Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.294
Filter
1.
Annu Rev Biochem ; 87: 621-643, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925260

ABSTRACT

In response to microbial infection, the human host deploys metal-sequestering host-defense proteins, which reduce nutrient availability and thereby inhibit microbial growth and virulence. Calprotectin (CP) is an abundant antimicrobial protein released from neutrophils and epithelial cells at sites of infection. CP sequesters divalent first-row transition metal ions to limit the availability of essential metal nutrients in the extracellular space. While functional and clinical studies of CP have been pursued for decades, advances in our understanding of its biological coordination chemistry, which is central to its role in the host-microbe interaction, have been made in more recent years. In this review, we focus on the coordination chemistry of CP and highlight studies of its metal-binding properties and contributions to the metal-withholding innate immune response. Taken together, these recent studies inform our current model of how CP participates in metal homeostasis and immunity, and they provide a foundation for further investigations of a remarkable metal-chelating protein at the host-microbe interface and beyond.


Subject(s)
Host Microbial Interactions/immunology , Host Microbial Interactions/physiology , Leukocyte L1 Antigen Complex/immunology , Leukocyte L1 Antigen Complex/metabolism , Transition Elements/metabolism , Amino Acid Sequence , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Antimicrobial Cationic Peptides/metabolism , Humans , Immunity, Innate , Iron/immunology , Iron/metabolism , Leukocyte L1 Antigen Complex/genetics , Manganese/immunology , Manganese/metabolism , Models, Biological , Models, Molecular , Nickel/immunology , Nickel/metabolism , Protein Conformation , Sequence Homology, Amino Acid , Zinc/immunology , Zinc/metabolism
2.
Nature ; 574(7778): 390-393, 2019 10.
Article in English | MEDLINE | ID: mdl-31597960

ABSTRACT

Transition-metal complexes are widely used in the physical and biological sciences. They have essential roles in catalysis, synthesis, materials science, photophysics and bioinorganic chemistry. Our understanding of transition-metal complexes originates from Alfred Werner's realization that their three-dimensional shape influences their properties and reactivity1, and the intrinsic link between shape and electronic structure is now firmly underpinned by molecular-orbital theory2-5. Despite more than a century of advances in this field, the geometries of transition-metal complexes remain limited to a few well-understood examples. The archetypal geometries of six-coordinate transition metals are octahedral and trigonal prismatic, and although deviations from ideal bond angles and bond lengths are frequent6, alternative parent geometries are extremely rare7. The hexagonal planar coordination environment is known, but it is restricted to condensed metallic phases8, the hexagonal pores of coordination polymers9, or clusters that contain more than one transition metal in close proximity10,11. Such a geometry had been considered12,13 for [Ni(PtBu)6]; however, an analysis of the molecular orbitals suggested that this complex is best described as a 16-electron species with a trigonal planar geometry14. Here we report the isolation and structural characterization of a simple coordination complex in which six ligands form bonds with a central transition metal in a hexagonal planar arrangement. The structure contains a central palladium atom surrounded by three hydride and three magnesium-based ligands. This finding has the potential to introduce additional design principles for transition-metal complexes, with implications for several scientific fields.


Subject(s)
Coordination Complexes/chemistry , Metals/chemistry , Coordination Complexes/isolation & purification , Materials Science , Molecular Conformation , Transition Elements/chemistry
3.
J Am Chem Soc ; 146(7): 4351-4356, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38334376

ABSTRACT

Artificial ion transporters have been explored both as tools for studying fundamental ion transport processes and as potential therapeutics for cancer and channelopathies. Here we demonstrate that synthetic transporters may also be used to regulate the transport of catalytic metal ions across lipid membranes and thus control chemical reactivity inside lipid-bound compartments. We show that acyclic lipophilic pyridyltriazoles enable Pd(II) cations to be transported from the external aqueous phase across the lipid bilayer and into the interior of large unilamellar vesicles. In situ reduction generates Pd(0) species, which catalyze the generation of a fluorescent product. Photocaging the Pd(II) transporter allows for photoactivation of the transport process and hence photocontrol over the internal catalysis process. This work demonstrates that artificial transporters enable control over catalysis inside artificial cell-like systems, which could form the basis of biocompatible nanoreactors for applications such as drug synthesis and delivery or to mediate phototargeted catalyst delivery into cells.


Subject(s)
Lipid Bilayers , Transition Elements , Ion Transport , Biological Transport , Cations , Catalysis
4.
J Am Chem Soc ; 146(3): 2102-2112, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38225538

ABSTRACT

Recent therapeutic strategies suggest that small peptides can act as aggregation inhibitors of monomeric amyloid-ß (Αß) by inducing structural rearrangements upon complexation. However, characterizing the binding events in such dynamic and transient noncovalent complexes, especially in the presence of natively occurring metal ions, remains a challenge. Here, we deploy a combined transition metal ion Förster resonance energy transfer (tmFRET) and native ion mobility-mass spectrometry (IM-MS) approach to characterize the structure of mass- and charge-selected Aß complexes with Cu(II) ions (a quencher) and a potential aggregation inhibitor, a small neuropeptide named leucine enkephalin (LE). We show conformational changes of monomeric Αß species upon Cu(II)-binding, indicating an uncoiled N-terminus and a close interaction between the C-terminus and the central hydrophobic region. Furthermore, we introduce LE labeled at the N-terminus with a metal-chelating agent, nitrilotriacetic acid (NTA). This allows us to employ tmFRET to probe the binding even in low-abundance and transient Aß-inhibitor-metal ion complexes. Complementary intramolecular distance and global shape information from tmFRET and native IM-MS, respectively, confirmed Cu(II) displacement toward the N-terminus of Αß, which discloses the binding region and the inhibitor's orientation.


Subject(s)
Fluorescence Resonance Energy Transfer , Transition Elements , Ligands , Amyloid beta-Peptides/chemistry , Metals/chemistry , Ions , Copper/chemistry
5.
Anal Chem ; 96(5): 1948-1956, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38265884

ABSTRACT

Organic electrochemical transistors with signal amplification and good stability are expected to play a more important role in the detection of environmental pollutants. However, the bias voltage at the gate may have an effect on the activity of vulnerable biomolecules. In this work, a novel organic photoelectrochemical transistor (OPECT) aptamer biosensor was developed for di(2-ethylhexyl) phthalate (DEHP) detection by combining photoelectrochemical analysis with an organic electrochemical transistor, where MXene/Bi2S3/CdIn2S4 was employed as a photoactive material, target-dependent DNA hybridization chain reaction was used as a signal amplification unit, and Ru(NH3)63+ was selected as a signal enhancement molecule. The poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)-based OPECT biosensor modulated by the MXene/Bi2S3/CdIn2S4 photosensitive material achieved a high current gain of nearly a thousand times at zero bias voltage. The developed signal-on OPECT sensing platform realized sensitive and specific detection of DEHP, with a detection range of 1-200 pM and a minimum detection limit of 0.24 pM under optimized experimental conditions, and its application to real water samples was also evaluated with satisfactory results. Hence, the construction of this OPECT biosensing platform not only provides a promising tool for the detection of DEHP but also reveals the great potential of the OPECT application for the detection of other environmental toxins.


Subject(s)
Biosensing Techniques , Diethylhexyl Phthalate , Nitrites , Transition Elements , Electrochemical Techniques/methods , Biosensing Techniques/methods , Oligonucleotides , Limit of Detection
6.
Anal Chem ; 96(9): 3914-3924, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38387027

ABSTRACT

Wearable, noninvasive sensors enable the continuous monitoring of metabolites in sweat and provide clinical information related to an individual's health and disease states. Uric acid (UA) is a key indicator highly associated with gout, hyperuricaemia, hypertension, kidney disease, and Lesch-Nyhan syndrome. However, the detection of UA levels typically relies on invasive blood tests. Therefore, developing a wearable device for noninvasive monitoring of UA concentrations in sweat could facilitate real-time personalized disease prevention. Here, we introduce 1,3,6,8-pyrene tetrasulfonic acid sodium salt (PyTS) as a bifunctional molecule functionalized with Ti3C2Tx via π-π conjugation to design nonenzymatic wearable sensors for sensitive and selective detection of UA concentration in human sweat. PyTS@Ti3C2Tx provides many oxidation-reduction active groups to enhance the electrocatalytic ability of the UA oxidation reaction. The PyTS@Ti3C2Tx-based electrochemical sensor demonstrates highly sensitive detection of UA in the concentration range of 5 µM-100 µM, exhibiting a lower detection limit of 0.48 µM compared to the uricase-based sensor (0.84 µM). In volunteers, the PyTS@Ti3C2Tx-based wearable sensor is integrated with flexible microfluidic sweat sampling and wireless electronics to enable real-time monitoring of UA levels during aerobic exercise. Simultaneously, it allows for comparison of blood UA levels via a commercial UA analyzer. Herein, this study provides a promising electrocatalyst strategy for nonenzymatic electrochemical UA sensor, enabling noninvasive real-time monitoring of UA levels in human sweat and personalized disease prevention.


Subject(s)
Biosensing Techniques , Nitrites , Transition Elements , Wearable Electronic Devices , Humans , Uric Acid/analysis , Titanium/analysis , Sweat/chemistry
7.
Small ; 20(4): e2304119, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37759420

ABSTRACT

Although antibiotic is still the main choice for antibacteria both in hospital and community, phototherapy has become a possibly one of the alternative approaches in the treatment of microbe-associated infections nowadays because of its considerable potential in effective eradication of pathogenic bacteria. However, overwhelming reactive oxygen species (ROS) generated from phototherapy inevitably provoke an inflammatory response, complicating the healing process. To address this outstanding issue, a MXene-decorated nanofibrious is devised that not only yield localized heat but also elevate ROS levels under near-infrared laser exposure ascribed to the synergistic photothermal/photodynamic effect, for potent bacterial inactivation. After being further loaded with aspirin, the nanofibrous membranes exhibit benign cytocompatibility, boosting cell growth and suppressing the (nuclear factor kappa-B ( NF-κB) signaling pathways through RNA sequencing analysis, indicating an excellent anti-inflammatory effect. Interestingly, in vivo investigations also corroborate that the nanofibrous membranes accelerate infectious cutaneous regeneration by efficiently killing pathogenic bacteria, promoting collagen deposition, boosting angiogenesis, and dampening inflammatory reaction via steering NF-κB pathway. As envisaged, this work furnishes a decorated nanofibrous membrane with programmed antibacterial and anti-inflammatory effects for remedy of refractory bacteria-invaded wound regeneration.


Subject(s)
NF-kappa B , Nanofibers , Nitrites , Transition Elements , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Wound Healing , Anti-Inflammatory Agents/pharmacology , Anti-Bacterial Agents/pharmacology
8.
Small ; 20(14): e2308600, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37974554

ABSTRACT

The rise of MXene-based materials with fascinating physical and chemical properties has attracted wide attention in the field of biomedicine, because it can be exploited to regulate a variety of biological processes. The biomedical applications of MXene are still in its infancy, nevertheless, the comprehensive evaluation of MXene's biosafety is desperately needed. In this review, the composition and the synthetic methods of MXene materials are first introduced from the view of biosafety. The evaluation of the interaction between MXene and cells, as well as the safety of different forms of MXene applied in vivo are then discussed. This review provides a basic understanding of MXene biosafety and may bring new inspirations to the future applications of MXene-based materials in biomedicine.


Subject(s)
Containment of Biohazards , Nitrites , Transition Elements
9.
Chembiochem ; 25(5): e202300485, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38103035

ABSTRACT

Atoms doping is a practical approach to modulate the physicochemical properties of carbon dots (CDs) and thus has garnered increasing attention in recent years. Compared to non-metal atoms, transition metal atoms (TMAs) possess more unoccupied orbitals and larger atomic radii. TMAs doping can significantly alter the electronic structure of CDs and bestow them with new intrinsic characteristics. TMAs-doped CDs have exhibited widespread application potential as a new class of single-atom-based nanomaterials. However, challenges remain for the successful preparation and precise design of TMAs-doped CDs. The key to successfully preparing TMA-doped CDs lies in anchoring TMAs to the carbon precursors before the reaction. Herein, taking the formation mechanism of TMAs-doped CDs as a starting point, we systematically summarized the ligands employed for synthesizing TMAs-doped CDs and proposed the synthetic strategy involving multiple ligands. Additionally, we summarize the functional properties imparted to CDs by different TMA dopants to guide the design of TMA-doped CDs with different functional characteristics. Finally, we describe the bottlenecks TMAs-doped CDs face and provide an outlook on their future development.


Subject(s)
Nanostructures , Transition Elements , Carbon , Electronics
10.
Acc Chem Res ; 56(21): 3089-3098, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37889168

ABSTRACT

Natural product research originates from a desire to explore, understand, and perturb biological function with atomic precision. To reach these goals at all, let alone efficiently, requires thoughtful and creative problem solving. Often this means bold disconnections that would simplify access to complex structures, if only the methods existed to bridge these theoretical gaps. Whereas biological interrogations provide long-term intellectual value and impetus, methods come as attractive fringe benefits of natural product synthesis. This Account describes strategic, methodological solutions to the syntheses of natural products [(-)-eugenial C, Galbulimima alkaloids GB18, GB22, GB13, and himgaline] featuring new, convergent disconnections as important problem-solving steps, which themselves were inspired by recent methods that arose from our group. Each target required the invention of first-row transition metal-catalyzed cross-coupling procedures to satisfy the biological goals of the project. In these cases, synthetic strategy identified the methodological gap (the absence of stereo- and chemoselective couplings of appropriate fragments), but the tactical advantage conferred by first-row metals met the challenge. These methods were competent to handle the dense, sterically encumbered motifs common to natural products due to, in many cases, elementary steps that did not require bond formation between the hindered substrate and the metal center. Instead, these sterically lenient reactions appeared to involve metal-ligand-substrate reactions (i.e., outer-sphere steps), in contrast to the metal-substrate, coordinative reactions of precious metals (i.e., inner-sphere steps). Key observations from our previous studies, combined with the observations in seminal publications from other laboratories (Mattay, Weix, and MacMillan), led to the optimization of ligand-controlled, stereoselective reactions and the introduction of complementary catalytic cycles that revealed new modes of reactivity and generated novel structural motifs. Optimized access to bioactive natural product space accelerated our timeline of biological characterization, fulfilling a common premise of natural products research. The integration of methodology, complex natural product synthesis, diversification, and bioassay into a single Ph.D. dissertation would have been unmanageable in a prior era. The unique ability of first-row transition metals to effect Csp3-Csp3 cross-coupling with high chemo- and stereoselectivity has significantly lowered the barrier to reach the avowed goal of natural product synthesis and reduced the burden (real or perceived) of integrating natural products into functional campaigns.


Subject(s)
Alkaloids , Biological Products , Transition Elements , Ligands , Biological Products/chemistry
11.
Chemistry ; 30(23): e202400516, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38348814

ABSTRACT

The field of bioorthogonal chemistry is rapidly growing, presenting successful applications of organic and transition metal-catalysed reactions in cells and living systems (in vivo). The development of such reactions typically proceeds through many iterative steps focused on biocompatibility and fast reaction kinetics to ensure product formation. However, obtaining kinetic data, even under simulated biological (biomimetic) conditions, remains a challenge due to substantial concentrations of salts and biomolecules hampering the use of typically employed solution-phase analytical techniques. In this study, we explored the suitability of gas evolution as a probe to study kinetics under biomimetic conditions. As proof of concept, we show that the progress of two transition metal-catalysed bioorthogonal chemical reactions can be accurately monitored, regardless of the complexity of the medium. As such, we introduce a protocol to gain more insight into the performance of a catalytic system under biomimetic conditions to further progress iterative catalyst development for in vivo applications.


Subject(s)
Biomimetics , Catalysis , Kinetics , Biomimetics/methods , Gases/chemistry , Transition Elements/chemistry , Biomimetic Materials/chemistry
12.
Anal Biochem ; 685: 115404, 2024 01 15.
Article in English | MEDLINE | ID: mdl-37993043

ABSTRACT

In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.


Subject(s)
Nanostructures , Transition Elements , Molybdenum/chemistry , Nanostructures/chemistry , Drug Delivery Systems
13.
Analyst ; 149(5): 1464-1472, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38284827

ABSTRACT

Copper ions (Cu2+), as a crucial trace element, play a vital role in living organisms. Thus, the detection of Cu2+ is of great significance for disease prevention and diagnosis. Nanochannel devices with an excellent nanoconfinement effect show great potential in recognizing and detecting Cu2+ ions. However, these devices often require complicated modification and treatment, which not only damages the membrane structure, but also induces nonspecific, low-sensitivity and non-repeatable detection. Herein, a 2D MXene-carboxymethyl chitosan (MXene/CMC) freestanding membrane with ordered lamellar channels was developed by a super-assembly strategy. The introduction of CMC provides abundant space charges, improving the nanoconfinement effect of the nanochannel. Importantly, the CMC can chelate with Cu2+ ions, endowing the MXene/CMC with the ability to detect Cu2+. The formation of CMC-Cu2+ complexes decreases the space charges, leading to a discernible variation in the current signal. Therefore, MXene/CMC can achieve highly sensitive and stable Cu2+ detection based on the characteristics of nanochannel composition. The linear response range for Cu2+ detection is 10-9 to 10-5 M with a low detection limit of 0.095 nM. Notably, MXene/CMC was successfully applied for Cu2+ detection in real water and fetal bovine serum samples. This work provides a simple, highly sensitive and stable detection platform based on the properties of the nanochannel composition.


Subject(s)
Chitosan , Nitrites , Trace Elements , Transition Elements , Copper , Chitosan/chemistry , Ions/chemistry
14.
Chem Rev ; 122(21): 16110-16293, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36112510

ABSTRACT

In the present review, we discuss recent progress in the field of C-Z bond formation reactions (Z = S, Se, Te) catalyzed by transition metals. Two complementary methodologies are considered─catalytic cross-coupling reactions and catalytic addition reactions. The development of advanced catalytic systems is aimed at improved catalyst efficiency, reduced catalyst loading, better cost efficiency, environmental concerns, and higher selectivity and yields. The important rise of research efforts in sustainability and green chemistry areas is critically assessed. The paramount role of mechanistic studies in the development of a new generation of catalytic systems is addressed, and the key achievements, problems, and challenges are summarized for this field.


Subject(s)
Transition Elements , Transition Elements/chemistry , Catalysis
15.
Chem Rev ; 122(3): 3996-4090, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34967210

ABSTRACT

While the formation and breaking of transition metal (TM)-carbon bonds plays a pivotal role in the catalysis of organic compounds, the reactivity of inorganometallic species, that is, those involving the transition metal (TM)-metalloid (E) bond, is of key importance in most conversions of metalloid derivatives catalyzed by TM complexes. This Review presents the background of inorganometallic catalysis and its development over the last 15 years. The results of mechanistic studies presented in the Review are related to the occurrence of TM-E and TM-H compounds as reactive intermediates in the catalytic transformations of selected metalloids (E = B, Si, Ge, Sn, As, Sb, or Te). The Review illustrates the significance of inorganometallics in catalysis of the following processes: addition of metalloid-hydrogen and metalloid-metalloid bonds to unsaturated compounds; activation and functionalization of C-H bonds and C-X bonds with hydrometalloids and bismetalloids; activation and functionalization of C-H bonds with vinylmetalloids, metalloid halides, and sulfonates; and dehydrocoupling of hydrometalloids. This first Review on inorganometallic catalysis sums up the developments in the catalytic methods for the synthesis of organometalloid compounds and their applications in advanced organic synthesis as a part of tandem reactions.


Subject(s)
Coordination Complexes , Metalloids , Transition Elements , Catalysis , Hydrogen/chemistry , Transition Elements/chemistry
16.
Chem Rev ; 122(1): 269-339, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34677059

ABSTRACT

Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, ß, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.


Subject(s)
Amines , Transition Elements , Amines/chemistry , Catalysis , Hydrogenation , Stereoisomerism , Transition Elements/chemistry
17.
Chem Rev ; 122(1): 830-902, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34797626

ABSTRACT

Carbide complexes remain a rare class of molecules. Their paucity does not reflect exceptional instability but is rather due to the generally narrow scope of synthetic procedures for constructing carbide complexes. The preparation of carbide complexes typically revolves around generating LnM-CEx fragments, followed by cleavage of the C-E bonds of the coordinated carbon-based ligands (the alternative being direct C atom transfer). Prime examples involve deoxygenation of carbonyl ligands and deprotonation of methyl ligands, but several other p-block fragments can be cleaved off to afford carbide ligands. This Review outlines synthetic strategies toward terminal carbide complexes, bridging carbide complexes, as well as carbide-carbonyl cluster complexes. It then surveys the reactivity of carbide complexes, covering stoichiometric reactions where the carbide ligands act as C1 reagents, engage in cross-coupling reactions, and enact Fischer-Tropsch-like chemistry; in addition, we discuss carbide complexes in the context of catalysis. Finally, we examine spectroscopic features of carbide complexes, which helps to establish the presence of the carbide functionality and address its electronic structure.


Subject(s)
Coordination Complexes , Transition Elements , Catalysis , Coordination Complexes/chemistry , Ligands , Spectrum Analysis , Transition Elements/chemistry
18.
Chem Rev ; 122(2): 1485-1542, 2022 01 26.
Article in English | MEDLINE | ID: mdl-34793128

ABSTRACT

The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has become a mainstay in synthetic methodology over the past decade. Metallaphotoredox catalysis has combined the unparalleled capacity of transition metal catalysis for bond formation with the broad utility of photoinduced electron- and energy-transfer processes. Photocatalytic substrate activation has allowed the engagement of simple starting materials in metal-mediated bond-forming processes. Moreover, electron or energy transfer directly with key organometallic intermediates has provided novel activation modes entirely complementary to traditional catalytic platforms. This Review details and contextualizes the advancements in molecule construction brought forth by metallaphotocatalysis.


Subject(s)
Electrons , Transition Elements , Catalysis , Nickel/chemistry , Oxidation-Reduction
19.
Chem Rev ; 122(3): 3180-3218, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34797053

ABSTRACT

Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.


Subject(s)
Transition Elements , Catalysis , Chemistry Techniques, Synthetic , Electrochemistry , Metals
20.
Chem Rev ; 122(6): 5682-5841, 2022 03 23.
Article in English | MEDLINE | ID: mdl-34662117

ABSTRACT

Transition-metal-catalyzed C-H activation has developed a contemporary approach to the omnipresent area of retrosynthetic disconnection. Scientific researchers have been tempted to take the help of this methodology to plan their synthetic discourses. This paradigm shift has helped in the development of industrial units as well, making the synthesis of natural products and pharmaceutical drugs step-economical. In the vast zone of C-H bond activation, the functionalization of proximal C-H bonds has gained utmost popularity. Unlike the activation of proximal C-H bonds, the distal C-H functionalization is more strenuous and requires distinctly specialized techniques. In this review, we have compiled various methods adopted to functionalize distal C-H bonds, mechanistic insights within each of these procedures, and the scope of the methodology. With this review, we give a complete overview of the expeditious progress the distal C-H activation has made in the field of synthetic organic chemistry while also highlighting its pitfalls, thus leaving the field open for further synthetic modifications.


Subject(s)
Biological Products , Transition Elements , Biological Products/chemistry , Catalysis , Transition Elements/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL