Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 476
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928336

ABSTRACT

Chlorpyrifos (CPF) is a widely used organophosphate insecticide, though its excessive use causes environmental contamination, raising concerns about its adverse effects on human health. In this regard, Urtica dioica stands out as a promising candidate for counteracting chemical 'contaminant' toxicity thanks to its therapeutic properties. Therefore, our study aimed to investigate the potential of an Urtica dioica ethanolic extract (UDE) to mitigate chlorpyrifos-induced toxicity. Eight compounds in the Urtica dioica ethanolic extract have been identified, most of which present significant potential as antioxidant, anti-inflammatory, and neuroprotective agents. Chlorpyrifos exposure altered hatching rates, increased the incidence of teratogenic effects, and upregulated the expression of brain-derived neurotrophic factor (Bdnf) in zebrafish larvae telencephalon. On the other hand, UDE demonstrated a preventive effect against CPF-induced teratogenicity, which is expressed by a lower morphological deformity rate. Moreover, the UDE showed a rather protective effect, maintaining the physiological condition of the telencephalon. Additionally, CPF altered the locomotor behavior of larvae, which was characterized by irregular swimming and increased activity. This defective behavioral pattern was slightly attenuated by the UDE. Our findings suggest that the UDE possesses significant protective properties against CPF-induced toxicity, probably conferred by its natural antioxidant and anti-inflammatory contents. Still, further research is needed to elucidate the recruited mechanisms and implicated pathways on UDE's protective effects.


Subject(s)
Chlorpyrifos , Larva , Plant Extracts , Urtica dioica , Zebrafish , Animals , Chlorpyrifos/toxicity , Plant Extracts/pharmacology , Plant Extracts/chemistry , Larva/drug effects , Urtica dioica/chemistry , Antioxidants/pharmacology , Insecticides/toxicity , Telencephalon/drug effects , Telencephalon/metabolism
2.
Molecules ; 27(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35011481

ABSTRACT

Although tetrabromobisphenol A (TBBPA) has been well proven to disturb TH signaling in both in vitro and in vivo assays, it is still unclear whether TBBPA can affect brain development due to TH signaling disruption. Here, we employed the T3-induced Xenopus metamorphosis assay (TIXMA) and the spontaneous metamorphosis assay to address this issue. In the TIXMA, 5-500 nmol/L TBBPA affected T3-induced TH-response gene expression and T3-induced brain development (brain morphological changes, cell proliferation, and neurodifferentiation) at premetamorphic stages in a complicated biphasic concentration-response manner. Notably, 500 nmol/L TBBPA treatment alone exerted a stimulatory effect on tadpole growth and brain development at these stages, in parallel with a lack of TH signaling activation, suggesting the involvement of other signaling pathways. As expected, at the metamorphic climax, we observed inhibitory effects of 50-500 nmol/L TBBPA on metamorphic development and brain development, which was in agreement with the antagonistic effects of higher concentrations on T3-induced brain development at premetamorphic stages. Taken together, all results demonstrate that TBBPA can disturb TH signaling and subsequently interfere with TH-dependent brain development in Xenopus; meanwhile, other signaling pathways besides TH signaling could be involved in this process. Our study improves the understanding of the effects of TBBPA on vertebrate brain development.


Subject(s)
Brain/drug effects , Brain/embryology , Organogenesis/drug effects , Polybrominated Biphenyls/adverse effects , Thyroid Hormones/metabolism , Animals , Brain/pathology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Environmental Pollutants/adverse effects , Gene Expression Regulation, Developmental/drug effects , Neurogenesis/drug effects , Telencephalon/drug effects , Telencephalon/embryology , Telencephalon/pathology , Triiodothyronine/metabolism , Xenopus laevis
3.
Horm Behav ; 125: 104825, 2020 09.
Article in English | MEDLINE | ID: mdl-32771417

ABSTRACT

The endocannabinoid system (ECs) is a well known contributor to the hedonic regulation of food intake (FI) in mammals whereas in fish, the knowledge regarding hedonic mechanisms that control FI is limited. Previous studies reported the involvement of ECs in FI regulation in fish since anandamide (AEA) treatment induced enhanced FI and changes of mRNA abundance of appetite-related neuropeptides through cannabinoid receptor 1 (cnr1). However, no previous studies in fish evaluated the impact of palatable food like high-fat diets (HFD) on mechanisms involved in hedonic regulation of FI including the possible involvement of ECs. Therefore, we aimed to evaluate the effect of feeding a HFD on the response of ECs in rainbow trout (Oncorhynchus mykiss). First, we demonstrated a higher intake over 4 days of HFD compared with a control diet (CD). Then, we evaluated the postprandial response (1, 3 and 6 h) of components of the ECs in plasma, hypothalamus, and telencephalon after feeding fish with CD and HFD. The results obtained indicate that the increased FI of HFD occurred along with increased levels of 2-arachidonoylglycerol (2-AG) and AEA in plasma and in brain areas like hypothalamus and telencephalon putatively involved in hedonic regulation of FI in fish. Decreased mRNA abundance of EC receptors like cnr1, gpr55 and trpv1 suggest a feed-back counter-regulatory mechanism in response to the increased levels of EC. Furthermore, the results also suggest that neural activity players associated to FI regulation in mammals as cFOS, γ-Amino butyric acid (GABA) and brain derived neurotrophic factor (BDNF)/neurotrophic receptor tyrosine kinase (NTRK) systems could be involved in the hedonic eating response to a palatable diet in fish.


Subject(s)
Diet, High-Fat , Endocannabinoids/metabolism , Oncorhynchus mykiss/metabolism , Receptor, Cannabinoid, CB1/metabolism , Animals , Appetite/drug effects , Appetite/genetics , Appetite Regulation/drug effects , Appetite Regulation/physiology , Brain/drug effects , Brain/metabolism , Dietary Fats/pharmacology , Eating/drug effects , Eating/genetics , Energy Metabolism/drug effects , Energy Metabolism/genetics , Gene Expression Regulation/drug effects , Hypothalamus/drug effects , Hypothalamus/metabolism , Neuropeptides/drug effects , Neuropeptides/genetics , Neuropeptides/metabolism , Oncorhynchus mykiss/physiology , Receptor, Cannabinoid, CB1/genetics , Telencephalon/drug effects , Telencephalon/metabolism
4.
J Neural Transm (Vienna) ; 126(10): 1281-1290, 2019 10.
Article in English | MEDLINE | ID: mdl-31317262

ABSTRACT

Magnetic fields with different frequency and intensity parameters exhibit a wide range of effects on different biological models. Extremely low frequency magnetic field (ELF MF) exposure is known to augment or even initiate neuronal differentiation in several in vitro and in vivo models. This effect holds potential for clinical translation into treatment of neurodegenerative conditions such as autism, Parkinson's disease and dementia by promoting neurogenesis, non-invasively. However, the lack of information on underlying mechanisms hinders further investigation into this phenomenon. Here, we examine involvement of glutamatergic Ca2+ channel, N-methyl-D-aspartate (NMDA) receptors in the process of human neuronal differentiation under ELF MF exposure. We show that human neural progenitor cells (hNPCs) differentiate more efficiently under ELF MF exposure in vitro, as demonstrated by the abundance of neuronal markers. Furthermore, they exhibit higher intracellular Ca2+ levels as evidenced by c-fos expression and more elongated mature neurites. We were able to neutralize these effects by blocking NMDA receptors with memantine. As a result, we hypothesize that the effects of ELF MF exposure on neuronal differentiation originate from the effects on NMDA receptors, which sequentially triggers Ca2+-dependent cascades that lead to differentiation. Our findings identify NMDA receptors as a new key player in this field that will aid further research in the pursuit of effect mechanisms of ELF MFs.


Subject(s)
Cell Differentiation/physiology , Magnetic Fields , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/physiology , Cell Differentiation/drug effects , Cells, Cultured , Excitatory Amino Acid Antagonists/pharmacology , Fetus , Humans , Memantine/pharmacology , Neurons/drug effects , Telencephalon/cytology , Telencephalon/drug effects , Telencephalon/physiology
5.
Arch Toxicol ; 93(9): 2515-2524, 2019 09.
Article in English | MEDLINE | ID: mdl-31363819

ABSTRACT

Aluminum (Al) is a neurotoxin and is associated with the etiology of neurodegenerative diseases, such as Alzheimer's disease (AD). The Al-free ion (Al3+) is the biologically reactive and toxic form. However, the underlying mechanisms of Al toxicity in the brain remain unclear. Here, we evaluated the effects of Al3+ (in the chloride form-AlCl3) at different concentrations (0.1-100 µM) on the morphology, proliferation, apoptosis, migration and differentiation of neural progenitor cells (NPCs) isolated from embryonic telencephalons, cultured as neurospheres. Our results reveal that Al3+ at 100 µM reduced the number and diameter of neurospheres. Cell cycle analysis showed that Al3+ had a decisive function in proliferation inhibition of NPCs during neural differentiation and induced apoptosis on neurospheres. In addition, 1 µM Al3+ resulted in deleterious effects on neural phenotype determination. Flow cytometry and immunocytochemistry analysis showed that Al3+ promoted a decrease in immature neuronal marker ß3-tubulin expression and an increase in co-expression of the NPC marker nestin and glial fibrillary acidic protein. Thus, our findings indicate that Al3+ caused cellular damage and reduced proliferation and migration, resulting in global inhibition of NPC differentiation and neurogenesis.


Subject(s)
Aluminum Chloride/toxicity , Embryonic Stem Cells/drug effects , Neural Stem Cells/drug effects , Neurogenesis/drug effects , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Movement/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Embryonic Stem Cells/pathology , Female , Male , Mice , Neural Stem Cells/pathology , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/physiopathology , Phenotype , Telencephalon/drug effects , Telencephalon/embryology
6.
Horm Behav ; 102: 120-128, 2018 06.
Article in English | MEDLINE | ID: mdl-29778460

ABSTRACT

Filial imprinting is the behavior observed in chicks during the sensitive or critical period of the first 2-3 days after hatching; however, after this period they cannot be imprinted when raised in darkness. Our previous study showed that temporal augmentation of the endogenous thyroid hormone 3,5,3'-triiodothyronine (T3) in the telencephalon, by imprinting training, starts the sensitive period just after hatching. Intravenous injection of T3 enables imprinting of chicks on days 4 or 6 post-hatching, even when the sensitive period has ended. However, the molecular mechanism of how T3 acts as a determinant of the sensitive period is unknown. Here, we show that Wnt-2b mRNA level is increased in the T3-injected telencephalon of 4-day old chicks. Pharmacological inhibition of Wnt signaling in the intermediate hyperpallium apicale (IMHA), which is the caudal area of the telencephalon, blocked the recovery of the sensitive period following T3 injection. In addition, injection of recombinant Wnt-2b protein into the IMHA helped chicks recover the sensitive period without the injection of T3. Lastly, we showed Wnt signaling to be involved in imprinting via the IMHA region on day 1 during the sensitive period. These results indicate that Wnt signaling plays a critical role in the opening of the sensitive period downstream of T3.


Subject(s)
Animals, Newborn/psychology , Chickens , Imprinting, Psychological/drug effects , Telencephalon/drug effects , Triiodothyronine/pharmacology , Wnt2 Protein/genetics , Administration, Intravenous , Animals , Animals, Newborn/genetics , Animals, Newborn/metabolism , Chickens/genetics , Chickens/growth & development , Chickens/metabolism , Darkness , Gene Expression Regulation, Developmental/drug effects , Imprinting, Psychological/physiology , Nesting Behavior/drug effects , Photoperiod , Telencephalon/metabolism , Time Factors , Triiodothyronine/administration & dosage , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics , Wnt2 Protein/metabolism
7.
Gen Comp Endocrinol ; 254: 38-49, 2017 12 01.
Article in English | MEDLINE | ID: mdl-28927876

ABSTRACT

Nonapeptides are a highly conserved family of peptides synthesized in the neuroendocrine brain and acting on central and peripheral receptors to regulate physiological functions in vertebrates. While the evolution of the two gene families of oxytocin-like and vasopressin-like nonapeptides and their receptors, as well as the neuroanatomy of their independent neuronal circuits have been well-characterized across vertebrate species, comparative studies on the physiological roles across vertebrates are lagging behind. In the current study, we focused on the comparative neuroendocrine functions and regulation of isotocin, the teleost homologue of mammalian oxytocin. Specifically, we address the hypothesis that isotocin exerts opposing effects on food intake and reproduction, which are well-established effects of its homologue oxytocin in mammalian species. Using goldfish, a well-characterized model of neuroendocrine regulation of both food intake and reproduction, we here showed that isotocin acts as an anorexigenic factor while exerting stimulatory effects on pituitary luteinizing hormone and growth hormone release. Given the dual inhibitory and stimulatory roles of serotonin on food intake and pituitary release of reproductive hormone in goldfish, we also investigated the potential crosstalk between both systems using immunohistochemistry and pharmacological approaches. Results provide neuroanatomical and pharmacological evidence for serotonergic regulation of magnocellular isotocinergic neurons in the preoptic area and pituitary. Together, these findings firstly provide the basis to investigate neuroendocrine cross-talk between serotonergic and nonapeptidergic systems in the regulation of both food intake and reproduction in goldfish, and secondly point to a conserved function of oxytocin-like peptides in the differential neuroendocrine control of both physiological processes in vertebrates.


Subject(s)
Eating , Goldfish/metabolism , Growth Hormone/metabolism , Luteinizing Hormone/metabolism , Oxytocin/analogs & derivatives , Pituitary Gland/metabolism , Serotonin/metabolism , Animals , Female , Goldfish/genetics , Growth Hormone/genetics , Luteinizing Hormone/genetics , Neuroanatomy , Neurons/drug effects , Neurons/metabolism , Neurosecretory Systems/drug effects , Neurosecretory Systems/metabolism , Oxytocin/administration & dosage , Oxytocin/genetics , Oxytocin/metabolism , Oxytocin/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cell Surface/metabolism , Telencephalon/drug effects , Telencephalon/metabolism
8.
Synapse ; 69(9): 434-45, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25963901

ABSTRACT

G(αq) -coupled receptors are ubiquitously expressed throughout the brain and body, and it has been shown that these receptors and associated signaling cascades are involved in a number of functional outputs, including motor function and learning and memory. Genetic alterations to G(αq) have been implicated in neurodevelopmental disorders such as Sturge-Weber syndrome. Some of these associated disease outcomes have been modeled in laboratory animals, but as G(αq) is expressed in all cell types, it is difficult to differentiate the underlying circuitry or causative neuronal population. To begin to address neuronal cell type diversity in G(αq) function, we utilized a conditional knockout mouse whereby G(αq) was eliminated from telencephalic glutamatergic neurons. Unlike the global G(αq) knockout mouse, we found that these conditional knockout mice were not physically different from control mice, nor did they exhibit any gross motor abnormalities. However, similarly to the constitutive knockout animal, G(αq) conditional knockout mice demonstrated apparent deficits in spatial working memory. Loss of G(αq) from glutamatergic neurons also produced enhanced sensitivity to cocaine-induced locomotion, suggesting that cortical G(αq) signaling may limit behavioral responses to psychostimulants. Screening for a variety of markers of forebrain neuronal architecture revealed no obvious differences in the conditional knockouts, suggesting that the loss of G(αq) in telencephalic excitatory neurons does not result in major alterations in brain structure or neuronal differentiation. Taken together, our results define specific modulation of spatial working memory and psychostimulant responses through disruptions in G(αq) signaling within cerebral cortical glutamatergic neurons.


Subject(s)
GTP-Binding Protein alpha Subunits, Gq-G11/deficiency , Neurons/metabolism , Telencephalon/metabolism , Animals , Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Glutamic Acid/metabolism , Immunoblotting , Immunohistochemistry , Male , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Neurons/cytology , Neurons/drug effects , Telencephalon/cytology , Telencephalon/drug effects
9.
PLoS Comput Biol ; 10(2): e1003463, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24550718

ABSTRACT

Borders are important as they demarcate developing tissue into distinct functional units. A key challenge is the discovery of mechanisms that can convert morphogen gradients into tissue borders. While mechanisms that produce ultrasensitive cellular responses provide a solution, how extracellular morphogens drive such mechanisms remains poorly understood. Here, we show how Bone Morphogenetic Protein (BMP) and Fibroblast Growth Factor (FGF) pathways interact to generate ultrasensitivity and borders in the dorsal telencephalon. BMP and FGF signaling manipulations in explants produced border defects suggestive of cross inhibition within single cells, which was confirmed in dissociated cultures. Using mathematical modeling, we designed experiments that ruled out alternative cross inhibition mechanisms and identified a cross-inhibitory positive feedback (CIPF) mechanism, or "toggle switch", which acts upstream of transcriptional targets in dorsal telencephalic cells. CIPF explained several cellular phenomena important for border formation such as threshold tuning, ultrasensitivity, and hysteresis. CIPF explicitly links graded morphogen signaling in the telencephalon to switch-like cellular responses and has the ability to form multiple borders and scale pattern to size. These benefits may apply to other developmental systems.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Fibroblast Growth Factors/metabolism , Prosencephalon/embryology , Prosencephalon/metabolism , Animals , Bone Morphogenetic Protein 4/metabolism , Bone Morphogenetic Protein 4/pharmacology , Bone Morphogenetic Proteins/pharmacology , Computational Biology , Embryo Culture Techniques , Feedback, Physiological , Female , Fibroblast Growth Factors/pharmacology , Gene Expression Regulation, Developmental/drug effects , MSX1 Transcription Factor/genetics , Mice , Mice, Transgenic , Models, Biological , Pregnancy , Prosencephalon/drug effects , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Signal Transduction , Telencephalon/drug effects , Telencephalon/embryology , Telencephalon/metabolism
10.
Fish Physiol Biochem ; 41(3): 685-94, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25739351

ABSTRACT

Earlier, we reported spatial learning ability in goldfish (Carassius auratus) by using spatial paradigm with food reward. Therefore, we hypothesized that goldfish may use associated cue to integrate "where" and "what" for spatial memory. To test our hypothesis, we first trained goldfish to learn to cross the gate1, which is associated with spatial task. Subsequently, they were trained to learn to enter the task chamber and to identify the food reward chamber associated with visual cue (red/green light). Red and green lights were positioned randomly for each trial but always the food reward was kept in green chamber. In addition, to elucidate the role of the signalling cascade in spatial memory associated with visual cue, nicotinamide (NAM, 1000 mg/kg, i.p), a NAD(+) precursor, was used to inhibit the Sirtuin 1 (SIRT1) cyclic AMP response element binding protein (CREB) pathway. Fishes were trained for 5 days in a maze after treating with either vehicle (VEH, DD H2O) or NAM, and then, they were individually tested for memory. We found that VEH-treated fish learned and recalled the task successfully by showing less latency and making more correct choices than NAM-treated group. Subsequent analysis showed that NAM treatment significantly down-regulated the phosphorylation of extracellular signal-regulated kinase (ERK1/2), CREB, expression of SirT1 and brain-derived neurotrophic factor (Bdnf) in telencephalon. Taken together, our results provide behavioural evidence of spatial memory associated with visual cue in C. auratus, which could be regulated by ERK1/2-CREB-SirT1-Bdnf pathway.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Goldfish/physiology , MAP Kinase Signaling System/physiology , Maze Learning/physiology , Spatial Memory/physiology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Conditioning, Psychological , Niacinamide/pharmacology , Phosphorylation/drug effects , Photic Stimulation , Reward , Telencephalon/drug effects
11.
Neurobiol Dis ; 64: 142-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24398173

ABSTRACT

Levodopa-induced dyskinesia (LID) is a major complication of long-term dopamine replacement therapy for Parkinson's disease, and becomes increasingly problematic in the advanced stage of the disease. Although the cause of LID still remains unclear, there is accumulating evidence from animal experiments that it results from maladaptive plasticity, resulting in supersensitive excitatory transmission at corticostriatal synapses. Recent work using transcranial magnetic stimulation suggests that the motor cortex displays the same supersensitivity in Parkinson's disease patients with LID. To date, the cellular mechanisms underlying the abnormal cortical plasticity have not been examined. The morphology of the dendritic spines has a strong relationship to synaptic plasticity. Therefore, we explored the spine morphology of pyramidal neurons in the motor cortex in a rat model of LID. We used control rats, 6-hydroxydopamine-lesioned rats (a model of Parkinson's disease), 6-hydroxydopamine-lesioned rats chronically treated with levodopa (a model of LID), and control rats chronically treated with levodopa. Because the direct pathway of the basal ganglia plays a central role in the development of LID, we quantified the density and size of dendritic spines in intratelencephalic (IT)-type pyramidal neurons in M1 cortex that project to the striatal medium spiny neurons in the direct pathway. The spine density was not different among the four groups. In contrast, spine size became enlarged in the Parkinson's disease and LID rat models. The enlargement was significantly greater in the LID model than in the Parkinson's disease model. This enlargement of the spines suggests that IT-type pyramidal neurons acquire supersensitivity to excitatory stimuli. To confirm this possibility, we monitored miniature excitatory postsynaptic currents (mEPSCs) in the IT-type pyramidal neurons in M1 cortex using whole-cell patch clamp. The amplitude of the mEPSCs was significantly increased in the LID model compared with the control. This indicates that the IT-type pyramidal neurons become hyperexcited in the LID model, paralleling the enlargement of spines. Thus, spine enlargement and the resultant hyperexcitability of IT-type pyramidal neurons in M1 cortex might contribute to the abnormal cortical neuronal plasticity in LID.


Subject(s)
Antiparkinson Agents/adverse effects , Dyskinesia, Drug-Induced/pathology , Levodopa/adverse effects , Motor Cortex/pathology , Parkinsonian Disorders/pathology , Pyramidal Cells/pathology , Animals , Antiparkinson Agents/pharmacology , Dendritic Spines/pathology , Dendritic Spines/physiology , Dyskinesia, Drug-Induced/physiopathology , Excitatory Postsynaptic Potentials , Levodopa/pharmacology , Male , Motor Cortex/drug effects , Motor Cortex/physiopathology , Neural Pathways/drug effects , Neural Pathways/pathology , Neural Pathways/physiopathology , Oxidopamine , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/physiopathology , Pyramidal Cells/drug effects , Pyramidal Cells/physiopathology , Rats , Rats, Wistar , Telencephalon/drug effects , Telencephalon/pathology , Telencephalon/physiopathology
12.
Eur J Neurosci ; 39(6): 875-882, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24372878

ABSTRACT

Exercise is known to have a strong effect on neuroproliferation in mammals ranging from rodents to humans. Recent studies have also shown that fatty acids and other dietary supplements can cause an upregulation of neurogenesis. It is not known, however, how exercise and diet interact in their effects on adult neurogenesis. We examined neuronal recruitment in multiple telencephalic sites in adult male European starlings (Sturnus vulgaris) exposed to a factorial combination of flight exercise, dietary fatty acids and antioxidants. Experimental birds were flown in a wind tunnel following a training regime that mimicked the bird's natural flight behaviour. In addition to flight exercise, we manipulated the composition of dietary fatty acids and the level of enrichment with vitamin E, an antioxidant reported to enhance neuronal recruitment. We found that all three factors - flight exercise, fatty acid composition and vitamin E enrichment - regulate neuronal recruitment in a site-specific manner. We also found a robust interaction between flight training and vitamin E enrichment at multiple sites of neuronal recruitment. Specifically, flight training was found to enhance neuronal recruitment across the telencephalon, but only in birds fed a diet with a low level of vitamin E. Conversely, dietary enrichment with vitamin E upregulated neuronal recruitment, but only in birds not flown in the wind tunnel. These findings indicate conserved modulation of adult neurogenesis by exercise and diet across vertebrate taxa and indicate possible therapeutic interventions in disorders characterized by reduced adult neurogenesis.


Subject(s)
Fatty Acids/pharmacology , Neurogenesis , Physical Exertion , Starlings/growth & development , Telencephalon/growth & development , Vitamin E/pharmacology , Vitamins/pharmacology , Animals , Dietary Fats/pharmacology , Flight, Animal , Male , Organ Specificity , Starlings/physiology , Telencephalon/drug effects
13.
Eur J Neurosci ; 40(9): 3302-15, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25145867

ABSTRACT

The brain reward circuitry plays a key role in emotional and motivational behaviors, and its dysfunction underlies neuropsychiatric disorders such as schizophrenia, depression and drug addiction. Here, we characterized the neuronal activity pattern induced by acute amphetamine administration and during drug-seeking behavior in the zebrafish, and demonstrate the existence of conserved underlying brain circuitry. Combining quantitative analyses of cfos expression with neuronal subtype-specific markers at single-cell resolution, we show that acute d-amphetamine administration leads to both increased neuronal activation and the recruitment of neurons in the medial (Dm) and the lateral (Dl) domains of the adult zebrafish pallium, which contain homologous structures to the mammalian amygdala and hippocampus, respectively. Calbindin-positive and glutamatergic neurons are recruited in Dm, and glutamatergic and γ-aminobutyric acid (GABAergic) neurons in Dl. The drug-activated neurons in Dm and Dl are born at juvenile stage rather than in the embryo or during adulthood. Furthermore, the same territory in Dm is activated during both drug-seeking approach and light avoidance behavior, while these behaviors do not elicit activation in Dl. These data identify the pallial territories involved in acute psychostimulant response and reward formation in the adult zebrafish. They further suggest an evolutionarily conserved function of amygdala-like structures in positive emotions and motivated behavior in zebrafish and mammals.


Subject(s)
Dextroamphetamine/administration & dosage , Drug-Seeking Behavior/physiology , Neurons/physiology , Telencephalon/drug effects , Telencephalon/physiology , Age Factors , Amygdala/drug effects , Amygdala/physiology , Animals , Conditioning, Classical/physiology , Emotions/physiology , GABAergic Neurons/drug effects , GABAergic Neurons/physiology , Glutamic Acid/metabolism , Motivation/physiology , Neurons/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Reward , Zebrafish/physiology
14.
Environ Toxicol ; 29(12): 1428-36, 2014 Dec.
Article in English | MEDLINE | ID: mdl-23766236

ABSTRACT

Exposure to benzidine has been known to induce human cancers, particularly bladder carcinomas. In this study, the zebrafish model was used to investigate the developmental toxicity of benzidine. Embryos at 6 h postfertilization (hpf) that were exposed to benzidine exhibited embryonic death in a dose- and time-dependent manner. Benzidine induced malformations in zebrafish, such as small brain development, shorter axes, and a slight pericardial edema. High concentrations (50, 100, and 200 µM) of benzidine triggered widespread apoptosis in the brain and dorsal neurons, as evidenced by acridine orange and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assays. Real-time polymerase chain reaction analysis also showed that benzidine treatment affected p53, bax, and noxa expression. Decreases in specific brain markers, such as emx1 in the telencephalon, ngn1 in differentiated neurons, and otx2 in the midbrain, were observed in benzidine-treated embryos at 24 hpf. Conversely, no overt changes to pax2.1 expression in the midbrain-hindbrain boundary were found. Moreover, the use of Tg(HuC:GFP) zebrafish showed that benzidine caused a malformation of the telencephalon region. Our findings show that benzidine exposure triggers widespread apoptosis in the zebrafish brain and dorsal neurons, resulting in the development of an abnormal telencephalon.


Subject(s)
Benzidines/toxicity , Telencephalon/abnormalities , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Neurons/metabolism , Telencephalon/drug effects , Telencephalon/embryology , Zebrafish/embryology
15.
Peptides ; 178: 171239, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723948

ABSTRACT

Arginine vasotocin (AVT) is produced mainly in the hypothalamus and as a neurohypophyseal hormone peripherally regulates water-mineral balance in sub-mammals. In addition, AVT-containing neurons innervate several areas of the brain, and AVT also acts centrally as both an anorexigenic and anxiogenic factor in goldfish. However, it is unclear whether these central effects operate in fish in general. In the present study, therefore, we investigated AVT-like immunoreactivity in the brain of the tiger puffer, a cultured fish with a high market value in Japan and also a representative marine teleost species, focusing particularly on whether AVT affects food intake and psychomotor activity. AVT-like immunoreactivity was distributed higher in the ventral region of the telencephalon, the hypothalamus and midbrain. Intraperitoneal (IP) administration of AVT at 100 pmol g-1 body weight (BW) increased the immunoreactivity of phosphorylated ribosomal proteinS6 (RPS6), a neuronal activation marker, in the telencephalon and diencephalon, decreased food consumption and enhanced thigmotaxis. AVT-induced anorexigenic and anxiogenic actions were blocked by IP co-injection of a V1a receptor (V1aR) antagonist, Manning compound (MC) at 300 pmol g-1 BW. These results suggest that AVT acts as an anorexigenic and anxiogenic factor via the V1aR-signaling pathway in the tiger puffer brain.


Subject(s)
Receptors, Vasopressin , Signal Transduction , Vasotocin , Animals , Vasotocin/pharmacology , Vasotocin/metabolism , Receptors, Vasopressin/metabolism , Signal Transduction/drug effects , Takifugu/metabolism , Injections, Intraperitoneal , Brain/metabolism , Brain/drug effects , Eating/drug effects , Anxiety/metabolism , Anxiety/chemically induced , Telencephalon/metabolism , Telencephalon/drug effects
16.
Gen Comp Endocrinol ; 192: 204-13, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23800560

ABSTRACT

Sex pheromones rapidly affect endocrine physiology and behaviour, but little is known about their effects on gene expression in the neural tissues that mediate olfactory processing. In this study, we exposed male goldfish for 6h to waterborne 17,20ßP (4.3 nM) and PGF2α (3 nM), the main pre-ovulatory and post-ovulatory pheromones, respectively. Both treatments elevated milt volume (P=0.001). Microarray analysis of male telencephalon following PGF2α treatment identified 71 unique transcripts that were differentially expressed (q<5%; 67 up, 4 down). Functional annotation of these regulated genes indicates that PGF2α pheromone exposure affects diverse biological processes including nervous system functions, energy metabolism, cholesterol/lipoprotein transport, translational regulation, transcription and chromatin remodelling, protein processing, cytoskeletal organization, and signalling. By using real-time RT-PCR, we further validated three candidate genes, ependymin-II, calmodulin-A and aldolase C, which exhibited 3-5-fold increase in expression following PGF2α exposure. Expression levels of some other genes that are thought to be important for reproduction were also determined using real-time RT-PCR. Expression of sGnRH was increased by PGF2α, but not 17,20ßP, whereas cGnRH expression was increased by 17,20ßP but not PGF2α. In contrast, both pheromones increase the expression of glutamate (GluR2a, NR2A) and γ-aminobutyric acid (GABAA γ2) receptor subunit mRNAs. Milt release and rapid modulation of neuronal transcription are part of the response of males to female sex pheromones.


Subject(s)
Goldfish/metabolism , Sex Attractants/pharmacology , Telencephalon/drug effects , Telencephalon/metabolism , Animals , Dinoprost/pharmacology , Female , Male
17.
J Neurosci ; 31(5): 1919-33, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21289201

ABSTRACT

During early telencephalic development, the major portion of the ventral telencephalic (subpallial) region becomes subdivided into three regions, the lateral (LGE), medial (MGE), and caudal (CGE) ganglionic eminences. In this study, we systematically recapitulated subpallial patterning in mouse embryonic stem cell (ESC) cultures and investigated temporal and combinatory actions of patterning signals. In serum-free floating culture, the dorsal-ventral specification of ESC-derived telencephalic neuroectoderm is dose-dependently directed by Sonic hedgehog (Shh) signaling. Early Shh treatment, even before the expression onset of Foxg1 (also Bf1; earliest marker of the telencephalic lineage), is critical for efficiently generating LGE progenitors, and continuous Shh signaling until day 9 is necessary to commit these cells to the LGE lineage. When induced under these conditions and purified by fluorescence-activated cell sorter, telencephalic cells efficiently differentiated into Nolz1(+)/Ctip2(+) LGE neuronal precursors and subsequently, both in culture and after in vivo grafting, into DARPP32(+) medium-sized spiny neurons. Purified telencephalic progenitors treated with high doses of the Hedgehog (Hh) agonist SAG (Smoothened agonist) differentiated into MGE- and CGE-like tissues. Interestingly, in addition to strong Hh signaling, the efficient specification of MGE cells requires Fgf8 signaling but is inhibited by treatment with Fgf15/19. In contrast, CGE differentiation is promoted by Fgf15/19 but suppressed by Fgf8, suggesting that specific Fgf signals play different, critical roles in the positional specification of ESC-derived ventral subpallial tissues. We discuss a model of the antagonistic Fgf8 and Fgf15/19 signaling in rostral-caudal subpallial patterning and compare it with the roles of these molecules in cortical patterning.


Subject(s)
Embryonic Stem Cells/physiology , Neurons/physiology , Signal Transduction/physiology , Telencephalon/growth & development , Animals , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cells, Cultured , Cyclohexylamines/pharmacology , Embryonic Stem Cells/drug effects , Embryonic Stem Cells/metabolism , Fibroblast Growth Factor 8/genetics , Fibroblast Growth Factor 8/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Flow Cytometry , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Immunohistochemistry , Intracellular Signaling Peptides and Proteins , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Polymerase Chain Reaction , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction/drug effects , Telencephalon/cytology , Telencephalon/drug effects , Telencephalon/metabolism , Thiophenes/pharmacology , Time Factors , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
18.
BMC Neurosci ; 13: 5, 2012 Jan 05.
Article in English | MEDLINE | ID: mdl-22221403

ABSTRACT

BACKGROUND: Antidepressants promote neuronal structural plasticity in young-adult rodents, but little is known of their effects on older animals. The polysialylated form of the neural cell adhesion molecule (PSA-NCAM) may mediate these structural changes through its anti-adhesive properties. PSA-NCAM is expressed in immature neurons and in a subpopulation of mature interneurons and its expression is modulated by antidepressants in the telencephalon of young-adult rodents. RESULTS: We have analyzed the effects of 14 days of fluoxetine treatment on the density of puncta expressing PSA-NCAM and different presynaptic markers in the medial prefrontal cortex, hippocampus and amygdala of middle-aged (8 months old) rats. The density of puncta expressing PSA-NCAM increased in the dorsal cingulate cortex, as well as in different hippocampal and amygdaloid regions. In these later regions there were also increases in the density of puncta expressing glutamic acid decarboxylase 65/67 (GAD6), synaptophysin (SYN), PSA-NCAM/SYN and PSA-NCAM/GAD6, but a decrease of those expressing vesicular glutamate transporter 1 (VGluT1). Since there is controversy on the effects of antidepressants on neurogenesis during aging, we analyzed the number of proliferating cells expressing Ki67 and that of immature neurons expressing doublecortin or PSA-NCAM. No significant changes were found in the subgranular zone, but the number of proliferating cells decreased in the subventricular zone. CONCLUSIONS: These results indicate that the effects of fluoxetine in middle-aged rats are different to those previously described in young-adult animals, being more restricted in the mPFC and even following an opposite direction in the amygdala or the subventricular zone.


Subject(s)
Antidepressive Agents, Second-Generation/pharmacology , Fluoxetine/pharmacology , Gene Expression Regulation/drug effects , Neural Cell Adhesion Molecule L1/metabolism , Neurogenesis/drug effects , Sialic Acids/metabolism , Telencephalon/drug effects , Animals , Body Weight/drug effects , Cell Count , Cell Proliferation/drug effects , Doublecortin Domain Proteins , Doublecortin Protein , Glutamate Decarboxylase/metabolism , Ki-67 Antigen/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/drug effects , Male , Microtubule-Associated Proteins/metabolism , Neural Cell Adhesion Molecule L1/genetics , Neuropeptides/metabolism , Rats , Rats, Wistar , Sialic Acids/genetics , Synaptophysin/metabolism , Telencephalon/cytology , Vesicular Glutamate Transport Protein 1/metabolism
19.
J Neurosci ; 30(8): 2888-96, 2010 Feb 24.
Article in English | MEDLINE | ID: mdl-20181586

ABSTRACT

Multipotent, self-renewing neural stem cells and their progeny [collectively referred to as neural precursor cells (NPCs)] represent a population of cells with great promise for CNS repair. To effectively harness their potential for therapeutic applications, the factors that regulate NPC behavior and/or fate must be well understood. The ability of immunomodulatory molecules to affect NPC behavior is of interest because of recent work elucidating the complex interactions between the immune system and nervous system. Herein, we examined the effects of cyclosporin A, a commonly used immunosuppressive molecule, on NPC proliferation kinetics, survival, and fate using in vitro assays at the population level and at the single-cell level. The use of pure populations of NPCs revealed a direct effect of cyclosporin A on cell survival, resulting in increased numbers and larger colonies, with no effect on proliferation kinetics. Cyclosporin A did not alter the differentiation profile of NPC colonies, indicating that it did not promote selective survival of a particular neural lineage. Additionally, we observed decreased cell-cell adhesions in developing cyclosporin A-treated NPC colonies. Consistent with the in vitro observations, in vivo administration of cyclosporin A to adult animals increased the numbers of NPCs within the neurogenic niche lining the lateral ventricles. Together, our findings establish that cyclosporin A has direct effects on NPCs both in vitro and in vivo, making it a promising candidate molecule for developing clinically relevant strategies to stimulate NPCs for brain repair.


Subject(s)
Cyclosporine/pharmacology , Nerve Regeneration/drug effects , Neurogenesis/drug effects , Neurons/drug effects , Stem Cells/drug effects , Telencephalon/drug effects , Animals , Brain Diseases/therapy , Cell Adhesion/drug effects , Cell Adhesion/physiology , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Lineage/drug effects , Cell Lineage/physiology , Cell Movement/drug effects , Cell Movement/physiology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/physiology , Immunosuppressive Agents/pharmacology , Lateral Ventricles/cytology , Male , Mice , Nerve Regeneration/physiology , Neurogenesis/physiology , Neurons/physiology , Stem Cells/physiology , Telencephalon/cytology , Telencephalon/physiology
20.
Neurobiol Learn Mem ; 96(2): 297-305, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21689770

ABSTRACT

The present work shows that the dorsomedial telencephalic pallium of teleost fish, proposed as homologous to the amygdala of mammals, is involved in taste aversion learning (TAL). To analyze the behavioral properties of TAL in goldfish, in Experiment 1, we used a delayed procedure similar to that employed with mammals, which consists of the presentation of two flavors on different days, one followed by lithium chloride and the other by saline, both after a 10-min delay. The results showed that goldfish developed a strong aversion to the gustatory stimulus followed by visceral discomfort and that, as in mammals, this learning was rapidly acquired, highly flexible and maintained for a long time. Experiment 2 showed that dorsomedial pallium lesions and the ablation of the telencephalic lobes impaired the acquisition of taste aversion in goldfish, whereas damage to the dorsolateral pallium (hippocampus homologue) or cerebellar corpus did not produce significant changes in this learning. Experiment 3 showed that these TAL deficits were not due to a lesion-related disruption of taste discrimination; goldfish with telencephalon ablation were able to learn to distinguish between the two tested flavors in a differential conditioning procedure. These functional data demonstrate that the dorsomedial pallium in teleosts is, like the amygdala, an essential component of the telencephalon-dependent taste aversion memory system and provide further support concerning the homology between both structures.


Subject(s)
Avoidance Learning/physiology , Taste/physiology , Telencephalon/physiopathology , Animals , Avoidance Learning/drug effects , Cerebellum/drug effects , Cerebellum/physiopathology , Goldfish , Lithium Chloride/pharmacology , Memory/drug effects , Memory/physiology , Taste/drug effects , Telencephalon/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL