Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.759
Filter
1.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Article in English | MEDLINE | ID: mdl-34983875

ABSTRACT

Pacific Ocean tuna is among the most-consumed seafood products but contains relatively high levels of the neurotoxin methylmercury. Limited observations suggest tuna mercury levels vary in space and time, yet the drivers are not well understood. Here, we map mercury concentrations in skipjack tuna across the Pacific Ocean and build generalized additive models to quantify the anthropogenic, ecological, and biogeochemical drivers. Skipjack mercury levels display a fivefold spatial gradient, with maximum concentrations in the northwest near Asia, intermediate values in the east, and the lowest levels in the west, southwest, and central Pacific. Large spatial differences can be explained by the depth of the seawater methylmercury peak near low-oxygen zones, leading to enhanced tuna mercury concentrations in regions where oxygen depletion is shallow. Despite this natural biogeochemical control, the mercury hotspot in tuna caught near Asia is explained by elevated atmospheric mercury concentrations and/or mercury river inputs to the coastal shelf. While we cannot ignore the legacy mercury contribution from other regions to the Pacific Ocean (e.g., North America and Europe), our results suggest that recent anthropogenic mercury release, which is currently largest in Asia, contributes directly to present-day human mercury exposure.


Subject(s)
Mercury/analysis , Methylmercury Compounds/analysis , Tuna , Animals , Asia , Ecology , Environmental Monitoring/methods , Europe , Food Chain , Geologic Sediments/chemistry , Humans , Methylation , Models, Theoretical , North America , Pacific Ocean , Seafood , Seawater , Water Pollutants , Water Pollutants, Chemical/analysis
2.
Mol Ecol ; 33(1): e17188, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921120

ABSTRACT

The commercially important Atlantic bluefin tuna (Thunnus thynnus), a large migratory fish, has experienced notable recovery aided by accurate resource assessment and effective fisheries management efforts. Traditionally, this species has been perceived as consisting of eastern and western populations, spawning respectively in the Mediterranean Sea and the Gulf of Mexico, with mixing occurring throughout the Atlantic. However, recent studies have challenged this assumption by revealing weak genetic differentiation and identifying a previously unknown spawning ground in the Slope Sea used by Atlantic bluefin tuna of uncertain origin. To further understand the current and past population structure and connectivity of Atlantic bluefin tuna, we have assembled a unique dataset including thousands of genome-wide single-nucleotide polymorphisms (SNPs) from 500 larvae, young of the year and spawning adult samples covering the three spawning grounds and including individuals of other Thunnus species. Our analyses support two weakly differentiated but demographically connected ancestral populations that interbreed in the Slope Sea. Moreover, we also identified signatures of introgression from albacore (Thunnus alalunga) into the Atlantic bluefin tuna genome, exhibiting varied frequencies across spawning areas, indicating strong gene flow from the Mediterranean Sea towards the Slope Sea. We hypothesize that the observed genetic differentiation may be attributed to increased gene flow caused by a recent intensification of westward migration by the eastern population, which could have implications for the genetic diversity and conservation of western populations. Future conservation efforts should consider these findings to address potential genetic homogenization in the species.


Subject(s)
Gene Flow , Tuna , Animals , Tuna/genetics , Mediterranean Sea , Gulf of Mexico , Atlantic Ocean
3.
Mol Biol Rep ; 51(1): 232, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281308

ABSTRACT

BACKGROUND: The Yellowfin tuna (Thunnus albacares) is a large tuna exploited by major fisheries in tropical and subtropical waters of all oceans except the Mediterranean Sea. Genomic studies of population structure, adaptive variation or of the genetic basis of phenotypic traits are needed to inform fisheries management but are currently limited by the lack of a reference genome for this species. Here we report a draft genome assembly and a linkage map for use in genomic studies of T. albacares. METHODS AND RESULTS: Illumina and PacBio SMRT sequencing were used in combination to generate a hybrid assembly that comprises 743,073,847 base pairs contained in 2,661 scaffolds. The assembly has a N50 of 351,587 and complete and partial BUSCO scores of 86.47% and 3.63%, respectively. Double-digest restriction associated DNA (ddRAD) was used to genotype the 2 parents and 164 of their F1 offspring resulting from a controlled breeding cross, retaining 19,469 biallelic single nucleotide polymorphism (SNP) loci. The SNP loci were used to construct a linkage map that features 24 linkage groups that represent the 24 chromosomes of yellowfin tuna. The male and female maps span 1,243.8 cM and 1,222.9 cM, respectively. The map was used to anchor the assembly in 24 super-scaffolds that contain 79% of the yellowfin tuna genome. Gene prediction identified 46,992 putative genes 20,203 of which could be annotated via gene ontology. CONCLUSIONS: The draft reference will be valuable to interpret studies of genome wide variation in T. albacares and other Scombroid species.


Subject(s)
Genomics , Tuna , Animals , Male , Female , Tuna/genetics , Genotype , Sequence Analysis, DNA , DNA
4.
Environ Res ; 256: 119223, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38810830

ABSTRACT

Compound-specific isotope analysis of nitrogen in amino acids (CSIA-AA, δ15NAA) has gained increasing popularity for elucidating energy flow within food chains and determining the trophic positions of various organisms. However, there is a lack of research on the impact of hydrolysis conditions, such as HCl concentration and hydrolysis time, on δ15NAA analysis in biota samples. In this study, we investigated two HCl concentrations (6 M and 12 M) and four hydrolysis times (2 h, 6 h, 12 h, and 24 h) for hydrolyzing and derivatizing AAs in reference materials (Tuna) and biological samples of little egret (n = 4), night heron (n = 4), sharpbelly (n = 4) and Algae (n = 1) using the n-pivaloyl-iso-propyl (NPIP) ester approach. A Dowex cation exchange resin was used to purify amino acids before derivatization. We then determined δ15NAA values using gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS). The results revealed no significant differences (p > 0.05) in δ15NAA values among samples treated with different HCl concentrations or hydrolysis times, particularly for δ15NGlx (range: 21.0-23.5‰) and δ15NPhe (range: 4.3-5.4‰) in Tuna (12 M). Trophic positions (TPs) calculated based on δ15NAA at 2 h (little egret: 2.9 ± 0.1, night heron: 2.8 ± 0.1, sharpbelly: 2.0 ± 0.1 and Algae: 1.3 ± 0.2) were consistent with those at 24 h (3.1 ± 0.1, 2.8 ± 0.1, 2.2 ± 0.1 and 1.1 ± 0.1, respectively), suggesting that a 2-h hydrolysis time and a 6 M HCl concentration are efficient pretreatment conditions for determining δ15NAA and estimating TP. Compared to the currently used hydrolysis conditions (24 h, 6 M), the proposed conditions (2 h, 6 M) accelerated the δ15NAA assay, making it faster, more convenient, and more efficient. Further research is needed to simplify the operational processes and reduce the time costs, enabling more efficient applications of CSIA-AA.


Subject(s)
Amino Acids , Food Chain , Nitrogen Isotopes , Hydrolysis , Amino Acids/analysis , Amino Acids/chemistry , Animals , Nitrogen Isotopes/analysis , Hydrochloric Acid/chemistry , Tuna
5.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: mdl-34518236

ABSTRACT

Bluefin tuna (BFT), highly prized among consumers, accumulate high levels of mercury (Hg) as neurotoxic methylmercury (MeHg). However, how Hg bioaccumulation varies among globally distributed BFT populations is not understood. Here, we show mercury accumulation rates (MARs) in BFT are highest in the Mediterranean Sea and decrease as North Pacific Ocean > Indian Ocean > North Atlantic Ocean. Moreover, MARs increase in proportion to the concentrations of MeHg in regional seawater and zooplankton, linking MeHg accumulation in BFT to MeHg bioavailability at the base of each subbasin's food web. Observed global patterns correspond to levels of Hg in each ocean subbasin; the Mediterranean, North Pacific, and Indian Oceans are subject to geogenic enrichment and anthropogenic contamination, while the North Atlantic Ocean is less so. MAR in BFT as a global pollution index reflects natural and human sources and global thermohaline circulation.


Subject(s)
Mercury/adverse effects , Mercury/metabolism , Tuna/metabolism , Animals , Biological Availability , Environmental Pollution/adverse effects , Female , Food Chain , Male , Methylmercury Compounds/metabolism , Oceans and Seas , Seawater , Water Pollutants, Chemical/metabolism
6.
Article in English | MEDLINE | ID: mdl-38782254

ABSTRACT

Regional endothermy is the ability of an animal to elevate the temperature of specific regions of the body above that of the surrounding environment and has evolved independently among several fish lineages. Sarcolipin (SLN) is a small transmembrane protein that uncouples the sarcoplasmic reticulum calcium ATPase pump (SERCA1b) resulting in futile Ca2+ cycling and is thought to play a role in non-shivering thermogenesis (NST) in cold-challenged mammals and possibly some fishes. This study investigated the relative expression of sln and serca1 transcripts in three regionally-endothermic fishes (the skipjack, Katsuwonus pelamis, and yellowfin tuna, Thunnus albacares, both of which elevate the temperatures of their slow-twitch red skeletal muscle (RM) and extraocular muscles (EM), as well as the cranial endothermic swordfish, Xiphias gladius), and closely related ectothermic scombrids (the Eastern Pacific bonito, Sarda chiliensis, and Pacific chub mackerel, Scomber japonicus). Using Reverse Transcription quantitative PCR (RT-qPCR) and species-specific primers, relative sln expression trended higher in both the RM and EM for all four scombrid species compared to white muscle. In addition, relative serca1 expression was found to be higher in RM of skipjack and yellowfin tuna in comparison to white muscle. However, neither sln nor serca1 transcripts were higher in swordfish RM, EM or cranial heater tissue in comparison to white muscle. A key phosphorylation site in sarcolipin, threonine 5, is conserved in the swordfish, but is mutated to alanine or valine in tunas and the endothermic smalleye Pacific opah, Lampris incognitus, which should result in increased uncoupling of the SERCA pump. Our results support the role of potential SLN-NST in endothermic tunas and the lack thereof for swordfish.


Subject(s)
Calcium , Muscle Proteins , Proteolipids , Sarcoplasmic Reticulum Calcium-Transporting ATPases , Thermogenesis , Animals , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Proteolipids/genetics , Proteolipids/metabolism , Muscle Proteins/genetics , Muscle Proteins/metabolism , Thermogenesis/genetics , Calcium/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Muscle, Skeletal/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Perciformes/genetics , Perciformes/physiology , Perciformes/metabolism , Tuna/genetics , Tuna/metabolism , Tuna/physiology
7.
Biom J ; 66(4): e2300288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38700021

ABSTRACT

We introduce a new class of zero-or-one inflated power logit (IPL) regression models, which serve as a versatile tool for analyzing bounded continuous data with observations at a boundary. These models are applied to explore the effects of climate changes on the distribution of tropical tuna within the North Atlantic Ocean. Our findings suggest that our modeling approach is adequate and capable of handling the outliers in the data. It exhibited superior performance compared to rival models in both diagnostic analysis and regarding the inference robustness. We offer a user-friendly method for fitting IPL regression models in practical applications.


Subject(s)
Tropical Climate , Tuna , Animals , Logistic Models , Atlantic Ocean , Biometry/methods
8.
J Fish Biol ; 104(4): 1112-1121, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174622

ABSTRACT

The yellowfin tuna is a very abundant tropical tuna species in the western equatorial Atlantic Ocean and an important fishery resource for the Brazilian tuna fleet. In this study we performed stable isotope analysis to better understand the spatial trophodynamics and dietary changes in yellowfin tuna around two insular marine protected areas in Brazil. A total of 65 yellowfin tuna specimens measuring between 47 and 138 cm LT (total length) were sampled around the archipelagos of Fernando de Noronha (FNA; n = 34) and Saint Peter and Saint Paul (SPSPA; n = 31) between July 2018 and September 2019. Bayesian mixing models and generalized additive models were used to investigate the contributions of four different prey items (zooplankton, cephalopods, fish larvae, and flying fish) to yellowfin tuna diet in each area and their potential changes in relation to predator growth. The four prey items were found to have different overall contributions between the two studied areas, with zooplankton being the most important prey in FNA, whereas flying fish was the most relevant prey to the species' diet in SPSPA. Significant changes in the species diet by size were also found, with fish smaller than 90 cm (TL) having a more generalist diet and larger animals relying more on consuming larger and more nutritious prey (i.e., flying fish). Our results suggest that these two marine protected areas play an important role in ocean dynamics, providing important and different foraging grounds for the development of this predator species.


Subject(s)
Insular Cortex , Tuna , Animals , Bayes Theorem , Atlantic Ocean , Fishes , Feeding Behavior , Pacific Ocean
9.
J Fish Biol ; 104(1): 216-226, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37800368

ABSTRACT

A feeding study was conducted to investigate how fish protein hydrolysate (FPH) supplementation affected the growth, feed utilization, body composition, and hematology of juvenile giant trevally (Caranx ignobilis Forsskal, 1775). Seven isonitrogenous (52% protein) and isocaloric diets (10% lipid) were formulated, wherein shrimp hydrolysate (SH) and tuna hydrolysate (TH) were used to replace fishmeal at inclusion levels of 0 (control), 30, 60, and 90 g/kg and labeled as control, SH30, SH60, SH90, TH30, TH60, and TH90, respectively. Each diet was fed to triplicate groups of juvenile giant trevally for 8 weeks. The results showed higher final body weight and specific growth rate in fish fed SH30, SH60, TH30, and TH60 than fed control diet. No difference was observed in feed intake, but reduced feed conversion ratio (FCR) was found in fish fed SH30, SH60, TH30, and TH60, demonstrating these diets improved feed utilization. TH90 caused deposition of lipid droplet in the hepatocyte, a sign of liver damage. Total monounsaturated fatty acids, polyunsaturated fatty acids (PUFA), and highly unsaturated fatty acids in fish were not affected by FPH supplementation. Fish fed TH30 showed lower ∑n - 3 PUFA than the fish fed remaining dietary treatments. The elevated serum protein was seen in fish fed control, SH30, SH60, and TH30, demonstrating that these diets were beneficial for the innate immune response in giant trevally. The results indicate that TH and SH could be incorporated into diets of giant trevally at 30-60 g/kg, replacing 7%-13% fishmeal with enhanced growth and health benefits.


Subject(s)
Diet , Liver , Animals , Diet/veterinary , Liver/metabolism , Tuna/metabolism , Fatty Acids, Unsaturated/metabolism , Dietary Supplements , Body Composition , Animal Feed/analysis
10.
J Sci Food Agric ; 104(4): 1942-1952, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37886811

ABSTRACT

BACKGROUND: Composite nanofiber films loaded with ε-polylysine (PL) and gallic acid (GA) were prepared using a zein/gelatin (ZG) electrospinning method to develop effective active packaging films for tuna preservation. The morphology, structure, thermal stability, hydrophobicity, antibacterial, and antioxidant properties of the films, and their application for tuna during a period of storage of 4 °C were investigated. RESULTS: PL reduced the average diameter of ZG fibers, whereas GA increased it. The PL/GA/ZG film possessed a well distributed fiber morphology with an average diameter of 810 ± 150 nm. Fourier-transform infrared spectroscopy and X-ray diffraction results showed the physical loading of PL and GA in ZG film with the main chemical bonds and crystal structure unchanged. The addition of both PL and GA reduced hydrophobicity of the ZG film while the PL/GA/ZG film was still hydrophobic. GA enhanced its thermal stability and contributed to its antioxidant activity. PL and GA synergetically enhanced the antibacterial activity of ZG film against Shewanella putrefaciens. PL combined with GA is more suitable for modifying ZG film than GA alone. The PL/GA/ZG film effectively inhibited total viable counts, total volatile base nitrogen, fat oxidation, and texture deterioration of tuna fillets at 4 °C storage, and could extend the shelf life by 3 days. CONCLUSIONS: The PL/GA/ZG nanofiber film demonstrated promising potential for application in the preservation of aquatic products as a new antibacterial and antioxidant food packaging. © 2023 Society of Chemical Industry.


Subject(s)
Gallic Acid , Zein , Animals , Gallic Acid/chemistry , Antioxidants/chemistry , Zein/chemistry , Polylysine/pharmacology , Tuna , Gelatin , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Food Packaging/methods
11.
Glob Chang Biol ; 29(17): 5062-5074, 2023 09.
Article in English | MEDLINE | ID: mdl-37401407

ABSTRACT

To limit climate warming to 2°C above preindustrial levels, most economic sectors will need a rapid transformation toward a net zero emission of CO2 . Tuna fisheries is a key food production sector that burns fossil fuel to operate but also reduces the deadfall of large-bodied fish so the capacity of this natural carbon pump to deep sea. Yet, the carbon balance of tuna populations, so the net difference between CO2 emission due to industrial exploitation and CO2 sequestration by fish deadfall after natural mortality, is still unknown. Here, by considering the dynamics of two main contrasting tuna species (Katsuwonus pelamis and Thunnus obesus) across the Pacific since the 1980s, we show that most tuna populations became CO2 sources instead of remaining natural sinks. Without considering the supply chain, the main factors associated with this shift are exploitation rate, transshipment intensity, fuel consumption, and climate change. Our study urges for a better global ocean stewardship, by curbing subsidies and limiting transshipment in remote international waters, to quickly rebuild most pelagic fish stocks above their target management reference points and reactivate a neglected carbon pump toward the deep sea as an additional Nature Climate Solution in our portfolio. Even if this potential carbon sequestration by surface unit may appear low compared to that of coastal ecosystems or tropical forests, the ocean covers a vast area and the sinking biomass of dead vertebrates can sequester carbon for around 1000 years in the deep sea. We also highlight the multiple co-benefits and trade-offs from engaging the industrial fisheries sector with carbon neutrality.


Subject(s)
Carbon Sequestration , Tuna , Animals , Tuna/physiology , Ecosystem , Fisheries , Carbon Dioxide , Carbon , Fishes
12.
J Exp Biol ; 226(4)2023 02 15.
Article in English | MEDLINE | ID: mdl-36728637

ABSTRACT

Tuna are known for exceptional swimming speeds, which are possible because of their thunniform lift-based propulsion, large muscle mass and rigid fusiform body. A rigid body should restrict maneuverability with regard to turn radius and turn rate. To test if turning maneuvers by the Pacific bluefin tuna (Thunnus orientalis) are constrained by rigidity, captive animals were videorecorded overhead as the animals routinely swam around a large circular tank or during feeding bouts. Turning performance was classified into three different types: (1) glide turns, where the tuna uses the caudal fin as a rudder; (2) powered turns, where the animal uses continuous near symmetrical strokes of the caudal fin through the turn; and (3) ratchet turns, where the overall global turn is completed by a series of small local turns by asymmetrical stokes of the caudal fin. Individual points of the rostrum, peduncle and tip of the caudal fin were tracked and analyzed. Frame-by-frame analysis showed that the ratchet turn had the fastest turn rate for all points with a maximum of 302 deg s-1. During the ratchet turn, the rostrum exhibited a minimum global 0.38 body length turn radius. The local turn radii were only 18.6% of the global ratchet turn. The minimum turn radii ranged from 0.4 to 1.7 body lengths. Compared with the performance of other swimmers, the increased flexion of the peduncle and tail and the mechanics of turning behaviors used by tuna overcomes any constraints to turning performance from the rigidity of the anterior body morphology.


Subject(s)
Muscles , Tuna , Animals , Tuna/physiology , Swimming/physiology
13.
Microb Ecol ; 86(1): 742-755, 2023 Jul.
Article in English | MEDLINE | ID: mdl-35962839

ABSTRACT

Although tunas represent a significant part of the global fish economy and a major nutritional resource worldwide, their microbiome still remains poorly documented. Here, we conducted an analysis of the taxonomic composition of the bacterial communities inhabiting the gut, skin, and liver of two most consumed tropical tuna species (skipjack and yellowfin), from individuals caught in the Atlantic and Indian oceans. We hypothesized that each organ harbors a specific microbial assemblage whose composition might vary according to different biotic (sex, species) and/or abiotic (environmental) factors. Our results revealed that the composition of the tuna microbiome was totally independent of fish sex, regardless of the species and ocean considered. Instead, the main determinants of observed diversity were (i) tuna species for the gut and (ii) sampling site for the skin mucus layer and (iii) a combination of both parameters for the liver. Interestingly, 4.5% of all amplicon sequence variants (ASV) were shared by the three organs, highlighting the presence of a core-microbiota whose most abundant representatives belonged to the genera Mycoplasma, Cutibacterium, and Photobacterium. Our study also revealed the presence of a unique and diversified bacterial assemblage within the tuna liver, comprising a substantial proportion of potential histamine-producing bacteria, well known for their pathogenicity and their contribution to fish poisoning cases. These results indicate that this organ is an unexplored microbial niche whose role in the health of both the host and consumers remains to be elucidated.


Subject(s)
Microbiota , Tuna , Animals , Tuna/microbiology , Hunting , Histamine , Bacteria/genetics
14.
Anal Bioanal Chem ; 415(29-30): 7175-7186, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37819434

ABSTRACT

This study reports the development and validation of a new analytical method for simultaneous speciation analysis of Se and Hg in fish muscle. For this purpose, four Se species (selenite/Se(IV), selenate/Se(VI), selenomethionine/SeMet, and selenocysteine/SeCys) and two Hg species (inorganic mercury/iHg and methylmercury/MeHg) were extracted simultaneously by microwave-assisted enzymatic hydrolysis and then separated by HPLC in less than 15 min by using a column with both anion and cation exchange mechanisms and a mobile phase consisting of a mixture of methanol 5% (v/v), 45 mM HNO3, 0.015% 2-mercaptoethanol, and 1.5 mM sodium 3-mercapto-1-propanesulfonate. The separated species of Hg and Se were detected online by inductively coupled plasma-mass spectrometry (ICP-MS). The speciation analysis method was validated by means of the accuracy profile approach by carrying out three series of measurements in duplicate on three different days over a time-span of 3 weeks. The limits of quantification (LOQ) are in the range of 0.010-0.013 mg/kg wet weight (ww) for all selenium species, except for Se(IV) (0.15 mg/kg ww), while the coefficient of variation in terms of intermediate reproducibility (CVR) was < 7%. The LOQ for MeHg was 0.006 mg/kg ww, while the CVR was 3%. The method was successfully applied to the analysis of muscle samples from four different fish species: rainbow trout, tuna, swordfish, and dogfish.


Subject(s)
Mercury , Selenium , Animals , Chromatography, High Pressure Liquid/methods , Hydrolysis , Microwaves , Reproducibility of Results , Mass Spectrometry/methods , Mercury/analysis , Selenium/analysis , Fishes , Tuna
15.
Mar Drugs ; 21(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37999397

ABSTRACT

Several sialoglycopeptides were isolated from several fish eggs and exerted anti-osteoporosis effects. However, few papers have explored sialoglycopeptide from tuna eggs (T-ES). Here, a novel T-ES was prepared through extraction with KCl solution and subsequent enzymolysis. Pure T-ES was obtained through DEAE-Sepharose ion exchange chromatography and sephacryl S-300 gel filtration chromatography. The T-ES was composed of 14.07% protein, 73.54% hexose, and 8.28% Neu5Ac, with a molecular weight of 9481 Da. The backbone carbohydrate in the T-ES was →4)-ß-D-GlcN-(1→3)-α-D-GalN-(1→3)-ß-D-Glc-(1→2)-α-D-Gal-(1→2)-α-D-Gal-(1→3)-α-D-Man-(1→, with two branches of ß-D-GlcN-(1→ and α-D-GalN-(1→ linking at o-4 in →2,4)-α-D-Gal-(1→. Neu5Ac in the T-ES was linked to the branch of α-D-GlcN-(1→. A peptide chain, Ala-Asp-Asn-Lys-Ser*-Met-Ile that was connected to the carbohydrate chain through O-glycosylation at the -OH of serine. Furthermore, in vitro data revealed that T-ES could remarkably enhance bone density, bone biomechanical properties, and bone microstructure in SAMP mice. The T-ES elevated serum osteogenesis-related markers and reduced bone resorption-related markers in serum and urine. The present study's results demonstrated that T-ES, a novel sialoglycopeptide, showed significant anti-osteoporosis effects, which will accelerate the utilization of T-ES as an alternative marine drug or functional food for anti-osteoporosis.


Subject(s)
Sialoglycoproteins , Tuna , Humans , Mice , Animals , Carbohydrate Sequence , Carbohydrates , Hexoses
16.
Mar Drugs ; 21(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36827146

ABSTRACT

The aim of this study was to investigate the protective function and mechanism of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from skipjack tuna cardiac arterial bulbs on skin photoaging using UVB-irradiated HaCaT cell model. The present results indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) had significant cytoprotective effect on UVB-irradiated HaCaT cells (p < 0.001). Hoechst 33342 staining showed that apoptosis of UV-irradiated HaCaT cells could be significantly reduced by the treatment of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM); JC-1 staining showed that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could protect HaCaT cells from apoptosis by restoring mitochondrial membrane potential (MMP); Furthermore, TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could significantly down-regulate the ratio of Bax/Bcl-2 and reduce the expression level of the apoptosis-executing protein Caspase-3 by decreasing the expression of protein Caspase-8 and Caspase-9 (p < 0.05). The action mechanism indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could up-regulate the expression levels of Nrf2, NQO1 and HO-1 (p < 0.05), which further increased the activity of downstream proteases (SOD, CAT and GSH-Px), and scavenged reactive oxygen species (ROS) and decreased the intracellular levels of malondialdehyde (MDA). In addition, molecular docking indicated that TCP3 (PKK) and TCP6 (YEGGD) could competitively inhibit the Nrf2 binding site because they can occupy the connection site of Nrf2 by binding to the Kelch domain of Keap1 protein. TCP9 (GPGLM) was inferred to be non-competitive inhibition because it could not bind to the active site of the Kelch domain of Keap1 protein. In summary, the antioxidant peptides TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from cardiac arterial bulbs of skipjack tuna can effectively protect HaCaT cells from UVB-irradiated damage and can be used in the development of healthy and cosmetic products to treat diseases caused by UV radiation.


Subject(s)
Antioxidants , Keratinocytes , Animals , Humans , Antioxidants/pharmacology , HaCaT Cells , Kelch-Like ECH-Associated Protein 1/metabolism , Tuna/metabolism , NF-E2-Related Factor 2/metabolism , Molecular Docking Simulation , Peptides/pharmacology , Reactive Oxygen Species/metabolism , Apoptosis , Ultraviolet Rays
17.
Article in English | MEDLINE | ID: mdl-36775093

ABSTRACT

Ocean acidification is predicted to have a wide range of impacts on fish, but there has been little focus on broad-ranging pelagic fish species. Early life stages of fish are thought to be particularly susceptible to CO2 exposure, since acid-base regulatory faculties may not be fully developed. We obtained yellowfin tuna (Thunnus albacares) from a captive spawning broodstock population and exposed them to control or 1900 µatm CO2 through the first three days of development as embryos transitioned into yolk sac larvae. Metabolic rate, yolk sac depletion, and oil globule depletion were measured to assess overall energy usage. To determine if CO2 altered protein catabolism, tissue nitrogen content and nitrogenous waste excretion were quantified. CO2 exposure did not significantly impact embryonic metabolic rate, yolk sac depletion, or oil globule depletion, however, there was a significant decrease in metabolic rate at the latest measured yolk sac larval stage (36 h post fertilization). CO2-exposure led to a significant increase in nitrogenous waste excretion in larvae, but there were no differences in nitrogen tissue accumulation. Nitrogenous waste accumulated in embryos as they developed but decreased after hatch, coinciding with a large increase in nitrogenous waste excretion and increased metabolic rate in newly hatched larvae. Our results provide insight into how yellowfin tuna are impacted by increases in CO2 in early development, but more research with higher levels of replication is needed to better understand long-term impacts and acid-base regulatory mechanisms in this important pelagic fish.


Subject(s)
Carbon Dioxide , Tuna , Animals , Tuna/metabolism , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Seawater , Larva
18.
Ecotoxicology ; 32(8): 994-1009, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37328690

ABSTRACT

Humans are exposed to toxic methylmercury mainly by consuming marine fish. The Minamata Convention aims at reducing anthropogenic mercury releases to protect human and ecosystem health, employing monitoring programs to meet its objectives. Tunas are suspected to be sentinels of mercury exposure in the ocean, though not evidenced yet. Here, we conducted a literature review of mercury concentrations in tropical tunas (bigeye, yellowfin, and skipjack) and albacore, the four most exploited tunas worldwide. Strong spatial patterns of tuna mercury concentrations were shown, mainly explained by fish size, and methylmercury bioavailability in marine food web, suggesting that tunas reflect spatial trends of mercury exposure in their ecosystem. The few mercury long-term trends in tunas were contrasted and sometimes disconnected to estimated regional changes in atmospheric emissions and deposition, highlighting potential confounding effects of legacy mercury, and complex reactions governing the fate of mercury in the ocean. Inter-species differences of tuna mercury concentrations associated with their distinct ecology suggest that tropical tunas and albacore could be used complementarily to assess the vertical and horizontal variability of methylmercury in the ocean. Overall, this review elevates tunas as relevant bioindicators for the Minamata Convention, and calls for large-scale and continuous mercury measurements within the international community. We provide guidelines for tuna sample collection, preparation, analyses and data standardization with recommended transdisciplinary approaches to explore tuna mercury content in parallel with observation abiotic data, and biogeochemical model outputs. Such global and transdisciplinary biomonitoring is essential to explore the complex mechanisms of the marine methylmercury cycle.


Subject(s)
Mercury , Methylmercury Compounds , Animals , Humans , Mercury/analysis , Tuna , Methylmercury Compounds/analysis , Environmental Biomarkers , Ecosystem , Fishes , Oceans and Seas
19.
J Fish Biol ; 102(6): 1425-1433, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36999397

ABSTRACT

The genus Thunnus (family Scombridae) comprises eight species of tunas of which all but one are targeted by industrialized fisheries. Although intact individuals of these species can be distinguished by morphological characteristics, researchers and managers often rely on dressed, frozen, juvenile or larval fish samples, which often necessitates the identification of molecular species. Here the authors investigate short amplicon (SA) and unlabelled probe high-resolution melting analysis (UP-HRMA) as a low-cost, high-throughput molecular genotyping assay capable of distinguishing between albacore tuna (Thunnus alalunga), blackfin tuna (Thunnus atlanticus), bigeye tuna (Thunnus obesus), Atlantic bluefin tuna (Thunnus thynnus) and yellowfin tuna (Thunnus albacares) in the Gulf of Mexico. Although SA-HRMA of variable regions in the NADH dehydrogenase subunit 4 (ND4) and subunit 5 (ND5), and subunit 6 (ND6) of the mtDNA genome did yield some species-specific diagnostic melting curves (e.g., ND4 assay can reliably distinguish Atlantic bluefin tuna), genotype masking produced excessive variation in melting curves for reliable multi-species identification. To minimize the genotyping masking of SA-HRMA a 26 base pair long UP containing four SNPs was developed within a 133 bp segment of ND4. The UP-HRMA is able to reliably distinguish Gulf of Mexico species T. thynnus, T. obesus, T. albacares and T. atlanticus by UP melting temperature at 67, 62, 59 and 57°C, respectively. The developed UP-HRMA assay is a lower-cost, higher-throughput, alternative to previously published molecular assays for tuna identification that can be easily automated for large data sets, including ichthyological larval surveys, fisheries specimens lacking distinguishing morphological characteristics or detection of fraudulent trading of tuna species.


Subject(s)
DNA, Mitochondrial , Tuna , Animals , Tuna/genetics , Gulf of Mexico , Larva , DNA, Mitochondrial/genetics , Genotype
20.
J Fish Biol ; 103(5): 1054-1072, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37466346

ABSTRACT

Although most research focused on the northern Gulf of Mexico for western Atlantic bluefin tuna, the histological records of reproductive activity of this species in the southern Gulf of Mexico (Mexican waters) have been presented for the first time. This work is the first to study oocyte dynamics in Atlantic bluefin tuna caught in the southern Gulf of Mexico by assessing and comparing them with Mediterranean stock (BFT-E) through stereology using two different methods. Regardless of Atlantic bluefin tuna females returning to their respective spawning grounds at different months in the southern Gulf of Mexico and the Mediterranean, both stocks arrived reproductively inactive and remained in these zones during periods of similar length; they were reproductively active until March for the southern Gulf of Mexico and May for the Mediterranean females. The comparison of the size structure between the two stocks examined using kernel density estimators demonstrated a quite remarkable difference in mean fork lengths between stocks. The ovarian oocyte density, that is, the number of oocytes per gram of ovary, for each gonad stage predicted using the Weibel and Gomez and oocyte packing density (OPD) methods did not significantly differ between stocks and showed that advanced vitellogenic oocytes from spawning-capable females are an appropriate indicator to estimate potential fecundity, presenting values of c. 1273 and ~1355 eggs per gram for the southern Gulf of Mexico and Mediterranean females, respectively. Females caught in Mexican waters (southern Gulf of Mexico) were larger than those caught in the Mediterranean; however, it was demonstrated that the length and weight of females did not affect ovarian oocyte density production. In addition, densities estimated for each gonad stage using W&G and OPD methods did not differ between stocks and presented equal patterns in their oocyte dynamics. These findings contribute to a better understanding of the reproductive biology of Atlantic bluefin tuna, especially in the southern Gulf of Mexico, due to the lack of information regarding this zone, and may allow to support strategies for proper assessment, management, and conservation.


Subject(s)
Oocytes , Tuna , Female , Animals , Gulf of Mexico , Ovary , Reproduction , Mediterranean Sea
SELECTION OF CITATIONS
SEARCH DETAIL