Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Nature ; 627(8003): 445-452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383785

ABSTRACT

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Subject(s)
Endoplasmic Reticulum , Protein Processing, Post-Translational , Ribosome Subunits, Large, Eukaryotic , Ubiquitin-Protein Ligases , Binding Sites , Biocatalysis , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Intracellular Membranes/chemistry , Intracellular Membranes/metabolism , Intracellular Membranes/ultrastructure , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , Peptidyl Transferases/ultrastructure , Protein Binding , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomal Proteins/ultrastructure , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/ultrastructure , RNA, Transfer/metabolism , Substrate Specificity , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure
2.
Nature ; 627(8005): 873-879, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38418882

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP)1-7. The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA8-15. However, the fate of nuclear cGAS and its role in cell physiology remains unclear. Here we show that the ubiquitin proteasomal system (UPS) degrades nuclear cGAS in cycling cells. We identify SPSB3 as the cGAS-targeting substrate receptor that associates with the cullin-RING ubiquitin ligase 5 (CRL5) complex to ligate ubiquitin onto nuclear cGAS. A cryo-electron microscopy structure of nucleosome-bound cGAS in a complex with SPSB3 reveals a highly conserved Asn-Asn (NN) minimal degron motif at the C terminus of cGAS that directs SPSB3 recruitment, ubiquitylation and cGAS protein stability. Interference with SPSB3-regulated nuclear cGAS degradation primes cells for type I interferon signalling, conferring heightened protection against infection by DNA viruses. Our research defines protein degradation as a determinant of cGAS regulation in the nucleus and provides structural insights into an element of cGAS that is amenable to therapeutic exploitation.


Subject(s)
Nuclear Proteins , Nucleosomes , Nucleotidyltransferases , Proteolysis , Ubiquitin-Protein Ligases , Animals , Humans , Mice , Cell Nucleus/metabolism , Cryoelectron Microscopy , Degrons , DNA Virus Infections/immunology , DNA Viruses/immunology , DNA Viruses/metabolism , DNA, Viral/immunology , DNA, Viral/metabolism , Immunity, Innate , Innate Immunity Recognition , Interferon Type I/immunology , Nuclear Proteins/metabolism , Nucleosomes/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Nucleotidyltransferases/chemistry , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/ultrastructure , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Substrate Specificity , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Ubiquitination
3.
Nature ; 633(8028): 216-223, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39143218

ABSTRACT

Transthiolation (also known as transthioesterification) reactions are used in the biosynthesis of acetyl coenzyme A, fatty acids and polyketides, and for post-translational modification by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins1-3. For the Ub pathway, E1 enzymes catalyse transthiolation from an E1~Ub thioester to an E2~Ub thioester. Transthiolation is also required for transfer of Ub from an E2~Ub thioester to HECT (homologous to E6AP C terminus) and RBR (ring-between-ring) E3 ligases to form E3~Ub thioesters4-6. How isoenergetic transfer of thioester bonds is driven forward by enzymes in the Ub pathway remains unclear. Here we isolate mimics of transient transthiolation intermediates for E1-Ub(T)-E2 and E2-Ub(T)-E3HECT complexes (where T denotes Ub in a thioester or Ub undergoing transthiolation) using a chemical strategy with native enzymes and near-native Ub to capture and visualize a continuum of structures determined by single-particle cryo-electron microscopy. These structures and accompanying biochemical experiments illuminate conformational changes in Ub, E1, E2 and E3 that are coordinated with the chemical reactions to facilitate directional transfer of Ub from each enzyme to the next.


Subject(s)
Protein Processing, Post-Translational , Schizosaccharomyces pombe Proteins , Sulfhydryl Compounds , Ubiquitin-Activating Enzymes , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases , Ubiquitin , Cryoelectron Microscopy , Esterification , Models, Molecular , Protein Conformation , Schizosaccharomyces/enzymology , Schizosaccharomyces/ultrastructure , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces pombe Proteins/ultrastructure , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin/ultrastructure , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Activating Enzymes/ultrastructure , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure
4.
Nature ; 627(8003): 437-444, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38383789

ABSTRACT

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Subject(s)
Endoplasmic Reticulum , Protein Processing, Post-Translational , Ribosome Subunits, Large, Eukaryotic , Ubiquitin-Protein Ligases , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/ultrastructure , Cryoelectron Microscopy , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/ultrastructure , Homeostasis , Intracellular Membranes/metabolism , Peptidyl Transferases/chemistry , Peptidyl Transferases/metabolism , Peptidyl Transferases/ultrastructure , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Ribosomal Proteins/ultrastructure , RNA, Transfer/metabolism , SEC Translocation Channels/chemistry , SEC Translocation Channels/metabolism , SEC Translocation Channels/ultrastructure , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Ribosome Subunits, Large, Eukaryotic/chemistry , Ribosome Subunits, Large, Eukaryotic/metabolism , Ribosome Subunits, Large, Eukaryotic/ultrastructure
5.
Nature ; 616(7955): 176-182, 2023 04.
Article in English | MEDLINE | ID: mdl-36991118

ABSTRACT

Repression of gene expression by protein complexes of the Polycomb group is a fundamental mechanism that governs embryonic development and cell-type specification1-3. The Polycomb repressive deubiquitinase (PR-DUB) complex removes the ubiquitin moiety from monoubiquitinated histone H2A K119 (H2AK119ub1) on the nucleosome4, counteracting the ubiquitin E3 ligase activity of Polycomb repressive complex 1 (PRC1)5 to facilitate the correct silencing of genes by Polycomb proteins and safeguard active genes from inadvertent silencing by PRC1 (refs. 6-9). The intricate biological function of PR-DUB requires accurate targeting of H2AK119ub1, but PR-DUB can deubiquitinate monoubiquitinated free histones and peptide substrates indiscriminately; the basis for its exquisite nucleosome-dependent substrate specificity therefore remains unclear. Here we report the cryo-electron microscopy structure of human PR-DUB, composed of BAP1 and ASXL1, in complex with the chromatosome. We find that ASXL1 directs the binding of the positively charged C-terminal extension of BAP1 to nucleosomal DNA and histones H3-H4 near the dyad, an addition to its role in forming the ubiquitin-binding cleft. Furthermore, a conserved loop segment of the catalytic domain of BAP1 is situated near the H2A-H2B acidic patch. This distinct nucleosome-binding mode displaces the C-terminal tail of H2A from the nucleosome surface, and endows PR-DUB with the specificity for H2AK119ub1.


Subject(s)
Deubiquitinating Enzymes , Histones , Polycomb Repressive Complex 1 , Polycomb-Group Proteins , Humans , Cryoelectron Microscopy , Histones/chemistry , Histones/metabolism , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/metabolism , Polycomb Repressive Complex 1/chemistry , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/ultrastructure , Polycomb-Group Proteins/chemistry , Polycomb-Group Proteins/metabolism , Polycomb-Group Proteins/ultrastructure , Ubiquitin/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/ultrastructure , Ubiquitination , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Repressor Proteins/ultrastructure , Catalytic Domain , Deubiquitinating Enzymes/classification , Deubiquitinating Enzymes/metabolism , Deubiquitinating Enzymes/ultrastructure , Substrate Specificity , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure
6.
Mol Cell ; 81(3): 599-613.e8, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33373584

ABSTRACT

RNA helicases and E3 ubiquitin ligases mediate many critical functions in cells, but their actions have largely been studied in distinct biological contexts. Here, we uncover evolutionarily conserved rules of engagement between RNA helicases and tripartite motif (TRIM) E3 ligases that lead to their functional coordination in vertebrate innate immunity. Using cryoelectron microscopy and biochemistry, we show that RIG-I-like receptors (RLRs), viral RNA receptors with helicase domains, interact with their cognate TRIM/TRIM-like E3 ligases through similar epitopes in the helicase domains. Their interactions are avidity driven, restricting the actions of TRIM/TRIM-like proteins and consequent immune activation to RLR multimers. Mass spectrometry and phylogeny-guided biochemical analyses further reveal that similar rules of engagement may apply to diverse RNA helicases and TRIM/TRIM-like proteins. Our analyses suggest not only conserved substrates for TRIM proteins but also, unexpectedly, deep evolutionary connections between TRIM proteins and RNA helicases, linking ubiquitin and RNA biology throughout animal evolution.


Subject(s)
DEAD Box Protein 58/metabolism , Immunity, Innate , Interferon-Induced Helicase, IFIH1/metabolism , Receptors, Immunologic/metabolism , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Cryoelectron Microscopy , DEAD Box Protein 58/genetics , DEAD Box Protein 58/ultrastructure , Epitopes , Evolution, Molecular , HEK293 Cells , Humans , Interferon-Induced Helicase, IFIH1/genetics , Interferon-Induced Helicase, IFIH1/ultrastructure , Models, Molecular , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Interaction Domains and Motifs , Receptors, Immunologic/genetics , Receptors, Immunologic/ultrastructure , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/ultrastructure , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/ultrastructure
7.
Nature ; 600(7888): 334-338, 2021 12.
Article in English | MEDLINE | ID: mdl-34789879

ABSTRACT

The N-degron pathway targets proteins that bear a destabilizing residue at the N terminus for proteasome-dependent degradation1. In yeast, Ubr1-a single-subunit E3 ligase-is responsible for the Arg/N-degron pathway2. How Ubr1 mediates the initiation of ubiquitination and the elongation of the ubiquitin chain in a linkage-specific manner through a single E2 ubiquitin-conjugating enzyme (Ubc2) remains unknown. Here we developed chemical strategies to mimic the reaction intermediates of the first and second ubiquitin transfer steps, and determined the cryo-electron microscopy structures of Ubr1 in complex with Ubc2, ubiquitin and two N-degron peptides, representing the initiation and elongation steps of ubiquitination. Key structural elements, including a Ubc2-binding region and an acceptor ubiquitin-binding loop on Ubr1, were identified and characterized. These structures provide mechanistic insights into the initiation and elongation of ubiquitination catalysed by Ubr1.


Subject(s)
Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination , Binding Sites , Biocatalysis , Cryoelectron Microscopy , Lysine/metabolism , Models, Molecular , Proteolysis , Reproducibility of Results , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/ultrastructure , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/ultrastructure
8.
Nature ; 596(7872): 438-443, 2021 08.
Article in English | MEDLINE | ID: mdl-34321665

ABSTRACT

The BRCA1-BARD1 tumour suppressor is an E3 ubiquitin ligase necessary for the repair of DNA double-strand breaks by homologous recombination1-10. The BRCA1-BARD1 complex localizes to damaged chromatin after DNA replication and catalyses the ubiquitylation of histone H2A and other cellular targets11-14. The molecular bases for the recruitment to double-strand breaks and target recognition of BRCA1-BARD1 remain unknown. Here we use cryo-electron microscopy to show that the ankyrin repeat and tandem BRCT domains in BARD1 adopt a compact fold and bind to nucleosomal histones, DNA and monoubiquitin attached to H2A amino-terminal K13 or K15, two signals known to be specific for double-strand breaks15,16. We further show that RING domains17 in BRCA1-BARD1 orient an E2 ubiquitin-conjugating enzyme atop the nucleosome in a dynamic conformation, primed for ubiquitin transfer to the flexible carboxy-terminal tails of H2A and variant H2AX. Our work reveals a regulatory crosstalk in which recognition of monoubiquitin by BRCA1-BARD1 at the N terminus of H2A blocks the formation of polyubiquitin chains and cooperatively promotes ubiquitylation at the C terminus of H2A. These findings elucidate the mechanisms of BRCA1-BARD1 chromatin recruitment and ubiquitylation specificity, highlight key functions of BARD1 in both processes and explain how BRCA1-BARD1 promotes homologous recombination by opposing the DNA repair protein 53BP1 in post-replicative chromatin18-22. These data provide a structural framework to evaluate BARD1 variants and help to identify mutations that drive the development of cancer.


Subject(s)
BRCA1 Protein/metabolism , Nucleosomes/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitination , Cryoelectron Microscopy , DNA Repair , Histones/chemistry , Histones/metabolism , Homologous Recombination , Humans , Models, Molecular , Mutation , Neoplasms/genetics , Nucleosomes/chemistry , Nucleosomes/genetics , Nucleosomes/ultrastructure , Protein Domains , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/ultrastructure , Tumor Suppressor p53-Binding Protein 1/antagonists & inhibitors , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/ultrastructure
9.
Nature ; 598(7880): 368-372, 2021 10.
Article in English | MEDLINE | ID: mdl-34526721

ABSTRACT

Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription-repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.


Subject(s)
Cryoelectron Microscopy , DNA Repair , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , RNA Polymerase II/chemistry , RNA Polymerase II/ultrastructure , Transcription, Genetic , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Carrier Proteins/ultrastructure , DNA Helicases/chemistry , DNA Helicases/metabolism , DNA Helicases/ultrastructure , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , DNA Repair Enzymes/ultrastructure , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Humans , Models, Molecular , Multiprotein Complexes/metabolism , Poly-ADP-Ribose Binding Proteins/chemistry , Poly-ADP-Ribose Binding Proteins/metabolism , Poly-ADP-Ribose Binding Proteins/ultrastructure , RNA Polymerase II/metabolism , Transcription Elongation, Genetic , Transcription Factor TFIIH/chemistry , Transcription Factor TFIIH/metabolism , Transcription Factor TFIIH/ultrastructure , Transcription Factors/chemistry , Transcription Factors/metabolism , Transcription Factors/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Ubiquitination
10.
Nature ; 578(7795): 461-466, 2020 02.
Article in English | MEDLINE | ID: mdl-32051583

ABSTRACT

Eukaryotic cell biology depends on cullin-RING E3 ligase (CRL)-catalysed protein ubiquitylation1, which is tightly controlled by the modification of cullin with the ubiquitin-like protein NEDD82-6. However, how CRLs catalyse ubiquitylation, and the basis of NEDD8 activation, remain unknown. Here we report the cryo-electron microscopy structure of a chemically trapped complex that represents the ubiquitylation intermediate, in which the neddylated CRL1ß-TRCP promotes the transfer of ubiquitin from the E2 ubiquitin-conjugating enzyme UBE2D to its recruited substrate, phosphorylated IκBα. NEDD8 acts as a nexus that binds disparate cullin elements and the RING-activated ubiquitin-linked UBE2D. Local structural remodelling of NEDD8 and large-scale movements of CRL domains converge to juxtapose the substrate and the ubiquitylation active site. These findings explain how a distinctive ubiquitin-like protein alters the functions of its targets, and show how numerous NEDD8-dependent interprotein interactions and conformational changes synergistically configure a catalytic CRL architecture that is both robust, to enable rapid ubiquitylation of the substrate, and fragile, to enable the subsequent functions of cullin-RING proteins.


Subject(s)
Cryoelectron Microscopy , NEDD8 Protein/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Biocatalysis , Humans , Models, Molecular , NEDD8 Protein/chemistry , NEDD8 Protein/ultrastructure , NF-KappaB Inhibitor alpha/chemistry , NF-KappaB Inhibitor alpha/metabolism , NF-KappaB Inhibitor alpha/ultrastructure , Phosphorylation , Protein Conformation , Substrate Specificity , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/ultrastructure , Ubiquitination
11.
Nature ; 548(7667): 352-355, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28682307

ABSTRACT

Misfolded endoplasmic reticulum proteins are retro-translocated through the membrane into the cytosol, where they are poly-ubiquitinated, extracted from the membrane, and degraded by the proteasome-a pathway termed endoplasmic reticulum-associated protein degradation (ERAD). Proteins with misfolded domains in the endoplasmic reticulum lumen or membrane are discarded through the ERAD-L and ERAD-M pathways, respectively. In Saccharomyces cerevisiae, both pathways require the ubiquitin ligase Hrd1, a multi-spanning membrane protein with a cytosolic RING finger domain. Hrd1 is the crucial membrane component for retro-translocation, but it is unclear whether it forms a protein-conducting channel. Here we present a cryo-electron microscopy structure of S. cerevisiae Hrd1 in complex with its endoplasmic reticulum luminal binding partner, Hrd3. Hrd1 forms a dimer within the membrane with one or two Hrd3 molecules associated at its luminal side. Each Hrd1 molecule has eight transmembrane segments, five of which form an aqueous cavity extending from the cytosol almost to the endoplasmic reticulum lumen, while a segment of the neighbouring Hrd1 molecule forms a lateral seal. The aqueous cavity and lateral gate are reminiscent of features of protein-conducting conduits that facilitate polypeptide movement in the opposite direction-from the cytosol into or across membranes. Our results suggest that Hrd1 forms a retro-translocation channel for the movement of misfolded polypeptides through the endoplasmic reticulum membrane.


Subject(s)
Cryoelectron Microscopy , Endoplasmic Reticulum-Associated Degradation , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/ultrastructure , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure , Saccharomyces cerevisiae/chemistry , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Hydrophobic and Hydrophilic Interactions , Membrane Glycoproteins/chemistry , Models, Molecular , Protein Conformation , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Ubiquitin-Protein Ligases/chemistry
12.
Nucleic Acids Res ; 49(22): 13194-13206, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34850944

ABSTRACT

When vertebrate replisomes from neighboring origins converge, the Mcm7 subunit of the replicative helicase, CMG, is ubiquitylated by the E3 ubiquitin ligase, CRL2Lrr1. Polyubiquitylated CMG is then disassembled by the p97 ATPase, leading to replication termination. To avoid premature replisome disassembly, CRL2Lrr1 is only recruited to CMGs after they converge, but the underlying mechanism is unclear. Here, we use cryogenic electron microscopy to determine structures of recombinant Xenopus laevis CRL2Lrr1 with and without neddylation. The structures reveal that CRL2Lrr1 adopts an unusually open architecture, in which the putative substrate-recognition subunit, Lrr1, is located far from the catalytic module that catalyzes ubiquitin transfer. We further demonstrate that a predicted, flexible pleckstrin homology domain at the N-terminus of Lrr1 is essential to target CRL2Lrr1 to terminated CMGs. We propose a hypothetical model that explains how CRL2Lrr1's catalytic module is positioned next to the ubiquitylation site on Mcm7, and why CRL2Lrr1 binds CMG only after replisomes converge.


Subject(s)
DNA Replication/genetics , Ubiquitin-Protein Ligases/genetics , Xenopus Proteins/genetics , Xenopus laevis/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Animals , Cryoelectron Microscopy , DNA Helicases/genetics , DNA Helicases/metabolism , Minichromosome Maintenance Complex Component 7/genetics , Minichromosome Maintenance Complex Component 7/metabolism , Mutation , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Binding , Protein Conformation , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Sf9 Cells , Spodoptera , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Ubiquitination , Xenopus Proteins/chemistry , Xenopus Proteins/metabolism , Xenopus laevis/metabolism
13.
J Biol Chem ; 297(1): 100862, 2021 07.
Article in English | MEDLINE | ID: mdl-34116057

ABSTRACT

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Subject(s)
DNA Helicases/genetics , DNA Repair Enzymes/genetics , Elongin/genetics , Poly-ADP-Ribose Binding Proteins/genetics , RNA Polymerase II/genetics , Ubiquitin-Protein Ligases/genetics , Animals , Cockayne Syndrome/enzymology , Cockayne Syndrome/genetics , DNA Helicases/chemistry , DNA Helicases/ultrastructure , DNA Repair/genetics , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/ultrastructure , Elongin/chemistry , Elongin/ultrastructure , Humans , Mice , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Poly-ADP-Ribose Binding Proteins/chemistry , Poly-ADP-Ribose Binding Proteins/ultrastructure , RNA Polymerase II/chemistry , Receptors, Glucocorticoid/chemistry , Receptors, Glucocorticoid/genetics , Ubiquitin/chemistry , Ubiquitin/genetics , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/ultrastructure , Ubiquitination/genetics
14.
Int J Mol Sci ; 22(17)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34502365

ABSTRACT

Plant U-box armadillo repeat (PUB-ARM) ubiquitin (Ub) ligases have important functions in plant defense through the ubiquitination of target proteins. Defense against pathogens involves vesicle trafficking and the formation of extracellular vesicles. The PUB-ARM protein SENESCENCE ASSOCIATED UBIQUITIN E3 LIGASE1 (SAUL1) can form patches at the plasma membrane related to tethering multi-vesicular bodies (MVBs) to the plasma membrane. We uncovered the structure of a full-length plant ubiquitin ligase and the structural requirements of SAUL1, which are crucial for its function in patch formation. We resolved the structure of SAUL1 monomers by small-angle X-ray scattering (SAXS). The SAUL1 model showed that SAUL1 consists of two domains: a domain containing the N-terminal U-box and armadillo (ARM) repeats and the C-terminal ARM repeat domain, which includes a positively charged groove. We showed that all C-terminal ARM repeats are essential for patch formation and that this function requires arginine residue at position 736. By applying SAXS to polydisperse SAUL1 systems, the oligomerization of SAUL1 is detectable, with SAUL1 tetramers being the most prominent oligomers at higher concentrations. The oligomerization domain consists of the N-terminal U-box and some N-terminal ARM repeats. Deleting the U-box resulted in the promotion of the SAUL1 tethering function. Our findings indicate that structural changes in SAUL1 may be fundamental to its function in forming patches at the plasma membrane.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis Proteins/ultrastructure , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/ultrastructure , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Membrane/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Protein Domains/genetics , Protein Transport , Scattering, Small Angle , Ubiquitin/metabolism , Ubiquitination , X-Ray Diffraction/methods
15.
Fungal Genet Biol ; 140: 103396, 2020 07.
Article in English | MEDLINE | ID: mdl-32325169

ABSTRACT

The ubiquitin proteasome system is critical for the regulation of protein turnover, which is implicated in the modulation of a wide array of biological processes in eukaryotes, ranging from cell senescence to virulence in plant and human hosts. Proteins to be marked for ubiquitination and subsequent degradation are bound by F-box proteins, which are interchangeable substrate-recognising receptors. These F-box proteins bind a wide range of substrates and associate with the adaptor protein Skp1 and the scaffold Cul1 to form Skp1-Cul1-F-box (SCF) complexes. SCF complex components are highly conserved in eukaryotes, ranging from yeast to humans. However, information regarding the composition of these complexes and the biological roles of F-box proteins is limited, specifically in filamentous fungal species like the genus Aspergillus. In this study, we have identified 51 and 55 fbx-encoding genes in the genomes of two pathogenic fungi, A. fumigatus and A. flavus, respectively. Immunoprecipitations of the HA-tagged SkpA adaptor protein revealed that 26 F-box proteins in A. fumigatus and 30 F-box proteins in A. flavus are involved in SCF complex formation during vegetative growth. These interactome data also revealed that a diverse array of SCF complex conformations exist in response to various exogenous stressors. Lastly, we have provided evidence that the F-box protein Fbx45 interacts with SkpA in both species in response to Amphotericin B. Orthologs of the fbx45 gene are highly conserved in Aspergillus species, but are not present within the genomes of organisms such as yeast, plants or humans. This suggests that Fbx45 could potentially be a novel F-box protein that is unique to specific filamentous fungi such as Aspergillus species.


Subject(s)
Aspergillosis/genetics , Aspergillus fumigatus/ultrastructure , Cullin Proteins/genetics , F-Box Proteins/genetics , Amino Acid Sequence/genetics , Aspergillosis/microbiology , Aspergillosis/pathology , Aspergillus fumigatus/genetics , Aspergillus fumigatus/pathogenicity , Cullin Proteins/ultrastructure , F-Box Proteins/ultrastructure , Humans , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/ultrastructure , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/ultrastructure
16.
J Mol Recognit ; 33(3): e2821, 2020 03.
Article in English | MEDLINE | ID: mdl-31883179

ABSTRACT

Gluconeogenesis, the reverse process of glycolysis, is a favorable mechanism at conditions of glucose deprivation. Pck1 is a rate-limiting gluconeogenic enzyme, where its deficiency or mutation contributes to serious clinical situations as neonatal hypoglycemia and liver failure. A recent report confirms that Pck1 is a target for proteasomal degradation through its proline residue at the penultimate position, recognized by Gid4 E3 ligase, but with a lack of informative structural details. In this study, we delineate the localized sequence motif, degron, that specifically interact with Gid4 ligase and unravel the binding mode of Pck1 to the Gid4 ligase by using molecular docking and molecular dynamics. The peptide/protein docking HPEPDOCK web server along with molecular dynamic simulations are applied to demonstrate the binding mode and interactions of a Pck1 wild type (SPSK) and mutant (K4V) with the recently solved structure of Gid4 ligase. Results unveil a distinct binding mode of the mutated peptide compared with the wild type despite having comparable binding affinities to Gid4. Moreover, the four-residue peptide is found insufficient for Gid4 binding, while the seven-residue peptide suffices for binding to Gid4. The amino acids S134, K135, and N137 in the loop L1 (between ß1 and ß2) of the Gid4 are essential for the stabilization of the seven-residue peptide in the binding site of the ligase. The presence of Val4 instead of Lys4 smashes the H-bonds that are formed between Lys4 and Gid4 in the wild type peptide, making the peptide prone to bind with the other side of the binding pocket (L4 loop of Gid4). The dynamics of Gid4 L3 loop is affected dramatically once K4V mutant Pck1 peptide is introduced. This opens the door to explore the mutation effects on the binding mode and smooth the path to target protein degradation by design competitive and non-competitive inhibitors.


Subject(s)
Biosensing Techniques , Gluconeogenesis/genetics , Intracellular Signaling Peptides and Proteins/isolation & purification , Phosphoenolpyruvate Carboxykinase (GTP)/isolation & purification , Ubiquitin-Protein Ligases/chemistry , Binding Sites/genetics , Glucose/chemistry , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Molecular Docking Simulation , Phosphoenolpyruvate Carboxykinase (GTP)/chemistry , Phosphoenolpyruvate Carboxykinase (GTP)/ultrastructure , Proteasome Endopeptidase Complex/chemistry , Proteasome Endopeptidase Complex/genetics , Protein Domains/genetics , Proteolysis , Ubiquitin-Protein Ligases/ultrastructure
17.
Mol Genet Metab ; 131(1-2): 126-134, 2020.
Article in English | MEDLINE | ID: mdl-32921582

ABSTRACT

The giant 532 kDa HERC1 protein is a ubiquitin ligase that interacts with tuberous sclerosis complex subunit 2 (TSC2), a negative upstream regulator of the mammalian target of rapamycin complex 1 (mTORC1). TSC2 regulates anabolic cell growth through its influence on protein synthesis, cell growth, proliferation, autophagy, and differentiation. TSC subunit 1 (TSC1) stabilizes TSC2 by inhibiting the interaction between TSC2 and HERC1, forming a TSC1-TSC2 complex that negatively regulates mTORC1. HERC1-TSC2 interaction destabilizes and degrades TSC2. Recessive mutations in HERC1 have been reported in patients with intellectual disability. Some patients exhibit epilepsy, macrocephaly, somatic overgrowth, and dysmorphic facial features as well. Here we describe two sisters from a consanguineous marriage with a novel homozygous missense variant in the C-terminal HECT domain of HERC1 [chr15:g63,907,989C>G GRCh37.p11 | c.14,072G>C NM_003922 | p.(Arg4,691Pro)]. Symptoms compris global developmental delay, macrocephaly, somatic overgrowth, intellectual disability, seizures, schizoaffective disorder, and pyramidal tract signs. We functionally assessed the HERC1 mutation by investigation of patient and control fibroblasts under normal and nutrient starving conditions. During catabolic state, mTORC1 activity remained high in patient fibroblasts, which stands in stark contrast to its downregulation in controls. This was corroborated by an abnormally high phosphorylation of S6K1-kinase, a direct downstream target of mTORC1, in patients. Moreover, autophagy, usually enhanced in catabolic states, was down-regulated in patient fibroblasts. These data confirm that the missense variant found in both patients results in a gain-of-function for the mutant HERC1 protein.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Tuberous Sclerosis Complex 1 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/genetics , Ubiquitin-Protein Ligases/genetics , Adolescent , Autophagy/genetics , Child , Child, Preschool , Consanguinity , Developmental Disabilities/complications , Developmental Disabilities/pathology , Female , Gain of Function Mutation/genetics , Humans , Intellectual Disability/complications , Intellectual Disability/pathology , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/ultrastructure , Metabolism/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/ultrastructure , Phosphorylation/genetics , Psychomotor Disorders/complications , Psychomotor Disorders/genetics , Psychomotor Disorders/pathology , Tuberous Sclerosis Complex 1 Protein/ultrastructure , Tuberous Sclerosis Complex 2 Protein/ultrastructure , Ubiquitin-Protein Ligases/ultrastructure
18.
Biochem Biophys Res Commun ; 494(3-4): 575-580, 2017 12 16.
Article in English | MEDLINE | ID: mdl-28951215

ABSTRACT

UHRF2 (Ubiquitin-like with PHD and ring finger domains 2) is an E3 ubiquitin ligase that plays important roles in DNA methylation, histone modifications and cell cycle regulation by interacting with multiple epigenetic or cell-cycle related proteins. Previous studied have identified PCNA (Proliferating cell nuclear antigen) as an interacting partner of UHRF2 by using the antibody microarray. However, the molecular mechanism and the function of UHRF2-PCNA interaction remains unclear. Here, we report the complex structure of PCNA and the peptide (784NEILQTLLDLFFPGYSK800) derived from UHRF2 that contains a PIP box. Structural analysis combined with mutagenesis experiments provide the molecular basis for the recognition of UHRF2 by PCNA via PIP-box.


Subject(s)
Proliferating Cell Nuclear Antigen/chemistry , Proliferating Cell Nuclear Antigen/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/ultrastructure , Binding Sites , Models, Chemical , Models, Molecular , Mutagenesis, Site-Directed , Proliferating Cell Nuclear Antigen/genetics , Protein Binding , Protein Conformation , Protein Domains , Structure-Activity Relationship , Ubiquitin-Protein Ligases/genetics
19.
Proc Natl Acad Sci U S A ; 110(5): 1702-7, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23319619

ABSTRACT

Ltn1 is a 180-kDa E3 ubiquitin ligase that associates with ribosomes and marks certain aberrant, translationally arrested nascent polypeptide chains for proteasomal degradation. In addition to its evolutionarily conserved large size, Ltn1 is characterized by the presence of a conserved N terminus, HEAT/ARM repeats predicted to comprise the majority of the protein, and a C-terminal catalytic RING domain, although the protein's exact structure is unknown. We used numerous single-particle EM strategies to characterize Ltn1's structure based on negative stain and vitreous ice data. Two-dimensional classifications and subsequent 3D reconstructions of electron density maps show that Ltn1 has an elongated form and presents a continuum of conformational states about two flexible hinge regions, whereas its overall architecture is reminiscent of multisubunit cullin-RING ubiquitin ligase complexes. We propose a model of Ltn1 function based on its conformational variability and flexibility that describes how these features may play a role in cotranslational protein quality control.


Subject(s)
Microscopy, Electron/methods , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/ultrastructure , Carrier Proteins/chemistry , Carrier Proteins/metabolism , Carrier Proteins/ultrastructure , Cullin Proteins/chemistry , Cullin Proteins/metabolism , Cullin Proteins/ultrastructure , Humans , Imaging, Three-Dimensional , Models, Molecular , Particle Size , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin/ultrastructure , Ubiquitin-Protein Ligases/metabolism
20.
Genet Mol Res ; 14(2): 4215-37, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25966194

ABSTRACT

Dengue virus (DENV) belongs to the family Flaviviridae and can cause major health problems worldwide, including dengue fever and dengue shock syndrome. DENV replicon in human cells inhibits interferon α and ß with the help of its non-structural proteins. Non-structural protein 5 (NS5) of DENV is responsible for the proteasome-mediated degradation of signal transducer and activator of transcription (STAT) 2 protein, which has been implicated in the development of resistance against interferon-mediated antiviral effect. This degradation of STAT2 primarily occurs with the help of E3 ubiquitin ligases. Seven in absentia homologue (SIAH) 2 is a host protein that can mediate the ubiquitination of proteins and is known for its interaction with NS5. In this study, comprehensive computational analysis was performed to characterize the protein-protein interactions between NS5, SIAH2, and STAT2 to gain insight into the residues and sites of interaction between these proteins. The objective of the study was to structurally characterize the NS5-STAT2, SIAH2-STAT2, and NS5-SIAH2 interactions along with the determination of the possible reaction pattern for the degradation of STAT2. Docking and physicochemical studies indicated that DENV NS5 may first interact with the host SIAH2, which can then proceed towards binding with STAT2 from the side of SIAH2. These implications are reported for the first time and require validation by wet-lab studies.


Subject(s)
Dengue Virus/pathogenicity , Dengue/pathology , Nuclear Proteins/metabolism , STAT2 Transcription Factor/metabolism , Ubiquitin-Protein Ligases/metabolism , Viral Nonstructural Proteins/metabolism , Amino Acid Sequence , Dengue/immunology , Dengue Virus/immunology , Humans , Hydrophobic and Hydrophilic Interactions , Interferon Type I/antagonists & inhibitors , Interferon Type I/immunology , Models, Molecular , Molecular Docking Simulation , Nuclear Proteins/ultrastructure , Protein Interaction Maps , Protein Structure, Secondary , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/ultrastructure , STAT2 Transcription Factor/ultrastructure , Sequence Alignment , Signal Transduction/immunology , Static Electricity , Ubiquitin-Protein Ligases/ultrastructure , Ubiquitination , Viral Nonstructural Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL