Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
J Biomed Sci ; 23(1): 72, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27769241

ABSTRACT

BACKGROUND: In the central nervous system regions of the sporadic and familial FTLD and ALS patients, TDP-43 has been identified as the major component of UBIs inclusions which is abnormally hyperphosphorylated, ubiquitinated, and cleaved into C-terminal fragments to form detergent-insoluble aggregates. So far, the effective drugs for FTLD and ALS neurodegenerative diseases are yet to be developed. Autophagy has been demonstrated as the major metabolism route of the pathological TDP-43 inclusions, hence activation of autophagy is a potential therapeutic strategy for TDP-43 pathogenesis in FTLD and ALS. Berberine, a traditional herbal medicine, is an inhibitor of mTOR signal and an activator for autophagy. Berberine has been implicated in several kinds of diseases, including the neuronal-related pathogenesis, such as Parkinson's, Huntington's and Alzheimer's diseases. However, the therapeutic effect of berberine on FTLD or ALS pathology has never been investigated. RESULTS: Here we studied the molecular mechanism of berberine in cell culture model with TDP-43 proteinopathies, and found that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. And inhibition of autophagy by specific autophagosome inhibitor, 3-MA, reverses the effect of berberine on reducing the accumulation of insoluble TDP-43 and aggregates formation. These results gave us the notion that inhibition of autophagy by 3-MA reverses the effect of berberine on TDP-43 pathogenesis, and activation of mTOR-regulated autophagy plays an important role in berberine-mediated therapeutic effect on TDP-43 proteinopathies. CONCLUSION: We supported an important notion that the traditional herb berberine is a potential alternative therapy for TDP-43-related neuropathology. Here we demonstrated that berberine is able to reverse the processing of insoluble TDP-43 aggregates formation through deregulation of mTOR/p70S6K signal and activation of autophagic degradation pathway. mTOR-autophagy signals plays an important role in berberine-mediated autophagic clearance of TDP-43 aggregates. Exploring the detailed mechanism of berberine on TDP-43 proteinopathy provides a better understanding for the therapeutic development in FTLD and ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , Berberine/therapeutic use , Frontotemporal Lobar Degeneration/therapy , TDP-43 Proteinopathies/therapy , Amyotrophic Lateral Sclerosis/genetics , Animals , Cell Line, Tumor , Frontotemporal Lobar Degeneration/genetics , Mice , TDP-43 Proteinopathies/genetics
2.
Ann Neurol ; 74(1): 39-52, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23424178

ABSTRACT

OBJECTIVE: Kinase hyperactivity occurs in both neurodegenerative disease and cancer. Lesions containing hyperphosphorylated aggregated TDP-43 characterize amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 inclusions. Dual phosphorylation of TDP-43 at serines 409/410 (S409/410) drives neurotoxicity in disease models; therefore, TDP-43-specific kinases are candidate targets for intervention. METHODS: To find therapeutic targets for the prevention of TDP-43 phosphorylation, we assembled and screened a comprehensive RNA interference library targeting kinases in TDP-43 transgenic Caenorhabditis elegans. RESULTS: We show CDC7 robustly phosphorylates TDP-43 at pathological residues S409/410 in C. elegans, in vitro, and in human cell culture. In frontotemporal lobar degeneration (FTLD)-TDP cases, CDC7 immunostaining overlaps with the phospho-TDP-43 pathology found in frontal cortex. Furthermore, PHA767491, a small molecule inhibitor of CDC7, reduces TDP-43 phosphorylation and prevents TDP-43-dependent neurodegeneration in TDP-43-transgenic animals. INTERPRETATION: Taken together, these data support CDC7 as a novel therapeutic target for TDP-43 proteinopathies, including FTLD-TDP and amyotrophic lateral sclerosis.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Neurodegenerative Diseases/etiology , Protein Serine-Threonine Kinases/metabolism , TDP-43 Proteinopathies/therapy , Animals , Animals, Genetically Modified , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Cell Line, Transformed , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Movement/physiology , Mutation/genetics , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Phosphorylation , Piperidones/pharmacology , Pyrroles/pharmacology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Serine/metabolism , TDP-43 Proteinopathies/complications , TDP-43 Proteinopathies/drug therapy , TDP-43 Proteinopathies/genetics , Transfection
3.
4.
Science ; 379(6637): 1140-1149, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36927019

ABSTRACT

Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2-dependent lysosome trafficking in TDP-43-deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.


Subject(s)
DNA-Binding Proteins , Gene Editing , Polyadenylation , RNA Splicing , Stathmin , TDP-43 Proteinopathies , Animals , Humans , Mice , DNA-Binding Proteins/metabolism , RNA Precursors/genetics , RNA Precursors/metabolism , Stathmin/genetics , Stathmin/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/therapy , RNA Splice Sites , Oligonucleotides, Antisense/genetics , Neuronal Outgrowth
5.
Neurotherapeutics ; 19(4): 1061-1084, 2022 07.
Article in English | MEDLINE | ID: mdl-35790708

ABSTRACT

Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , TDP-43 Proteinopathies , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/therapy , Frontotemporal Dementia/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/therapy , Amyotrophic Lateral Sclerosis/metabolism , Retroelements , RNA Precursors/metabolism , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/therapy , TDP-43 Proteinopathies/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics
6.
Neurobiol Aging ; 54: 71-83, 2017 06.
Article in English | MEDLINE | ID: mdl-28324764

ABSTRACT

Transactive response DNA-binding protein 43 kDa (TDP-43) is considered a major pathological protein in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. The precise mechanisms by which TDP-43 dysregulation leads to toxicity in neurons are not fully understood. Using TDP-43-expressing Drosophila, we examined whether mitochondrial dysfunction is a central determinant in TDP-43 pathogenesis. Expression of human wild-type TDP-43 in Drosophila neurons results in abnormally small mitochondria. The mitochondrial fragmentation is correlated with a specific decrease in the mRNA and protein levels of the Drosophila profusion gene mitofusin/marf. Importantly, overexpression of Marf ameliorates defects in spontaneous walking activity and startle-induced climbing response of TDP-43-expressing flies. Partial inactivation of the mitochondrial profission factor, dynamin-related protein 1, also mitigates TDP-43-induced locomotor deficits. Expression of TDP-43 impairs neuromuscular junction transmission upon repetitive stimulation of the giant fiber circuit that controls flight muscles, which is also ameliorated by Marf overexpression. We show here for the first time that enhancing the profusion gene mitofusin/marf is beneficial in an in vivo model of TDP-43 proteinopathies, serving as a potential therapeutic target.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Dynamics/genetics , Mitochondrial Dynamics/physiology , Neuromuscular Junction/physiopathology , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/therapy , Animals , Disease Models, Animal , Drosophila , Drosophila Proteins/physiology , Dynamins/physiology , Locomotion/genetics , Locomotion/physiology , Molecular Targeted Therapy , Neurons/metabolism , RNA, Messenger/metabolism , TDP-43 Proteinopathies/physiopathology
7.
Neurotherapeutics ; 12(2): 352-63, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25652699

ABSTRACT

Therapeutic options for patients with amyotrophic lateral sclerosis (ALS) are currently limited. However, recent studies show that almost all cases of ALS, as well as tau-negative frontotemporal dementia (FTD), share a common neuropathology characterized by the deposition of TAR-DNA binding protein (TDP)-43-positive protein inclusions, offering an attractive target for the design and testing of novel therapeutics. Here we demonstrate how diverse environmental stressors linked to stress granule formation, as well as mutations in genes encoding RNA processing proteins and protein degradation adaptors, initiate ALS pathogenesis via TDP-43. We review the progressive development of TDP-43 proteinopathy from cytoplasmic mislocalization and misfolding through to macroaggregation and the addition of phosphate and ubiquitin moieties. Drawing from cellular and animal studies, we explore the feasibility of therapeutics that act at each point in pathogenesis, from mitigating genetic risk using antisense oligonucleotides to modulating TDP-43 proteinopathy itself using small molecule activators of autophagy, the ubiquitin-proteasome system, or the chaperone network. We present the case that preventing the misfolding of TDP-43 and/or enhancing its clearance represents the most important target for effectively treating ALS and frontotemporal dementia.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins/metabolism , TDP-43 Proteinopathies , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/therapy , Animals , DNA-Binding Proteins/genetics , Environment , Gene Silencing/physiology , Humans , Mutation/genetics , TDP-43 Proteinopathies/genetics , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/therapy
8.
Acta bioquím. clín. latinoam ; 50(4): 649-655, dic. 2016. ilus, graf
Article in Spanish | LILACS | ID: biblio-837638

ABSTRACT

Los agregados de TDP-43 representan una de las característica histopatológicas más importantes de varias enfermedades neurodegenerativas, entre las que se incluye la Esclerosis Lateral Amiotrófica (ELA). TDP-43 está localizada principalmente en el núcleo. Sin embargo, los pacientes afectados por ELA presentan agregados de TDP-43 en el citoplasma de las neuronas comprometidas, con lo que se despoja al núcleo de TDP-43 funcional. Aún se desconoce si la degeneración causada por la agregación de TDP-43 es debida a una toxicidad intrínseca de los agregados o a la pérdida de función de TDP-43 como consecuencia del vaciamiento del núcleo. Varias investigaciones, incluidas las de estos autores, indican que la pérdida de función es el factor fundamental responsable de la neurodegeneración observada en presencia de inclusiones de TDP-43. Por otro lado, aún no existen tratamientos efectivos para la ELA. Por lo tanto, es de crucial importancia conocer las bases moleculares que conllevan al desarrollo de la enfermedad, con el objetivo de encontrar posibles estrategias terapéuticas. Para ello, estos autores han desarrollado un modelo celular capaz de imitar la agregación de TDP-43 y sus consecuencias. Finalmente, se ha utilizado este modelo para analizar el efecto de diferentes compuestos capaces de degradar los agregados de TDP-43 y se ha demostrado que esta podría ser una estrategia terapéutica válida para la ELA.


TDP-43 inclusions are important histopathological features of various neurodegenerative disorders, including Amyotrophic Lateral Sclerosis (ALS). TDP-43 is mainly a nuclear protein, but it shuffles from the nucleus to the cytoplasm. In patients’ brains, TDP-43 is retained in the cytoplasm of the affected motorneurons to form insoluble aggregates, which results in TDP-43 nuclear clearance. There is still no consensus whether TDP-43-mediated neurodegeneration results from a gain or loss of function of the protein or a combination of both. The work from several laboratories, including this, points towards a strong loss of function component. On the other hand, there is no effective treatment or cure for ALS. Thus, there is obviously a need to find new therapeutic strategies for ALS. In order to gain new insights into the molecular mechanism of the disease, and with the aim of looking for new methodologies that can revert it, a cellular model of TDP-43 aggregation that can mimic the phenotypic consequences found in ALS patients has been developed. Finally, this model was used to search for compounds that can dissolve these aggregates, and it was shown that the clearance of TDP-43 aggregates could be a therapeutic strategy for ALS.


Os agregados proteicos TDP-43 são características histopatológicas importantes de muitas doenças neurodegenerativas, incluindo a Esclerose Lateral Amiotrófica (ALS). A proteína TDP-43 se localiza principalmente no núcleo, porém nos cérebros de indivíduos afetados, a proteína TDP-43 fica retida no citoplasma dos neurônios motores, o que leva a formação de agregados insolúveis, resultando em deposição nuclear. Ainda não existe um consenso se a neurodegeneração mediada por TDP43 é causada por ganho ou perda da função da proteína ou uma combinação de ambos. O trabalho de muitos laboratórios, bem como este trabalho, apontam para uma forte perda da função da proteína. Por outro lado, não existe um tratamento efetivo ou cura para a ALS. Portanto, existe uma grande necessidade de identificar novos tratamentos para a ALS. Para entender o mecanismo molecular da doença, e com o objetivo de identificar novas metodologias para reverter a doença, desenvolvemos o modelo celular de agregados de TDP-43, o qual mimetiza as consequências fenotípicas encontradas em pacientes com ALS. Por fim, utilizamos esse modelo para identificar compostos que podem dissolver os agregados, e demonstramos que a liberação de inclusões de TDP-43 poderiam ser usados como tratamentos para a ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/therapy , TDP-43 Proteinopathies/classification , Added Impact , Amyotrophic Lateral Sclerosis/complications , TDP-43 Proteinopathies/therapy
SELECTION OF CITATIONS
SEARCH DETAIL