27, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27413152

ABSTRACT

UNLABELLED: Pathologic inclusions define α-synucleinopathies that include Parkinson's disease (PD). The most common genetic cause of PD is the G2019S LRRK2 mutation that upregulates LRRK2 kinase activity. However, the interaction between α-synuclein, LRRK2, and the formation of α-synuclein inclusions remains unclear. Here, we show that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the rat substantia nigra pars compact, increases the recruitment of endogenous α-synuclein into inclusions in response to α-synuclein fibril exposure. This results from the expression of mutant G2019S-LRRK2, as overexpression of WT-LRRK2 not only does not increase formation of inclusions but reduces their abundance. In addition, treatment of primary mouse neurons with LRRK2 kinase inhibitors, PF-06447475 and MLi-2, blocks G2019S-LRRK2 effects, suggesting that the G2019S-LRRK2 potentiation of inclusion formation depends on its kinase activity. Overexpression of G2019S-LRRK2 slightly increases, whereas WT-LRRK2 decreases, total levels of α-synuclein. Knockdown of total α-synuclein with potent antisense oligonucleotides substantially reduces inclusion formation in G2019S-LRRK2-expressing neurons, suggesting that LRRK2 influences α-synuclein inclusion formation by altering α-synuclein levels. These findings support the hypothesis that G2019S-LRRK2 may increase the progression of pathological α-synuclein inclusions after the initial formation of α-synuclein pathology by increasing a pool of α-synuclein that is more susceptible to forming inclusions. SIGNIFICANCE STATEMENT: α-Synuclein inclusions are found in the brains of patients with many different neurodegenerative diseases. Point mutation, duplication, or triplication of the α-synuclein gene can all cause Parkinson's disease (PD). The G2019S mutation in LRRK2 is the most common known genetic cause of PD. The interaction between G2019S-LRRK2 and α-synuclein may uncover new mechanisms and targets for neuroprotection. Here, we show that expression of G2019S-LRRK2 increases α-synuclein mobility and enhances aggregation of α-synuclein in primary cultured neurons and in dopaminergic neurons of the substantia nigra pars compacta, a susceptible brain region in PD. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, block the increased α-synuclein aggregation in G2019S-LRRK2-expressing neurons. These results demonstrate that α-synuclein inclusion formation in neurons can be blocked and that novel therapeutic compounds targeting this process by inhibiting LRRK2 kinase activity may slow progression of PD-associated pathology.


Subject(s)
Inclusion Bodies/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Neurons/metabolism , Transcytosis/physiology , alpha-Synuclein/metabolism , Animals , Gene Expression Regulation/genetics , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligoribonucleotides, Antisense/pharmacology , Photobleaching , Rats , Synucleins/metabolism , Transcytosis/genetics , Tubulin/metabolism , Voltage-Dependent Anion Channels/genetics , Voltage-Dependent Anion Channels/metabolism
14.
Exp Brain Res ; 235(7): 2189-2202, 2017 07.
Article in English | MEDLINE | ID: mdl-28439627

ABSTRACT

Proteinaceous inclusions, called Lewy bodies, are used as a pathological hallmark for Parkinson's disease (PD). Lewy bodies contain insoluble α-synuclein (aSyn) and many other ubiquitinated proteins, suggesting a role for protein degradation system failure in the PD pathogenesis. Indeed, proteasomal dysfunction has been linked to PD but commonly used in vivo toxin models, such as 6-OHDA or MPTP, do not have a significant effect on the proteasomal system or protein aggregation. Therefore, we wanted to study the characteristics of a proteasomal inhibitor, lactacystin, as a PD model on young and adult mice. To study this, we performed stereotactic microinjection of lactacystin above the substantia nigra pars compacta in young (2 month old) and adult (12-14 month old) C57Bl/6 mice. Motor behavior was measured by locomotor activity and cylinder tests, and the markers of neuroinflammation, aSyn, and dopaminergic system were assessed by immunohistochemistry and HPLC. We found that lactacystin induced a Parkinson's disease-like motor phenotype 5-7 days after injection in young and adult mice, and this was associated with widespread neuroinflammation based on glial cell markers, aSyn accumulation in substantia nigra, striatal dopamine decrease, and loss of dopaminergic cell bodies in the substantia nigra and terminals in the striatum. When comparing young and adult mice, adult mice were more sensitive for dopaminergic degeneration after lactacystin injection that further supports the use of adult mice instead of young when modeling neurodegeneration. Our data showed that lactacystin is useful in modeling various aspects of Parkinson's disease, and taken together, our findings emphasize the role of a protein degradation deficit in Parkinson's disease pathology, and support the use of proteasomal inhibitors as Parkinson's disease models.


Subject(s)
Acetylcysteine/analogs & derivatives , Cysteine Proteinase Inhibitors/toxicity , Neuroglia/drug effects , Parkinson Disease/etiology , Parkinson Disease/pathology , Substantia Nigra/drug effects , Acetylcysteine/toxicity , Age Factors , Animals , Calcium-Binding Proteins/metabolism , Disease Models, Animal , Forelimb/physiopathology , Glial Fibrillary Acidic Protein/metabolism , Glutamate Decarboxylase/metabolism , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins/metabolism , Microinjections , Neurotransmitter Agents/metabolism , Psychomotor Performance/drug effects , Synucleins/metabolism , Tyrosine 3-Monooxygenase/metabolism
15.
Brain ; 139(Pt 5): 1568-86, 2016 05.
Article in English | MEDLINE | ID: mdl-27020329

ABSTRACT

Amyloid-ß, tau, and α-synuclein, or more specifically their soluble oligomers, are the aetiologic molecules in Alzheimer's disease, tauopathies, and α-synucleinopathies, respectively. These proteins have been shown to interact to accelerate each other's pathology. Clinical studies of amyloid-ß-targeting therapies in Alzheimer's disease have revealed that the treatments after disease onset have little benefit on patient cognition. These findings prompted us to explore a preventive medicine which is orally available, has few adverse effects, and is effective at reducing neurotoxic oligomers with a broad spectrum. We initially tested five candidate compounds: rifampicin, curcumin, epigallocatechin-3-gallate, myricetin, and scyllo-inositol, in cells expressing amyloid precursor protein (APP) with the Osaka (E693Δ) mutation, which promotes amyloid-ß oligomerization. Among these compounds, rifampicin, a well-known antibiotic, showed the strongest activities against the accumulation and toxicity (i.e. cytochrome c release from mitochondria) of intracellular amyloid-ß oligomers. Under cell-free conditions, rifampicin inhibited oligomer formation of amyloid-ß, tau, and α-synuclein, indicating its broad spectrum. The inhibitory effects of rifampicin against amyloid-ß and tau oligomers were evaluated in APPOSK mice (amyloid-ß oligomer model), Tg2576 mice (Alzheimer's disease model), and tau609 mice (tauopathy model). When orally administered to 17-month-old APPOSK mice at 0.5 and 1 mg/day for 1 month, rifampicin reduced the accumulation of amyloid-ß oligomers as well as tau hyperphosphorylation, synapse loss, and microglial activation in a dose-dependent manner. In the Morris water maze, rifampicin at 1 mg/day improved memory of the mice to a level similar to that in non-transgenic littermates. Rifampicin also inhibited cytochrome c release from the mitochondria and caspase 3 activation in the hippocampus. In 13-month-old Tg2576 mice, oral rifampicin at 0.5 mg/day for 1 month decreased amyloid-ß oligomer accumulation, tau hyperphosphorylation, synapse loss, and microglial activation, but not amyloid deposition. Rifampicin treatment to 14-15-month-old tau609 mice at 0.5 and 1 mg/day for 1 month also reduced tau oligomer accumulation, tau hyperphosphorylation, synapse loss, and microglial activation in a dose-dependent fashion, and improved the memory almost completely at 1 mg/day. In addition, rifampicin decreased the level of p62/sequestosome-1 in the brain without affecting the increased levels of LC3 (microtubule-associated protein light chain 3) conversion, suggesting the restoration of autophagy-lysosomal function. Considering its prescribed dose and safety in humans, these results indicate that rifampicin could be a promising, ready-to-use medicine for the prevention of Alzheimer's disease and other neurodegenerative diseases.


Subject(s)
Alzheimer Disease/prevention & control , Amyloid beta-Peptides/drug effects , Rifampin/pharmacology , Rifampin/therapeutic use , Tauopathies/prevention & control , tau Proteins/drug effects , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Caspase 3/metabolism , Cells, Cultured , Cytochromes c/metabolism , Dose-Response Relationship, Drug , Female , Hippocampus/metabolism , Maze Learning/drug effects , Memory Disorders/complications , Memory Disorders/drug therapy , Mice , Mice, Transgenic , Microglia/drug effects , Microtubule-Associated Proteins/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Phosphorylation/drug effects , Sequestosome-1 Protein/metabolism , Synapses/drug effects , Synucleins/drug effects , Synucleins/metabolism , Tauopathies/complications , Tauopathies/metabolism , tau Proteins/metabolism
16.
J Biol Chem ; 290(49): 29542-54, 2015 Dec 04.
Article in English | MEDLINE | ID: mdl-26442590

ABSTRACT

The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains.


Subject(s)
Dopamine Plasma Membrane Transport Proteins/metabolism , Dopamine/metabolism , alpha-Synuclein/metabolism , Amphetamine/metabolism , Animals , Biotinylation , Brain/metabolism , CHO Cells , Cell Line , Cell Membrane/metabolism , Cricetinae , Cricetulus , Dopaminergic Neurons/metabolism , Fluorescence Resonance Energy Transfer , Humans , Membrane Microdomains/metabolism , Neurodegenerative Diseases/metabolism , Synaptic Transmission , Synucleins/metabolism
17.
Biochim Biophys Acta ; 1852(8): 1658-64, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25960149

ABSTRACT

Aggregation and fibril formation of human alpha-Synuclein (αS) are neuropathological hallmarks of Parkinson's disease and other synucleinopathies. The molecular mechanisms of αS aggregation and fibrillogenesis are largely unknown. Several studies suggested a sequence of events from αS dimerization via oligomerization and pre-fibrillar aggregation to αS fibril formation. In contrast to αS, little evidence suggests that γS can form protein aggregates in the brain, and for ßS its neurotoxic properties and aggregation propensities are controversially discussed. These apparent differences in aggregation behavior prompted us to investigate the first step in Synuclein aggregation, i.e. the formation of dimers or oligomers, by Bimolecular Fluorescence Complementation in cells. This assay showed some Synuclein-specific limitations, questioning its performance on a single cell level. Nevertheless, we unequivocally demonstrate that all Synucleins can interact with each other in a very similar way. Given the divergent aggregation properties of the three Synucleins this suggests that formation of dimers is not predictive for the aggregation of αS, ßS or γS in the aged or diseased brain.


Subject(s)
Protein Aggregates , Protein Aggregation, Pathological/diagnosis , Protein Multimerization , Synucleins/metabolism , Cells, Cultured , HEK293 Cells , HeLa Cells , Humans , Microscopy, Fluorescence , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Prognosis , Protein Aggregation, Pathological/metabolism , Protein Isoforms , Synucleins/chemistry , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , beta-Synuclein/chemistry , beta-Synuclein/metabolism , gamma-Synuclein/chemistry , gamma-Synuclein/metabolism
18.
Article in English | MEDLINE | ID: mdl-27393691

ABSTRACT

The synuclein (syn) family comprises three proteins: α-, ß- and γ-syns. In humans, they are involved in neurodegenerative diseases such as Parkinson's disease and in tumors. Members of the syn family were sequenced in representative species of all vertebrates and the comparative analysis of amino acid sequences suggests that syns are evolutionarily conserved, but information about their expression in vertebrate lineages is still scarce and completely lacking in reptiles. In this study, the expression of genes coding for α-, ß- and γ-syns was analyzed in the green lizard Anolis carolinensis by semiquantitative RT-PCR and Western blot. Results demonstrate good expression levels of the three syns in the lizard nervous system, similarly to human syns. This, together with the high identity between lizard and human syns, suggests that these proteins fulfill evolutionarily conserved functions. However, differences between lizard and humans in the expression of syn variants (two different variants of γ-syn were detected in A. carolinensis) and differences in some amino acids in key positions for the regulation of protein conformation and affinity for lipid and metal ions also suggest that these proteins may have acquired different functional specializations in the two lineages.


Subject(s)
Lizards/metabolism , Synucleins/metabolism , Amino Acid Sequence , Animals , Base Sequence , Blotting, Far-Western , Brain/metabolism , Evolution, Molecular , Eye/metabolism , Gene Expression , Humans , Intestinal Mucosa/metabolism , Liver/metabolism , Lung/metabolism , Muscles/metabolism , Myocardium/metabolism , Protein Isoforms , Protein Structure, Secondary , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Sequence Homology, Amino Acid , Spinal Cord/metabolism
19.
Environ Toxicol ; 31(12): 1720-1730, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26218639

ABSTRACT

The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016.


Subject(s)
Learning/drug effects , Memory/drug effects , Nitrites/toxicity , Synapses/drug effects , Animals , Male , Maze Learning/drug effects , Mice, Inbred C57BL , Synapses/metabolism , Synapses/ultrastructure , Synaptophysin/metabolism , Synucleins/metabolism , Visual Cortex/drug effects , Visual Cortex/metabolism , Visual Cortex/ultrastructure
20.
J Neurosci ; 34(28): 9364-76, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-25009269

ABSTRACT

Genetic and pathological studies link α-synuclein to the etiology of Parkinson's disease (PD), but the normal function of this presynaptic protein remains unknown. α-Synuclein, an acidic lipid binding protein, shares high sequence identity with ß- and γ-synuclein. Previous studies have implicated synucleins in synaptic vesicle (SV) trafficking, although the precise site of synuclein action continues to be unclear. Here we show, using optical imaging, electron microscopy, and slice electrophysiology, that synucleins are required for the fast kinetics of SV endocytosis. Slowed endocytosis observed in synuclein null cultures can be rescued by individually expressing mouse α-, ß-, or γ-synuclein, indicating they are functionally redundant. Through comparisons to dynamin knock-out synapses and biochemical experiments, we suggest that synucleins act at early steps of SV endocytosis. Our results categorize α-synuclein with other familial PD genes known to regulate SV endocytosis, implicating this pathway in PD.


Subject(s)
Endocytosis/physiology , Hippocampus/physiology , Neurons/physiology , Synaptic Transmission/physiology , Synaptic Vesicles/physiology , Synucleins/metabolism , Animals , Female , Hippocampus/ultrastructure , Kinetics , Male , Mice , Mice, Inbred C57BL , Neurons/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL