Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Cell ; 176(1-2): 213-226.e18, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30554876

ABSTRACT

Transcriptional regulation in metazoans occurs through long-range genomic contacts between enhancers and promoters, and most genes are transcribed in episodic "bursts" of RNA synthesis. To understand the relationship between these two phenomena and the dynamic regulation of genes in response to upstream signals, we describe the use of live-cell RNA imaging coupled with Hi-C measurements and dissect the endogenous regulation of the estrogen-responsive TFF1 gene. Although TFF1 is highly induced, we observe short active periods and variable inactive periods ranging from minutes to days. The heterogeneity in inactive times gives rise to the widely observed "noise" in human gene expression and explains the distribution of protein levels in human tissue. We derive a mathematical model of regulation that relates transcription, chromosome structure, and the cell's ability to sense changes in estrogen and predicts that hypervariability is largely dynamic and does not reflect a stable biological state.


Subject(s)
Gene Expression Regulation/physiology , Gene Expression/physiology , Transcription, Genetic/physiology , Estrogen Receptor alpha/metabolism , Estrogens , Gene Expression/genetics , Humans , Models, Theoretical , Promoter Regions, Genetic/physiology , RNA, Messenger/metabolism , Single-Cell Analysis/methods , Transcription, Genetic/genetics , Transcriptional Activation/physiology , Trefoil Factor-1/genetics
2.
Gastroenterology ; 167(3): 505-521.e19, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38583723

ABSTRACT

BACKGROUND & AIMS: Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS: Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS: Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS: We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.


Subject(s)
Mice, Knockout , Mucin-6 , Stomach Neoplasms , Animals , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Glycosylation , Humans , Mucin-6/metabolism , Mucin-6/genetics , Mice , Cell Line, Tumor , Carcinogenesis/metabolism , Carcinogenesis/genetics , Gastric Mucosa/metabolism , Gastric Mucosa/pathology , Trefoil Factor-1/metabolism , Trefoil Factor-1/genetics , Organoids/metabolism , Golgi Apparatus/metabolism , Gastric Mucins/metabolism , Disease Models, Animal
3.
PLoS Genet ; 16(1): e1008516, 2020 01.
Article in English | MEDLINE | ID: mdl-31905229

ABSTRACT

Unliganded Estrogen receptor alpha (ERα) has been implicated in ligand-dependent gene regulation. Upon ligand exposure, ERα binds to several EREs relatively proximal to the pre-marked, unliganded ERα-bound sites and affects transient but robust gene expression. However, the underlying mechanisms are not fully understood. Here we demonstrate that upon ligand stimulation, persistent sites interact extensively, via chromatin looping, with the proximal transiently ERα-bound sites, forming Ligand Dependent ERα Enhancer Cluster in 3D (LDEC). The E2-target genes are regulated by these clustered enhancers but not by the H3K27Ac super-enhancers. Further, CRISPR-based deletion of TFF1 persistent site disrupts the formation of its LDEC resulting in the loss of E2-dependent expression of TFF1 and its neighboring genes within the same TAD. The LDEC overlap with nuclear ERα condensates that coalesce in a ligand and persistent site dependent manner. Furthermore, formation of clustered enhancers, as well as condensates, coincide with the active phase of signaling and their later disappearance results in the loss of gene expression even though persistent sites remain bound by ERα. Our results establish, at TFF1 and NRIP1 locus, a direct link between ERα condensates, ERα enhancer clusters, and transient, but robust, gene expression in a ligand-dependent fashion.


Subject(s)
Chromatin Assembly and Disassembly , Enhancer Elements, Genetic , Estrogen Receptor alpha/metabolism , Estrogen Receptor alpha/genetics , Gene Deletion , Histones/metabolism , Humans , Ligands , MCF-7 Cells , Trefoil Factor-1/genetics
4.
Int J Mol Sci ; 24(16)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37628863

ABSTRACT

Tff1 is a typical gastric peptide secreted together with the mucin, Muc5ac. Tff1-deficient (Tff1KO) mice are well known for their prominent gastric phenotype and represent a recognized model for antral tumorigenesis. Notably, intestinal abnormalities have also been reported in the past in these animals. Here, we have compared the expression of selected genes in Tff1KO mice and their corresponding wild-type littermates (RT-PCR analyses), focusing on different mucosal protection systems along the murine intestine. As hallmarks, genes were identified with maximum expression in the proximal colon and/or the duodenum: Agr2, Muc6/A4gnt/Tff2, Tff1, Fut2, Gkn2, Gkn3, Duox2/Lpo, Nox1. This is indicative of different protection systems such as Tff2/Muc6, Tff1-Fcgbp, gastrokines, fucosylation, and reactive oxygen species (ROS) in the proximal colon and/or duodenum. Few significant transcriptional changes were observed in the intestine of Tff1KO mice when compared with wild-type littermates, Clca1 (Gob5), Gkn1, Gkn2, Nox1, Tff2. We also analyzed the expression of Tff1, Tff2, and Tff3 in the pancreas, liver, and lung of Tff1KO and wild-type animals, indicating a cross-regulation of Tff gene expression. Furthermore, on the protein level, heteromeric Tff1-Fcgbp and various monomeric Tff1 forms were identified in the duodenum and a high-molecular-mass Tff2/Muc6 complex was identified in the proximal colon (FPLC, proteomics).


Subject(s)
Intestines , Animals , Mice , Duodenum , Colon , Animals, Wild , Biological Transport , Trefoil Factor-1/genetics
5.
Lab Invest ; 102(8): 885-895, 2022 08.
Article in English | MEDLINE | ID: mdl-35279702

ABSTRACT

Trefoil factor family 1 (TFF1) is one of three members of the trefoil factor family that are abundantly expressed in the gastrointestinal mucosal epithelium. Recent studies have shown that TFF1 acts as a tumor suppressor in gastric, pancreatic and hepatocellular carcinogenesis; however, little is known about its function in esophageal carcinogenesis, especially in esophageal adenocarcinoma (EAC). Barrett's epithelium is the metaplastic columnar epithelium of the esophagus and a known premalignant lesion of EAC. To investigate the role of TFF1 in EAC development, a mouse model of Barrett's epithelium was employed, and human specimens of EAC were assessed by immunohistochemistry (IHC) and methylation-specific PCR. Wild-type (WT) mice underwent gastrojejunostomy on the forestomach, resulting in the development of Barrett's epithelium-like (BE-like) epithelium adjacent to the anastomotic site. BE-like epithelium in these mice expressed TFF1, indicating the association of TFF1 with esophageal adenocarcinoma. TFF1-knockout (TFF1KO) mice underwent the same procedure as well, revealing that a deficiency in TFF1 resulted in the development of adenocarcinoma in the anastomotic site, presumably from BE-like epithelium. IHC of human samples revealed strong TFF1 expression in Barrett's epithelium, which was lost in some EACs, confirming the association between TFF1 and EAC development. Aberrant DNA hypermethylation in TFF1 promoter lesions was detected in TFF1-negative human EAC samples, further confirming not only the role of TFF1 in EAC but also the underlying mechanisms of TFF1 regulation. In addition, IHC revealed the nuclear translocation of ß-catenin in human and mouse EAC, suggesting that activation of the Wnt/ß-catenin pathway was induced by the loss of TFF1. In conclusion, these results indicate that TFF1 functions as a tumor suppressor to inhibit the development of esophageal carcinogenesis from Barrett's epithelium.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Trefoil Factor-1 , Adenocarcinoma/etiology , Adenocarcinoma/genetics , Animals , Barrett Esophagus/complications , Barrett Esophagus/genetics , Carcinogenesis , DNA Methylation , Epithelium/metabolism , Esophageal Neoplasms/etiology , Esophageal Neoplasms/genetics , Humans , Mice , Promoter Regions, Genetic , Trefoil Factor-1/genetics , Wnt Signaling Pathway , beta Catenin
6.
Biochem Biophys Res Commun ; 588: 75-82, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34952473

ABSTRACT

Germline mutations to the breast cancer 2 (BRCA2) gene have been associated with hereditary breast cancer. In addition to estrogen uptake, BRCA2 expression increases in the S phase of the cell cycle and largely contributes to DNA damage repair associated with DNA replication. However, the role of BRCA2 in estrogen induction remains unclear. An expression plasmid was created to induce BRCA2 activation upon the addition of estradiol by introducing mutations to the binding sequences for the transcription factors USF1, E2F1, and NF-κB within the promoter region of BRCA2. Then, the estrogen receptor (ER) sites of the proteins that interact with BRCA2 upon the addition of estradiol were identified. Both proteins were bound by the helical domain of BRCA2 and activation function-2 of the ER, suggesting that this binding may regulate the transcriptional activity of pS2, a target gene of the estradiol-ER, by suppressing the binding of SRC-1, a coactivator required for activation of the transcription factor.


Subject(s)
BRCA2 Protein/metabolism , Estradiol/metabolism , Estrogen Receptor alpha/metabolism , Proteins/genetics , Transcription, Genetic , Trefoil Factor-1/genetics , BRCA2 Protein/chemistry , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Nuclear Receptor Coactivator 1/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Domains , Proteins/metabolism , Transcription Factors/metabolism , Trefoil Factor-1/metabolism
7.
Mol Biol Rep ; 49(10): 10127-10131, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36057754

ABSTRACT

INTRODUCTION: Trefoil Factor 1 (TFF1) is a secretory peptide with gastrointestinal protective functions. Abnormal TFF1 expression is reported in some cancers and functional promoter polymorphism in TFF1 is believed to be associated with risk of gastric cancer. We evaluated rs3761376 in a sample of Iranian patients with colorectal cancer. METHODS: Peripheral blood samples were taken from pathology confirmed cases of colorectal cancer and healthy volunteers. Genotyping was carried out using Restriction Fragment Length Polymorphism (RFLP) PCR. Any association with clinicopathologic data was assessed by SPSS version 19. RESULTS: A total of 245 participants, including 122 patients with cancer and 123 non-cancer subjects were enrolled. Age, body mass index, and smoking habits were not significantly different between the two groups (P > 0.05). Distribution of TFF1 genotypes was not found to be associated with colorectal cancer. However, distant metastasis was more prevalent in carriers of the mutant allele. CONCLUSION: TFF1 rs3761376 was not associated with colorectal cancer but it may be involved in metastasis. Therefore, further investigation is warranted to determine this relationship.


Subject(s)
Colorectal Neoplasms , Polymorphism, Single Nucleotide , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Iran , Peptides/genetics , Peptides/metabolism , Polymorphism, Single Nucleotide/genetics , Trefoil Factor-1/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
BMC Urol ; 22(1): 127, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35987613

ABSTRACT

Trefoil Factor 1 (TFF1) is considered to be able to inhibit the formation of kidney stone. However, genetic variants in TFF1 and corresponding function in kidney stone development are still not well studied. In this study, the discovery set including 230 cases and 250 controls was used to analyze the association between seven tagSNPs of TFF1 gene and the nephrolithiasis risk. Further evaluation was confirmed by the validation set comprising 307 cases and 461 controls. The consequences of the two-stage case-control study indicated that individuals with the rs3761376 A allele have significantly increased nephrolithiasis risk than those with the GG genotypes [adjusted odds ratio (OR) = 1.35, 95% confidence interval (CI) = 1.05-1.73]. Moreover, we also carried out a stratified analysis and found the increased nephrolithiasis risks at A allele among males, overweight individuals, no hypertensive individuals, nondiabetic individuals, smokers, and drinkers. In the following functional experiments, the notably lower expression of TFF1 was exhibited by the vectors carrying A allele compared with those carrying G allele in both luciferase (P = 0.022) and expression vectors (P = 0.041). In addition to tissue detection, we confirmed a significant inverse association of rs3761376 G > A and TFF1 gene expression (P < 0.001). These results suggest that TFF1 rs3761376 may serve as a potential biomarker to predict the risk of nephrolithiasis.


Subject(s)
Kidney Calculi , Nephrolithiasis , Trefoil Factor-1 , Case-Control Studies , China , Humans , Kidney Calculi/genetics , Male , Nephrolithiasis/genetics , Polymorphism, Single Nucleotide/genetics , Trefoil Factor-1/genetics
9.
Biochem Genet ; 60(6): 2155-2170, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35279761

ABSTRACT

Breast cancer (BC) is a common malignant tumor, and circular RNA-trefoil factor 1 (circ-TFF1; hsa_circ_0061825) has been found to be highly expressed in BC tissues and cells and is associated with the poor prognosis of BC patients. However, the interaction between circ-TFF1 and microRNA in BC has not been studied. Quantitative real-time PCR was used to detect the expression of circ-TFF1, miR-129-2-3p, and interleukin (IL)-1 receptor-associated kinase 1 (IRAK1). Through the detection of cell proliferation, migration, invasion, tube formation, and apoptosis, cell function was assessed. The expression levels of angiogenesis-related proteins were detected by western blot. The interaction between miR-129-2-3p and circ-TFF1 or IRAK1 was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Xenotransplantation experiments were used to confirm the function of circ-TFF1 in vivo. Circ-TFF1 and IRAK1 were significantly high expressed in BC tissues and cells. Silencing of circ-TFF1 reduced the proliferation, migration, invasion and tube formation, while increased the apoptosis of MDA-MB-361 and SK-Br-3 cells. MiR-129-2-3p was a target of circ-TFF1. Silencing of circ-TFF1 inhibited the malignant behavior of BC cells by releasing miR-129-2-3p. In addition, IRAK1 was a target of miR-129-2-3p. Overexpression of IRAK1 partially restored the inhibitory effect of miR-129-2-3p on cell progression. Animal experiments confirmed the anti-tumor effect of circ-TFF1 knockdown in vivo. Circ-TFF1 regulated the expression of IRAK1 by sponging miR-129-2-3p, thereby, promoting the development of BC. These data provided a novel targeted therapy for BC.


Subject(s)
MicroRNAs , Neoplasms , Animals , Trefoil Factor-1/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , MicroRNAs/genetics , Cell Proliferation/genetics , Neoplasms/genetics , Cell Line, Tumor
10.
J Sci Food Agric ; 102(3): 1255-1262, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34358346

ABSTRACT

BACKGROUND: Artemisia capillaris is among the most abundantly used traditional medicines, utilized in East Asia to treat diverse illnesses, including gastrointestinal tract diseases. We previously reported that an aqueous extract of A. capillaris (AEAC) inhibited gastric inflammation induced by HCl/ethanol via reactive oxygen species scavenging and NF-κB downregulation. To date, the pharmacological potential of AEAC for promoting mucosal integrity has not been studied. RESULTS: Here, we report that a single treatment with AEAC increased mucus production, and repeated administration of AEAC abolished HCl/ethanol-induced mucosal injury in vivo. Single- and multiple-dose AEAC treatments measurably increased the expression of mucosal stabilizing factors in vivo, including mucin (MUC) 5 AC, MUC6, and trefoil factor (TFF) 1 and TFF2 (but not TFF3). AEAC also induced mucosal stabilizing factors in both SNU-601 cells and RGM cells through phosphorylation of extracellular signal-regulated kinases. CONCLUSION: Taken together, our results suggest that AEAC protects against HCl/ethanol-induced gastritis by upregulating MUCs and TFFs and stabilizing the mucosal epithelium. © 2021 Society of Chemical Industry.


Subject(s)
Artemisia/chemistry , Drugs, Chinese Herbal/pharmacology , Gastric Mucosa/drug effects , Stomach Diseases/drug therapy , Animals , Gastric Mucosa/immunology , Gastric Mucosa/injuries , Humans , Male , Mucins/genetics , Mucins/immunology , NF-kappa B/genetics , NF-kappa B/immunology , Plant Leaves/chemistry , Rats , Rats, Sprague-Dawley , Stomach Diseases/genetics , Stomach Diseases/immunology , Trefoil Factor-1/genetics , Trefoil Factor-1/immunology
11.
Gastroenterology ; 156(4): 1127-1139.e8, 2019 03.
Article in English | MEDLINE | ID: mdl-30502323

ABSTRACT

BACKGROUND & AIMS: microRNAs (miRNAs) are small noncoding RNAs that bind to the 3' untranslated regions of mRNAs to promote their degradation or block their translation. Mice with disruption of the trefoil factor 1 gene (Tff1) develop gastric neoplasms. We studied these mice to identify conserved miRNA networks involved in gastric carcinogenesis. METHODS: We performed next-generation miRNA sequencing analysis of normal gastric tissues (based on histology) from patients without evidence of gastric neoplasm (n = 64) and from TFF1-knockout mice (n = 22). We validated our findings using 270 normal gastric tissues (including 61 samples from patients without evidence of neoplastic lesions) and 234 gastric tumor tissues from 3 separate cohorts of patients and from mice. We performed molecular and functional assays using cell lines (MKN28, MKN45, STKM2, and AGS cells), gastric organoids, and mice with xenograft tumors. RESULTS: We identified 117 miRNAs that were significantly deregulated in mouse and human gastric tumor tissues compared with nontumor tissues. We validated changes in levels of 6 miRNAs by quantitative real-time polymerase chain reaction analyses of neoplastic gastric tissues from mice (n = 39) and 3 independent patient cohorts (n = 332 patients total). We found levels of MIR135B-5p, MIR196B-5p, and MIR92A-5p to be increased in tumor tissues, whereas levels of MIR143-3p, MIR204-5p, and MIR133-3p were decreased in tumor tissues. Levels of MIR143-3p were reduced not only in gastric cancer tissues but also in normal tissues adjacent to tumors in humans and low-grade dysplasia in mice. Transgenic expression of MIR143-3p in gastric cancer cell lines reduced their proliferation and restored their sensitivity to cisplatin. AGS cells with stable transgenic expression of MIR143-3p grew more slowly as xenograft tumors in mice than control AGS cells; tumor growth from AGS cells that expressed MIR143-3p, but not control cells, was sensitive to cisplatin. We identified and validated bromodomain containing 2 (BRD2) as a direct target of MIR143-3p; increased levels of BRD2 in gastric tumors was associated with shorter survival times for patients. CONCLUSIONS: In an analysis of miRNA profiles of gastric tumors from mice and human patients, we identified a conserved signature associated with the early stages of gastric tumorigenesis. Strategies to restore MIR143-3p or inhibit BRD2 might be developed for treatment of gastric cancer.


Subject(s)
Carcinogenesis/genetics , Cell Proliferation/genetics , Drug Resistance, Neoplasm/genetics , MicroRNAs/genetics , Stomach Neoplasms/genetics , Animals , Antineoplastic Agents/pharmacology , Case-Control Studies , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , Cisplatin/pharmacology , Down-Regulation , Female , High-Throughput Nucleotide Sequencing , Humans , Mice , Mice, Knockout , MicroRNAs/analysis , Neoplasm Transplantation , Organoids , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-myc/genetics , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Survival Rate , Transcription Factors , Transcription, Genetic/genetics , Trefoil Factor-1/genetics , Up-Regulation
12.
J Pathol ; 247(1): 35-47, 2019 01.
Article in English | MEDLINE | ID: mdl-30168144

ABSTRACT

Chronic inflammation and intestinal metaplasia are strongly associated with gastric carcinogenesis. Kras activation and Pten deletion are observed in intestinal-type gastric cancer, and Cdh1 mutation is associated with diffuse-type gastric cancer. Although various mouse models of gastric carcinogenesis have been reported, few mouse lines enable gene manipulation selectively in the stomach. Here we established a Tff1-Cre bacterial artificial chromosome transgenic mouse line in an attempt to induce gene modification specifically in the gastric pit lineage. In the stomach, Tff1-Cre-mediated recombination was most evident in the pit lineage in the corpus and in entire antral glands; recombination was also observed in a few gastric chief and parietal cells. Outside the stomach, recombination was patchy throughout the intestines, and particularly frequently in the duodenum (Brunner glands), cecum, and proximal colon. In the stomachs of Tff1-Cre;LSL-KrasG12D mice, proliferating cell clusters expanded throughout the corpus glands, with foveolar cell expansion with ectopic Alcian blue-positive mucins, oxyntic atrophy, and pseudopyloric changes with spasmolytic polypeptide-expressing metaplasia; however, gastric cancer was not observed even at 12 months of age. Corpus-derived organoids from Tff1-Cre;LSL-KrasG12D mice exhibited accelerated growth and abnormal differentiation with a loss of chief and parietal cell markers. Tff1-Cre;Ptenflox/flox mice displayed similar changes to those seen in Tff1-Cre;LSL-KrasG12D mice, both with aberrant ERK activation within 3 months. In contrast, Tff1-Cre;Cdh1flox/flox mice initially showed signet ring-like cells that were rapidly lost with disruption of the mucosal surface, and later developed gastric epithelial shedding with hyperproliferation and loss of normal gastric lineages. Eventually, the glandular epithelium in Tff1-Cre;Cdh1flox/flox mice was completely replaced by squamous epithelium which expanded from the forestomach. Tff1-Cre mice offer an additional useful tool for studying gastric carcinogenesis both in vivo and in vitro. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Cadherins/deficiency , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Gastric Mucosa/enzymology , Gastritis/enzymology , PTEN Phosphohydrolase/deficiency , Proto-Oncogene Proteins p21(ras)/metabolism , Stomach Neoplasms/enzymology , Animals , Cadherins/genetics , Cell Lineage , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Chromosomes, Artificial, Bacterial , Gastric Mucins/genetics , Gastric Mucins/metabolism , Gastric Mucosa/pathology , Gastritis/genetics , Gastritis/pathology , Gene Deletion , Gene Expression Regulation, Neoplastic , Integrases/genetics , Metaplasia , Mice, Transgenic , PTEN Phosphohydrolase/genetics , Phenotype , Proto-Oncogene Proteins p21(ras)/genetics , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Tissue Culture Techniques , Trefoil Factor-1/genetics
13.
Int J Mol Sci ; 21(2)2020 Jan 18.
Article in English | MEDLINE | ID: mdl-31963721

ABSTRACT

TFF1 is a peptide of the gastric mucosa co-secreted with the mucin MUC5AC. It plays a key role in gastric mucosal protection and repair. Tff1-deficient (Tff1KO) mice obligatorily develop antropyloric adenoma and about 30% progress to carcinomas. Thus, these mice represent a model for gastric tumorigenesis. Here, we compared the expression of selected genes in Tff1KO mice and the corresponding wild-type animals (RT-PCR analyses). Furthermore, we systematically investigated the different molecular forms of Tff1 and its heterodimer partner gastrokine-2 (Gkn2) in the stomach (Western blot analyses). As a hallmark, a large portion of murine Tff1 occurs in a monomeric form. This is unexpected because of its odd number of seven cysteine residues. Probably the three conserved acid amino acid residues (EEE) flanking the 7th cysteine residue allow monomeric secretion. As a consequence, the free thiol of monomeric Tff1 could have a protective scavenger function, e.g., for reactive oxygen/nitrogen species. Furthermore, a minor subset of Tff1 forms a disulfide-linked heterodimer with IgG Fc binding protein (Fcgbp). Of special note, in Tff1KO animals a homodimeric form of Gkn2 was observed. In addition, Tff1KO animals showed strongly reduced Tff2 transcript and protein levels, which might explain their increased sensitivity to Helicobacter pylori infection.


Subject(s)
Pyloric Antrum/pathology , Stomach Neoplasms/genetics , Trefoil Factor-1/genetics , Trefoil Factor-1/metabolism , Animals , Carrier Proteins/metabolism , Cell Adhesion Molecules/metabolism , Disease Progression , Female , Gene Knockout Techniques , Male , Mice , Protein Binding , Protein Multimerization , Pyloric Antrum/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Trefoil Factor-1/chemistry
14.
Am J Physiol Gastrointest Liver Physiol ; 317(4): G531-G544, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31393789

ABSTRACT

Restitution of wounds in colonic epithelium is essential in the maintenance of health. Microbial products, such as the short-chain fatty acid butyrate, can have positive effects on wound healing. We used an in vitro model of T84 colonic epithelial cells to determine if the Snail genes Slug (SNAI2) and Snail (SNAI1), implemented in keratinocyte monolayer healing, are involved in butyrate-enhanced colonic epithelial wound healing. Using shRNA-mediated Slug/Snail knockdown, we found that knockdown of Slug (Slug-KD), but not Snail (Snail-KD), impairs wound healing in scratch assays with and without butyrate. Slug and Snail had differential effects on T84 monolayer barrier integrity, measured by transepithelial resistance, as Snail-KD impaired the barrier (with or without butyrate), whereas Slug-KD enhanced the barrier, again with or without butyrate. Targeted transcriptional analysis demonstrated differential expression of several tight junction genes, as well as focal adhesion genes. This included altered regulation of Annexin A2 and ITGB1 in Slug-KD, which was reflected in confocal microscopy, showing increased accumulation of B1-integrin protein in Slug-KD cells, which was previously shown to impair wound healing. Transcriptional analysis also indicated altered expression of genes associated with epithelial terminal differentiation, such that Slug-KD cells skewed toward overexpression of secretory cell pathway-associated genes. This included trefoil factors TFF1 and TFF3, which were expressed at lower than control levels in Snail-KD cells. Since TFFs can enhance the barrier in epithelial cells, this points to a potential mechanism of differential modulation by Snail genes. Although Snail genes are crucial in epithelial wound restitution, butyrate responses are mediated by other pathways as well.NEW & NOTEWORTHY Although butyrate can promote colonic mucosal healing, not all of its downstream pathways are understood. We show that the Snail genes Snail and Slug are mediators of butyrate responses. Furthermore, these genes, and Slug in particular, are necessary for efficient restitution of wounds and barriers in T84 epithelial cells even in the absence of butyrate. These effects are achieved in part through effects on regulation of ß1 integrin and cellular differentiation state.


Subject(s)
Butyrates/therapeutic use , Colonic Diseases/drug therapy , Colonic Diseases/genetics , Snail Family Transcription Factors/genetics , Wound Healing/drug effects , Wound Healing/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Line , Gene Knockdown Techniques , Humans , Signal Transduction/drug effects , Tight Junction Proteins/drug effects , Tight Junction Proteins/genetics , Trefoil Factor-1/biosynthesis , Trefoil Factor-1/genetics , Trefoil Factor-3/biosynthesis , Trefoil Factor-3/genetics
15.
BMC Cancer ; 19(1): 14, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30612555

ABSTRACT

BACKGROUND: Gastric cancer (GC) is a common malignant disease worldwide. Aberrant miRNAs expression contributes to malignant cells behaviour, and in preclinical research, miRNA targeting has shown potential for improving GC therapy. Our present study demonstrated that miR-632 promotes GC progression in a trefoil factor 1 (TFF1)-dependent manner. METHODS: We collected GC tissues and serum samples to detect miR-632 expression using real-time PCR. A dual-luciferase reporter assay was used to identify whether miR-632 directly regulates TFF1 expression. Tube formation and endothelial cell recruitment assays were performed with or without miR-632 treatment. Western blot and in situ hybridization assays were performed to detect angiogenesis and endothelial recruitment markers that are affected by miR-632. RESULTS: Our results showed that miR-632 is highly expressed in GC tissue and serum and negatively associated with TFF1 in GC. miR-632 improves tube formation and endothelial cell recruitment by negatively regulating TFF1 in GC cells. Recombinant TFF1 reversed miR-632-mediated angiogenesis. TFF1 is a target gene of miR-632. CONCLUSIONS: Our study demonstrated that miR-632 promotes GC progression by accelerating angiogenesis in a TFF1-dependent manner. Targeting of miR-632 may be a potential therapeutic approach for GC patients.


Subject(s)
MicroRNAs/genetics , Neovascularization, Pathologic/genetics , Stomach Neoplasms/genetics , Trefoil Factor-1/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , In Situ Hybridization , Male , Middle Aged , Stomach/pathology , Stomach Neoplasms/pathology
16.
Drug Dev Res ; 80(6): 831-836, 2019 09.
Article in English | MEDLINE | ID: mdl-31322753

ABSTRACT

In the last two decades anti-tumor necrosis factor (anti-TNF) therapy for inflammatory bowel disease (IBD) has been widely used to induce and maintain clinical and endoscopical remission, completely changing management of the disease. In this study, we aimed to identify gene expression changes in inflamed mucosa from Crohn's disease and ulcerative colitis patients treated with 5-aminosalicylic acid (5-ASA) (N = 25) or anti-TNF agents (N = 12) compared to drug-free IBD patients (N = 12) and non-IBD control subjects (N = 18). The mucosal expression of 84 genes previously associated with IBD was evaluated by qPCR. We found that both therapeutic regimens induce a decrease in LCN2, NOS2, and TFF1, the levels of which are overexpressed in drug-free patients compared to non-IBD control subjects. Interestingly, a stronger effect of anti-TNF drugs was observed on LCN2 and TFF1 levels. However, 5-ASA seems to induce a more robust reduction of NOS2 expression. Moreover, we found that anti-TNF treatment significantly increased ABCB1, leading to levels similar to those found in non-IBD control subjects.


Subject(s)
Colitis, Ulcerative/genetics , Crohn Disease/genetics , Gene Expression Regulation/drug effects , Intestinal Mucosa/drug effects , Mesalamine/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , Adult , Female , Humans , Intestinal Mucosa/metabolism , Lipocalin-2/genetics , Male , Middle Aged , Nitric Oxide Synthase Type II/genetics , Trefoil Factor-1/genetics
17.
Int J Mol Sci ; 20(23)2019 Dec 03.
Article in English | MEDLINE | ID: mdl-31817054

ABSTRACT

OBJECTIVE: Trefoil factor family peptide 3 (TFF3) has been shown to support catabolic functions in cases of osteoarthritis (OA). As in joint physiology and diseases such as OA, the synovial membrane (SM) of the joint capsule also plays a central role. We analyze the ability of SM to produce TFF compare healthy SM and its secretion product synovial fluid (SF) with SM and SF from patients suffering from OA or rheumatoid arthritis (RA). METHODS: Real-time PCR and ELISA were used to measure the expression of TFFs in healthy SM and SM from patients suffering from OA or RA. For tissue localization, we investigated TFF1-3 in differently aged human SM of healthy donors by means of immunohistochemistry, real-time PCR and Western blot. RESULTS: Only TFF3 but not TFF1 and -2 was expressed in SM from healthy donors as well as cases of OA or RA on protein and mRNA level. In contrast, all three TFFs were detected in all samples of SF on the protein level. No significant changes were observed for TFF1 at all. TFF2 was significantly upregulated in RA samples in comparison to OA samples. TFF3 protein was significantly downregulated in OA samples in comparison to healthy samples and cases of RA significantly upregulated compared to OA. In contrast, in SM TFF3 protein was not significantly regulated. CONCLUSION: The data demonstrate the production of TFF3 in SM. Unexpectedly, SF contains all three known TFF peptides. As neither articular cartilage nor SM produce TFF1 and TFF2, we speculate that these originate with high probability from blood serum.


Subject(s)
Arthritis, Rheumatoid/metabolism , Osteoarthritis/metabolism , Synovial Fluid/metabolism , Synovial Membrane/metabolism , Trefoil Factor-1/metabolism , Trefoil Factor-2/metabolism , Trefoil Factor-3/metabolism , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Peptides/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tissue Donors , Trefoil Factor-1/genetics , Trefoil Factor-2/genetics , Trefoil Factor-3/genetics
18.
Int J Mol Sci ; 20(21)2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31683988

ABSTRACT

Trefoil family factor (TFF) proteins contribute to antimicrobial defense and the maintenance of sinonasal epithelial barrier integrity. Dysregulation of TFF expression may be involved in the development of chronic inflammation and tissue remodeling characteristically found in chronic rhinosinusitis with nasal polyposis (CRSwNP). Expressions of TFF1 and TFF3 were determined in specimens of middle nasal turbinate (MNT-0), bulla ethmoidalis (BE), and nasal polyps (NP) from CRSwNP patients (n = 29) and inferior nasal turbinate from a group of control patients (underwent nasal septoplasty, n = 25). An additional MNT sample was collected 6 months after functional endoscopic sinus surgery (FESS, MNT-6). TFF1 mRNA levels were significantly reduced in all specimens by approximately three- to five-fold, while TFF3 was increased in MNT-0, as compared with controls. Six months after surgery their levels were reversed to control values. CRSwNP patients with S. epidermidis isolated from sinus swabs showed upregulation of TFF3 in MNT and NP as compared with patients with sterile swabs. Target gene regulation was not affected by the presence of type 2 inflammation in patients with confirmed allergy. Results of this study imply participation of TFFs genes in the development of CRSwNP.


Subject(s)
Nasal Polyps/genetics , Rhinitis/genetics , Sinusitis/genetics , Trefoil Factor-1/genetics , Trefoil Factor-3/genetics , Adult , Aged , Chronic Disease , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Male , Middle Aged , Nasal Polyps/complications , Nasal Polyps/surgery , Reverse Transcriptase Polymerase Chain Reaction , Rhinitis/complications , Rhinitis/surgery , Sinusitis/complications , Sinusitis/surgery , Trefoil Factor-1/metabolism , Trefoil Factor-3/metabolism , Young Adult
19.
Int J Cancer ; 142(9): 1805-1816, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29210057

ABSTRACT

Trefoil Factor 1 (TFF1, also named pS2), which serves as the gastrointestinal mucosal protector, is known as gastric-specific tumor suppressor gene. However, the genetic variants of TFF1 are still not well studied. In our study, we aim to explore the effects of tagging single nucleotide polymorphisms (tagSNPs) of TFF1 on risk and prognosis of gastric cancer. Seven tagSNPs of TFF1 gene were first analyzed in the discovery set, which was consisted of 753 cases and 950 cancer-free controls. Then, the validation set (940 cases and 1,042 controls) was used for further evaluation. Moreover, we also tested the relation between these tagSNPs and prognosis of gastric cancer (GC). A series of experiments were performed to investigate the underlying mechanisms. We found that rs3761376 AA in the promoter region of TFF1, could reduce the expression of TFF1 by affecting the binding affinity of estrogen receptor 1 (ESR1, ERα), and thereby increased the risk of GC (1.29, 1.08-1.53). Moreover, the rs3761376 AA genotype was also found associated with worse prognosis among patients receiving 5-FU based chemotherapy after surgery (1.71, 1.18-2.48). Further functional assays demonstrated that TFF1 could increase the chemosensitivity of 5-FU by modulating NF-κB targeted genes. These results identified the effect of rs3761376 on TFF1 expression, which accounted for the correlation with susceptibility and prognosis of GC; and this genetic variant may be a potential biomarker to predict the risk and survival of GC.


Subject(s)
Stomach Neoplasms/genetics , Trefoil Factor-1/genetics , Aged , Case-Control Studies , Estrogen Receptor alpha/biosynthesis , Estrogen Receptor alpha/genetics , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Neoplasm Staging , Polymorphism, Single Nucleotide , Prognosis , Promoter Regions, Genetic , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Trefoil Factor-1/biosynthesis
20.
Biochem Biophys Res Commun ; 506(1): 12-19, 2018 11 17.
Article in English | MEDLINE | ID: mdl-30333090

ABSTRACT

Although the regeneration of the adult liver depends on hepatic progenitor cells (HPCs), many uncertainties regarding hepatic regeneration in the injured liver remain. Trefoil factor family 1 (TFF1), a secretory protein predominantly expressed in the gastrointestinal tract, is responsible for mucosal restitution. Here, we investigated the role of TFF1 in liver regeneration using a mouse model of hepatic injury (choline-deficient ethionine-supplemented diet and carbon tetrachloride administration) and genetically engineered mice (TFF1 knockout (TFF1-/-)). Immunohistochemistry analysis of human liver samples revealed TFF1 expression in the hepatocytes close to ductular reaction and the regenerating biliary epithelium in injured liver. The number of cytokeratin 19 (CK19)-positive bile ducts was significantly decreased in the TFF1-/- mice after liver injury. Notch pathway in the TFF1-/- mice was also downregulated. HPCs in the control mice differentiated into biliary cells (CK19+/SRY HMG box 9 (SOX9)+) more frequently. In contrast, HPCs in the TFF1-/- mice more frequently differentiated into a hepatic lineage (alpha fetoprotein+/SOX9+) after acute liver damage. Hepatocyte proliferation was upregulated, and the liver weight was increased in TFF1-/- mice in response to chronic liver damage. Thus, TFF1 is responsible for liver regeneration after liver injury by promoting HPC differentiation into a biliary lineage and inhibiting HPC differentiation into a hepatic lineage.


Subject(s)
Chemical and Drug Induced Liver Injury/genetics , Hepatocytes/metabolism , Liver Regeneration/genetics , Stem Cells/metabolism , Trefoil Factor-1/genetics , Animals , Bile Ducts/cytology , Bile Ducts/drug effects , Bile Ducts/metabolism , Carbon Tetrachloride/administration & dosage , Carcinogens/administration & dosage , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/secondary , Cell Differentiation , Cells, Cultured , Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Choline Deficiency/genetics , Choline Deficiency/metabolism , Choline Deficiency/pathology , Colonic Neoplasms/genetics , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Diet/adverse effects , Epithelium/drug effects , Epithelium/metabolism , Ethionine/administration & dosage , Gene Expression Regulation , Hepatitis, Chronic/genetics , Hepatitis, Chronic/metabolism , Hepatitis, Chronic/pathology , Hepatocytes/cytology , Hepatocytes/drug effects , Humans , Keratin-19/genetics , Keratin-19/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/secondary , Liver Regeneration/drug effects , Mice , Mice, Knockout , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Signal Transduction , Stem Cells/cytology , Stem Cells/drug effects , Trefoil Factor-1/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL