Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Article in English | MEDLINE | ID: mdl-33627406

ABSTRACT

Marine Synechococcus cyanobacteria owe their ubiquity in part to the wide pigment diversity of their light-harvesting complexes. In open ocean waters, cells predominantly possess sophisticated antennae with rods composed of phycocyanin and two types of phycoerythrins (PEI and PEII). Some strains are specialized for harvesting either green or blue light, while others can dynamically modify their light absorption spectrum to match the dominant ambient color. This process, called type IV chromatic acclimation (CA4), has been linked to the presence of a small genomic island occurring in two configurations (CA4-A and CA4-B). While the CA4-A process has been partially characterized, the CA4-B process has remained an enigma. Here we characterize the function of two members of the phycobilin lyase E/F clan, MpeW and MpeQ, in Synechococcus sp. strain A15-62 and demonstrate their critical role in CA4-B. While MpeW, encoded in the CA4-B island and up-regulated in green light, attaches the green light-absorbing chromophore phycoerythrobilin to cysteine-83 of the PEII α-subunit in green light, MpeQ binds phycoerythrobilin and isomerizes it into the blue light-absorbing phycourobilin at the same site in blue light, reversing the relationship of MpeZ and MpeY in the CA4-A strain RS9916. Our data thus reveal key molecular differences between the two types of chromatic acclimaters, both highly abundant but occupying distinct complementary ecological niches in the ocean. They also support an evolutionary scenario whereby CA4-B island acquisition allowed former blue light specialists to become chromatic acclimaters, while former green light specialists would have acquired this capacity by gaining a CA4-A island.


Subject(s)
Bacterial Proteins/metabolism , Light-Harvesting Protein Complexes/metabolism , Lyases/metabolism , Phycocyanin/biosynthesis , Phycoerythrin/biosynthesis , Pigments, Biological/biosynthesis , Synechococcus/metabolism , Acclimatization , Aquatic Organisms , Bacterial Proteins/genetics , Cloning, Molecular , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Genomic Islands , Light , Light-Harvesting Protein Complexes/genetics , Lyases/genetics , Phycobilins/biosynthesis , Phycobilins/genetics , Phycocyanin/genetics , Phycoerythrin/genetics , Phylogeny , Pigments, Biological/genetics , Protein Subunits/genetics , Protein Subunits/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Synechococcus/classification , Synechococcus/genetics , Synechococcus/radiation effects , Urobilin/analogs & derivatives , Urobilin/biosynthesis , Urobilin/genetics
2.
J Biol Chem ; 296: 100031, 2021.
Article in English | MEDLINE | ID: mdl-33154169

ABSTRACT

Synechococcus cyanobacteria are widespread in the marine environment, as the extensive pigment diversity within their light-harvesting phycobilisomes enables them to utilize various wavelengths of light for photosynthesis. The phycobilisomes of Synechococcus sp. RS9916 contain two forms of the protein phycoerythrin (PEI and PEII), each binding two chromophores, green-light absorbing phycoerythrobilin and blue-light absorbing phycourobilin. These chromophores are ligated to specific cysteines via bilin lyases, and some of these enzymes, called lyase isomerases, attach phycoerythrobilin and simultaneously isomerize it to phycourobilin. MpeV is a putative lyase isomerase whose role in PEI and PEII biosynthesis is not clear. We examined MpeV in RS9916 using recombinant protein expression, absorbance spectroscopy, and tandem mass spectrometry. Our results show that MpeV is the lyase isomerase that covalently attaches a doubly linked phycourobilin to two cysteine residues (C50, C61) on the ß-subunit of both PEI (CpeB) and PEII (MpeB). MpeV activity requires that CpeB or MpeB is first chromophorylated by the lyase CpeS (which adds phycoerythrobilin to C82). Its activity is further enhanced by CpeZ (a homolog of a chaperone-like protein first characterized in Fremyella diplosiphon). MpeV showed no detectable activity on the α-subunits of PEI or PEII. The mechanism by which MpeV links the A and D rings of phycourobilin to C50 and C61 of CpeB was also explored using site-directed mutants, revealing that linkage at the A ring to C50 is a critical step in chromophore attachment, isomerization, and stability. These data provide novel insights into ß-PE biosynthesis and advance our understanding of the mechanisms guiding lyase isomerases.


Subject(s)
Isomerases/metabolism , Phycobilins/metabolism , Phycoerythrin/metabolism , Synechococcus/chemistry , Urobilin/analogs & derivatives , Amino Acid Sequence , Bacterial Proteins , Chromatography, Liquid , Isomerases/chemistry , Isomerases/classification , Marine Biology , Phycoerythrin/chemistry , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/classification , Recombinant Proteins/metabolism , Synechococcus/genetics , Tandem Mass Spectrometry , Urobilin/metabolism
3.
Proc Natl Acad Sci U S A ; 116(13): 6457-6462, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30846551

ABSTRACT

Marine Synechococcus, a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. Many Synechococcus strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light-absorbing phycoerythrobilin (PEB) and blue-light-absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of how Synechococcus cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained. Here, we show that interplay between two enzymes named MpeY and MpeZ controls differential PEB and PUB covalent attachment to the same cysteine residue. MpeY attaches PEB to the light-harvesting protein MpeA in green light, while MpeZ attaches PUB to MpeA in blue light. We demonstrate that the ratio of mpeY to mpeZ mRNA determines if PEB or PUB is attached. Additionally, strains encoding only MpeY or MpeZ do not acclimate. Examination of strains of Synechococcus isolated from across the globe indicates that the interplay between MpeY and MpeZ uncovered here is a critical feature of chromatic acclimation for marine Synechococcus worldwide.


Subject(s)
Acclimatization/physiology , Acclimatization/radiation effects , Adaptation, Ocular/physiology , Adaptation, Ocular/radiation effects , Color , Synechococcus/enzymology , Synechococcus/metabolism , Acclimatization/genetics , Adaptation, Ocular/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation , Genes, Bacterial/genetics , Lyases/metabolism , Mutation , Phycobilins , Phycoerythrin , Recombinant Proteins , Seawater/microbiology , Synechococcus/genetics , Synechococcus/radiation effects , Urobilin/analogs & derivatives
4.
Environ Microbiol ; 19(6): 2348-2365, 2017 06.
Article in English | MEDLINE | ID: mdl-28371229

ABSTRACT

Marine Synechococcus thrive over a range of light regimes in the ocean. We examined the proteomic, genomic and physiological responses of seven Synechococcus isolates to moderate irradiances (5-80 µE m-2 s-1 ), and show that Synechococcus spans a continuum of light responses ranging from low light optimized (LLO) to high light optimized (HLO). These light responses are linked to phylogeny and pigmentation. Marine sub-cluster 5.1A isolates with higher phycouribilin: phycoerythrobilin ratios fell toward the LLO end of the continuum, while sub-cluster 5.1B, 5.2 and estuarine Synechococcus with less phycouribilin fell toward the HLO end of the continuum. Global proteomes were highly responsive to light, with > 50% of abundant proteins varying more than twofold between the lowest and highest irradiance. All strains downregulated phycobilisome proteins with increasing irradiance. Regulation of proteins involved in photosynthetic electron transport, carbon fixation, oxidative stress protection (superoxide dismutases) and iron and nitrogen metabolism varied among strains, as did the number of high light inducible protein (Hlip) and DNA photolyase genes in their genomes. All but one LLO strain possessed the photoprotective orange carotenoid protein (OCP). The unique combinations of light responses in each strain gives rise to distinct photophysiological phenotypes that may affect Synechococcus distributions in the ocean.


Subject(s)
Electron Transport/genetics , Photosynthesis/genetics , Phycobilins/metabolism , Phycoerythrin/metabolism , Synechococcus/genetics , Synechococcus/physiology , Urobilin/analogs & derivatives , Adaptation, Ocular , Carbon Cycle/genetics , Light , Oxidative Stress/genetics , Phycobilisomes/metabolism , Phylogeny , Proteomics , Synechococcus/isolation & purification , Urobilin/metabolism
5.
Environ Microbiol ; 19(1): 142-158, 2017 01.
Article in English | MEDLINE | ID: mdl-27668842

ABSTRACT

The widespread unicellular cyanobacteria Synechococcus are major contributors to global marine primary production. Here, we report their abundance, phylogenetic diversity (as assessed using the RNA polymerase gamma subunit gene rpoC1) and pigment diversity (as indirectly assessed using the laterally transferred cpeBA genes, encoding phycoerythrin-I) in surface waters of the northwestern Pacific Ocean, sampled over nine distinct cruises (2008-2015). Abundance of Synechococcus was low in the subarctic ocean and South China Sea, intermediate in the western subtropical Pacific Ocean, and the highest in the Japan and East China seas. Clades I and II were by far the most abundant Synechococcus lineages, the former dominating in temperate cold waters and the latter in (sub)tropical waters. Clades III and VI were also fairly abundant in warm waters, but with a narrower distribution than clade II. One type of chromatic acclimater (3dA) largely dominated the Synechococcus communities in the subarctic ocean, while another (3dB) and/or cells with a fixed high phycourobilin to phycoerythrobilin ratio (pigment type 3c) predominated at mid and low latitudes. Altogether, our results suggest that the variety of pigment content found in most Synechococcus clades considerably extends the niches that they can colonize and therefore the whole genus habitat.


Subject(s)
Pigments, Biological/metabolism , Seawater/microbiology , Synechococcus/classification , Synechococcus/genetics , Synechococcus/metabolism , China , Ecosystem , Japan , Pacific Ocean , Phycobilins/analysis , Phycobilins/metabolism , Phycoerythrin/analysis , Phycoerythrin/metabolism , Phylogeny , Phylogeography , Pigments, Biological/analysis , Synechococcus/isolation & purification , Urobilin/analogs & derivatives , Urobilin/analysis , Urobilin/metabolism
6.
Proc Natl Acad Sci U S A ; 109(21): 8310-5, 2012 May 22.
Article in English | MEDLINE | ID: mdl-22566621

ABSTRACT

The red/far-red light photoreceptor phytochrome mediates photomorphological responses in plants. For light sensing and signaling, phytochromes need to associate with open-chain tetrapyrrole molecules as the chromophore. Biosynthesis of tetrapyrrole chromophores requires members of ferredoxin-dependent bilin reductases (FDBRs). It was shown that LONG HYPOCOTYL 2 (HY2) is the only FDBR in flowering plants producing the phytochromobilin (PΦB) for phytochromes. However, in the moss Physcomitrella patens, we found a second FDBR that catalyzes the formation of phycourobilin (PUB), a tetrapyrrole pigment usually found as the protein-bound form in cyanobacteria and red algae. Thus, we named the enzyme PUB synthase (PUBS). Severe photomorphogenic phenotypes, including the defect of phytochrome-mediated phototropism, were observed in Physcomitrella patens when both HY2 and PUBS were disrupted by gene targeting. This indicates HY2 and PUBS function redundantly in phytochrome-mediated responses of nonvascular plants. Our studies also show that functional PUBS orthologs are found in selected lycopod and chlorophyte genomes. Using mRNA sequencing for transcriptome profiling, we demonstrate that expression of the majority of red-light-responsive genes are misregulated in the pubs hy2 double mutant. These studies showed that moss phytochromes rapidly repress expression of genes involved in cell wall organization, transcription, hormone responses, and protein phosphorylation but activate genes involved in photosynthesis and stress signaling during deetiolation. We propose that, in nonvascular plants, HY2 and PUBS produce structurally different but functionally similar chromophore precursors for phytochromes. Holophytochromes regulate biological processes through light signaling to efficiently reprogram gene expression for vegetative growth in the light.


Subject(s)
Bryopsida/enzymology , Oxidoreductases/metabolism , Phycobilins/biosynthesis , Phycoerythrin/biosynthesis , Plant Proteins/metabolism , Plastids/physiology , Urobilin/analogs & derivatives , Bryopsida/genetics , Bryopsida/growth & development , Gene Expression Regulation, Enzymologic/radiation effects , Gene Expression Regulation, Plant/radiation effects , Gene Knockout Techniques , Light , Molecular Sequence Data , Oxidoreductases/genetics , Photoperiod , Phytochrome/genetics , Phytochrome/metabolism , Plant Proteins/genetics , Tetrapyrroles/biosynthesis , Transcriptome/physiology , Urobilin/biosynthesis
7.
Photochem Photobiol Sci ; 13(5): 757-63, 2014 May.
Article in English | MEDLINE | ID: mdl-24604419

ABSTRACT

Cyanobacteriochromes are a structurally and spectrally highly diverse class of phytochrome-related photosensory biliproteins. They contain one or more GAF domains that bind phycocyanobilin (PCB) autocatalytically; some of these proteins are also capable of further modifying PCB to phycoviolobilin or rubins. We tested the chromophorylation with the non-photochromic phycoerythrobilin (PEB) of 16 cyanobacteriochrome GAFs from Nostoc sp. PCC 7120, of Slr1393 from Synechocystis sp. PCC 6803, and of Tlr0911 from Thermosynechococcus elongatus BP-1. Nine GAFs could be autocatalytically chromophorylated in vivo/in E. coli with PEB, resulting in highly fluorescent biliproteins with brightness comparable to that of fluorescent proteins like GFP. In several GAFs, PEB was concomitantly converted to phycourobilin (PUB) during binding. This not only shifted the spectra, but also increased the Stokes shift. The chromophorylated GAFs could be oligomerized further by attaching a GCN4 leucine zipper domain, thereby enhancing the absorbance and fluorescence of the complexes. The presence of both PEB and PUB makes these oligomeric GAF-"bundles" interesting models for energy transfer akin to the antenna complexes found in cyanobacterial phycobilisomes. The thermal and photochemical stability and their strong brightness make these constructs promising orange fluorescent biomarkers.


Subject(s)
Cyanobacteria/metabolism , Luminescent Proteins/metabolism , Phycobilins/metabolism , Phycoerythrin/metabolism , Urobilin/analogs & derivatives , Cyanobacteria/chemistry , Luminescent Proteins/chemistry , Photochemical Processes , Phycobilins/chemistry , Phycoerythrin/chemistry , Temperature , Urobilin/chemistry , Urobilin/metabolism
8.
Biochim Biophys Acta ; 1817(7): 1030-6, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22465853

ABSTRACT

Phycobilisomes, the light-harvesting antennas in cyanobacteria and red algae, consist of an allophycocyanin core that is attached to the membrane via a core-membrane linker, and rods comprised of phycocyanin and often also phycoerythrin or phycoerythrocyanin. Phycobiliproteins show excellent energy transfer among the chromophores that renders them biomarkers with large Stokes-shifts absorbing over most of the visible spectrum and into the near infrared. Their application is limited, however, due to covalent binding of the chromophores and by solubility problems. We report construction of a water-soluble minimal chromophore-binding unit of the red-absorbing and fluorescing core-membrane linker. This was fused to minimal chromophore-binding units of phycocyanin. After double chromophorylation with phycocyanobilin, in E. coli, the fused phycobiliproteins absorbed light in the range of 610-660nm, and fluoresced at ~670nm, similar to phycobilisomes devoid of phycoerythr(ocyan)in. The fused phycobiliprotein could also be doubly chromophorylated with phycoerythrobilin, resulting in a chromoprotein absorbing around 540-575nm, and fluorescing at ~585nm. The broad absorptions and the large Stokes shifts render these chromoproteins candidates for imaging; they may also be helpful in studying phycobilisome assembly.


Subject(s)
Cell Membrane/metabolism , Phycobilisomes/metabolism , Phycocyanin/metabolism , Recombinant Fusion Proteins/metabolism , Absorption , Apoproteins/metabolism , Escherichia coli/metabolism , Lyases/metabolism , Phycobilins/metabolism , Phycoerythrin/metabolism , Solubility , Spectrometry, Fluorescence , Urobilin/analogs & derivatives , Urobilin/metabolism
9.
Photosynth Res ; 111(1-2): 81-6, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22083175

ABSTRACT

Energy transfer (ET) processes between chromophores in R-phycoerythrin (R-PE) from Polysiphonia urceolata were studied by use of ultrafast spectroscopic methods. Several primary ET pathways were elaborated. A fluorescence decay component with a time constant of several hundred picoseconds observed by streak camera is tentatively assigned to the reversible formation of exciton traps between α84 and ß84 pigment pairs. In order to investigate much faster ET processes in R-PE, a noncollinear optical parametric amplifier based femtosecond time-resolved transient fluorescence spectrometer was employed. The results reveal that the ET between α84 and ß84 pigment pair has a time constant of 1-2 ps; the energy migration between α84 and ß84 pairs within the R-PE trimer has a time constant of 30-40 ps. We also demonstrated an ET process from phycourobilin to phycoerythrobilin with a time constant as fast as 2.5-3.0 ps, which was directly observed in fluorescence kinetics by selective excitation of the phycourobilin molecules acting as the energy donor.


Subject(s)
Energy Transfer , Phycoerythrin/chemistry , Rhodophyta/chemistry , Kinetics , Models, Molecular , Photochemistry , Phycobilins/chemistry , Phycoerythrin/isolation & purification , Plant Proteins/chemistry , Plant Proteins/isolation & purification , Protein Conformation , Spectrometry, Fluorescence , Time Factors , Urobilin/analogs & derivatives , Urobilin/chemistry
10.
Mol Phylogenet Evol ; 64(3): 381-92, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22588203

ABSTRACT

In marine Synechococcus there is evidence for the adaptive evolution of spectrally distinct forms of the major light harvesting pigment phycoerythrin (PE). Recent research has suggested that these spectral forms of PE have a different evolutionary history than the core genome. However, a lack of explicit statistical testing of alternative hypotheses or for selection on these genes has made it difficult to evaluate the evolutionary relationships between spectral forms of PE or the role horizontal gene transfer (HGT) may have had in the adaptive phenotypic evolution of the pigment system in marine Synechococcus. In this work, PE phylogenies of picocyanobacteria with known spectral phenotypes, including newly co-isolated strains of marine Synechococcus from the Gulf of Mexico, were constructed to explore the diversification of spectral phenotype and PE evolution in this group more completely. For the first time, statistical evaluation of competing evolutionary hypotheses and tests for positive selection on the PE locus in picocyanobacteria were performed. Genes for PEs associated with specific PE spectral phenotypes formed strongly supported monophyletic clades within the PE tree with positive directional selection driving evolution towards higher phycourobilin (PUB) content. The presence of the PUB-lacking phenotype in PE-containing marine picocyanobacteria from cyanobacterial lineages identified as Cyanobium is best explained by HGT into this group from marine Synechococcus. Taken together, these data provide strong examples of adaptive evolution of a single phenotypic trait in bacteria via mutation, positive directional selection and horizontal gene transfer.


Subject(s)
Biological Evolution , Gene Transfer, Horizontal , Phycoerythrin/genetics , Synechococcus/genetics , DNA, Bacterial/genetics , Gulf of Mexico , Phenotype , Phycobilins/analysis , Phycoerythrin/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Selection, Genetic , Sequence Analysis, DNA , Synechococcus/classification , Urobilin/analogs & derivatives , Urobilin/analysis
11.
Appl Biochem Biotechnol ; 191(2): 763-771, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31853878

ABSTRACT

Recombinant phycobiliprotein can be used as fluorescent label in immunofluorescence assay. In this study, pathway for phycocyanin beta subunit (CpcB) carrying noncognate chromophore phycoerythrobilin (PEB) and phycourobilin (PUB) was constructed in Escherichia coli. Lyase CpcS and CpcT could catalyze attachment of PEB to Cys84-CpcB and Cys155-CpcB, respectively. However, PEB was attached only to Cys84-CpcB when both CpcS and CpcT were present in E. coli. A dual plasmid expression system was used to control the expression of lyases and the attachment order of PEB to CpcB. The production of PEB-Cys155-CpcB was achieved by L-arabinose-induced expression of CpcS, CpcB, Ho1, and PebS, and then the attachment of PEB to Cys84-CpcB was achieved by IPTG-induced expression of CpcS. The doubly chromophorylated CpcB absorbed light maximally at 497.5 nm and 557.0 nm and fluoresced maximally at 507.5 nm and 566.5 nm. An amount of light energy absorbed by PUB-Cys155-CpcB is transferred to PEB-Cys84-CpcB in doubly chromophorylated CpcB, conferring a large stokes shift of 69 nm for this fluorescent protein. There are interactions between chromophores of CpcB which possibly together with the help of lyases lead to isomerization of PEB-Cys155-CpcB to PUB-Cys155-CpcB.


Subject(s)
Escherichia coli/genetics , Escherichia coli/metabolism , Phycocyanin/biosynthesis , Phycocyanin/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Lyases/genetics , Phycobilins/genetics , Phycobiliproteins/genetics , Phycoerythrin/genetics , Plasmids , Urobilin/analogs & derivatives , Urobilin/genetics
12.
Environ Microbiol ; 10(1): 174-88, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17903216

ABSTRACT

Picocyanobacteria of the genus Synechococcus span a range of different colours, from red strains rich in phycoerythrin (PE) to green strains rich in phycocyanin (PC). Here, we show that coexistence of red and green picocyanobacteria in the Baltic Sea is widespread. The diversity and phylogeny of red and green picocyanobacteria was analysed using three different genes: 16S rRNA-ITS, the cpeBA operon of the red PE pigment and the cpcBA operon of the green PC pigment. Sequencing of 209 clones showed that Baltic Sea picocyanobacteria exhibit high levels of microdiversity. The partial nucleotide sequences of the cpcBA and cpeBA operons from the clone libraries of the Baltic Sea revealed two distinct phylogenetic clades: one clade containing mainly sequences from cultured PC-rich picocyanobacteria, while the other contains only sequences from cultivated PE-rich strains. A third clade of phycourobilin (PUB) containing strains of PE-rich Synechococcus spp. did not contain sequences from the Baltic Sea clone libraries. These findings differ from previously published phylogenies based on 16S rRNA gene analysis. Our data suggest that, in terms of their pigmentation, Synechococcus spp. represent three different lineages occupying different ecological niches in the underwater light spectrum. Strains from different lineages can coexist in light environments that overlap with their light absorption spectra.


Subject(s)
DNA, Ribosomal Spacer/genetics , Operon , Phycobiliproteins/genetics , Synechococcus/genetics , Base Sequence , Biodiversity , Codon , Ecosystem , Genetic Variation , Molecular Sequence Data , Oceans and Seas , Phycobilins/genetics , Phycocyanin/genetics , Phycoerythrin/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Urobilin/analogs & derivatives , Urobilin/genetics
13.
FEMS Microbiol Ecol ; 64(2): 219-29, 2008 May.
Article in English | MEDLINE | ID: mdl-18336557

ABSTRACT

A preliminary study was carried out on a picocyanobacterial mixed culture harvested from the Gulf of Trieste (Northern Adriatic) and identified as Synechococcus spp. both by transmission electron microscopy observations, biliprotein composition and molecular analyses. Absorption and fluorescence spectra revealed phycourobilin and phycoerythrobilin chromophores, suggesting the presence of both CU- and C-phycoerythrin, besides phycocyanobilin chromophores typical for phycocyanins and allophycocyanins. Both biliprotein analyses and molecular identification indicated the presence of at least two Synechococcus subgroups presumably differing either in phycoerythrin type or in physiological traits. Among the exoenzymatic activities acting on different substrates, only aminopeptidase showed high hydrolysis rates and the uptake of organic molecules was positive for leucine but not for thymidine. The protein carbon mobilized was high compared with the leucine incorporation rates, resulting in low percentages of newly mobilized carbon utilized by cultures. The organic carbon incorporated as leucine was compared with the photosynthetically produced one, and the balance between the phototrophic- and heterotrophic-like processes was c. 3 : 1. Our findings suggest that the Synechococcus heterotrophy plays an important role in cell's metabolism, and that the photoheterotrophic behavior, together with their chromatic adaptation capability, might represent the key for the absolute dominance of this genus in the Adriatic Sea.


Subject(s)
Organic Chemicals/metabolism , Seawater/microbiology , Synechococcus/physiology , Aminopeptidases/metabolism , Bacterial Proteins/analysis , Bacterial Proteins/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Electrophoresis, Polyacrylamide Gel , Light , Mediterranean Sea , Microscopy, Electron, Transmission , Nucleic Acid Denaturation , Phycobilins/analysis , Phycocyanin/analysis , Phycoerythrin/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology , Synechococcus/chemistry , Synechococcus/isolation & purification , Urobilin/analogs & derivatives , Urobilin/analysis
14.
PLoS One ; 13(4): e0195656, 2018.
Article in English | MEDLINE | ID: mdl-29634783

ABSTRACT

Phycobilisomes (PBS) are accessory light harvesting protein complexes formed mainly by phycobiliproteins (PBPs). The PBPs absorb light that is efficiently transferred to Photosystems due to chromophores covalently bound to specific cysteine residues. Besides phycobiliproteins (PE), the PBS contains linker proteins responsible for assembly and stabilization of the whole complex and the tuning of energy transfer steps between chromophores. The linker (γ33) from Gracilaria chilensis, is a chromophorylated rod linker associated to (αß)6 hexamers of R-phycoerythrin (R-PE). Its role in the energy transfer process is not clear yet. Structural studies as well as the composition and location of the chromophores are essential to understand their involvement in the energy transfer process in PBS. To achieve this, the coding gene of γ33 was cloned and sequenced. The sequence was analyzed by informatics tools, to obtain preliminary information which leaded the next experiments. The protein was purified from R-phycoerythrin, and the sequence confirmed by mass spectrometry. The coding sequence analysis revealed a protein of 318 aminoacid residues containing a chloroplastidial transit peptide (cTP) of 39 aminoacids at the N-terminus. The conservation of cysteines revealed possible chromophorylation sites. Using α and ß R-PE subunits as spectroscopic probes in denaturation assays, we deduced a double bonded phycourobilin (PUB) on γ33 subunit that were confirmed between Cys62 and Cys73 (DL-PUB62/73) by mass spectrometry. The cysteines involved in the double link are located in a helical region, in a conformation that reminds the position of the DL-PUB50/61 in the ß subunit of R-PE. The position of single linked PUB at Cys95 and a single linked PEB at Cys172 were also confirmed. Spectroscopic studies show the presence of both types of chromophores and that there are not energy transfer by FRET among them.


Subject(s)
Gracilaria , Phycobilins , Phycoerythrin/chemistry , Plant Proteins/chemistry , Protein Subunits/chemistry , Urobilin/analogs & derivatives , Amino Acid Sequence , Phycoerythrin/metabolism , Plant Proteins/metabolism , Sequence Analysis
15.
FEMS Microbiol Ecol ; 92(11)2016 11.
Article in English | MEDLINE | ID: mdl-27495242

ABSTRACT

The picocyanobacterium Synechococcus is a prominent primary producer in the marine environment. The marine Synechococcus strains are clustered into different clades representing ecologically distinct genotypes. In this study, we compared phylogeny, photophysiology and cell cycles of four novel phycoerythrin-containing Synechococcus strains (clade II of subcluster 5.1) isolated from different depths of the water column (surface and subsurface waters) in coastal and offshore regions of the eastern Arabian Sea. The surface water strains possessed a lesser number of thylakoid layers and had a higher zeaxanthin to chlorophyll a ratio than subsurface strains indicating possible influence of light intensity available at their niche. The DNA distribution pattern of the four strains was bimodal in optimal cellular physiology conditions with cell division restricted to the light period and synchronized with the light-dark cycle. The presence of phycourobilin or phycoerythrobilin and the ratio between these two chromophores in all four strains varied according to available spectral wavelength in situ This study indicates that the timing of cell division is conserved within these genotypically identical Synechococcus strains, despite their having different chromophore ratios. We conclude that the timing of cell division of the Synechococcus strains has a genetic basis rather than being determined by phenotypic characters, such as chromophore content and ratio.


Subject(s)
Cell Division/genetics , Photosynthesis/physiology , Synechococcus/growth & development , Synechococcus/physiology , Asia, Western , Cell Division/physiology , Chlorophyll/analogs & derivatives , Chlorophyll/metabolism , Chlorophyll A , DNA, Bacterial/genetics , Light , Microscopy, Electron, Transmission , Oceans and Seas , Phenotype , Phycobilins/metabolism , Phycoerythrin/metabolism , Phylogeny , Synechococcus/genetics , Synechococcus/isolation & purification , Urobilin/analogs & derivatives , Urobilin/metabolism , Water/metabolism
16.
FEMS Microbiol Ecol ; 69(3): 439-48, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19624741

ABSTRACT

Phylogenetic relationships among 33 Synechococcus strains isolated from the East China Sea (ECS) and the East Sea (ES) were studied based on 16S rRNA gene sequences and 16S-23S rRNA gene internal transcribed spacer (ITS) sequences. Pigment patterns of the culture strains were also examined. Based on 16S rRNA gene and ITS sequence phylogenies, the Synechococcus isolates were clustered into 10 clades, among which eight were previously identified and two were novel. Half of the culture strains belonged to clade V or VI. All strains that clustered into novel clades exhibited both phycoerythrobilin and phycourobilin. Interestingly, the pigment compositions of isolates belonging to clades V and VI differed from those reported for other oceanic regions. None of the isolates in clade V showed phycourobilin, whereas strains in clade VI exhibited both phycourobilin and phycoerythrobilin, which is in contrast to previous studies. The presence of novel lineages and the different pigment patterns in the ECS and the ES suggests the possibility that some Synechococcus lineages are distributed only in geographically restricted areas and have evolved in these regions. Therefore, further elucidation of the physiological, ecological, and genetic characteristics of the diverse Synechococcus strains is required to understand their spatial and geographical distribution.


Subject(s)
Phylogeny , Synechococcus/genetics , Water Microbiology , DNA, Bacterial/genetics , DNA, Ribosomal Spacer/genetics , Genes, rRNA , Molecular Sequence Data , Pacific Ocean , Phycobilins/metabolism , Phycoerythrin/metabolism , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Synechococcus/classification , Synechococcus/isolation & purification , Urobilin/analogs & derivatives , Urobilin/metabolism
17.
J Bacteriol ; 188(9): 3345-56, 2006 May.
Article in English | MEDLINE | ID: mdl-16621829

ABSTRACT

Chromatic adaptation (CA) in cyanobacteria has provided a model system for the study of the environmental control of photophysiology for several decades. All forms of CA that have been examined so far (types II and III) involve changes in the relative contents of phycoerythrin (PE) and/or phycocyanin when cells are shifted from red to green light and vice versa. However, the chromophore compositions of these polypeptides are not altered. Some marine Synechococcus species strains, which possess two PE forms (PEI and PEII), carry out another type of CA (type IV), occurring during shifts from blue to green or white light. Two chromatically adapting strains of marine Synechococcus recently isolated from the Gulf of Mexico were utilized to elucidate the mechanism of type IV CA. During this process, no change in the relative contents of PEI and PEII was observed. Instead, the ratio of the two chromophores bound to PEII, phycourobilin and phycoerythrobilin, is high under blue light and low under white light. Mass spectroscopy analyses of isolated PEII alpha- and beta-subunits show that there is a single PEII protein type under all light climates. The CA process seems to specifically affect the chromophorylation of the PEII (and possibly PEI) alpha chain. We propose a likely process for type IV CA, which involves the enzymatic activity of one or several phycobilin lyases and/or lyase-isomerases differentially controlled by the ambient light quality. Phylogenetic analyses based on the 16S rRNA gene confirm that type IV CA is not limited to a single clade of marine Synechococcus.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Synechococcus/physiology , Adaptation, Physiological , Bacterial Proteins/metabolism , Light , Lyases/metabolism , Molecular Sequence Data , Phycobilins , Phycoerythrin/metabolism , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Species Specificity , Synechococcus/classification , Synechococcus/genetics , Tetrapyrroles/metabolism , Urobilin/analogs & derivatives , Urobilin/metabolism
18.
Proteins ; 34(2): 224-31, 1999 Feb 01.
Article in English | MEDLINE | ID: mdl-10022358

ABSTRACT

The crystal structure of R-Phycoerythrin (R-PE) from Polysiphonia urceolata has been refined to a resolution of 1.9 A, based on the atomic coordinates of R-PE determined at 2.8 A resolution, through the use of difference Fourier method and steorochemistry parameters restrained refinement with model adjustment according to the electron density map. Crystallographic R-factor of the refined model is 0.195 (Rfree = 0.282) from 8-1.9 A. High resolution structure of R-PE showed precise interactions between the chromophores and protein residues, which explained the spectrum characteristic and function of chromophores. Four chiral atoms of phycourobilin (PUB) were identified as C(4)-S, C(16)-S, C(21)-S, and C(20)-R. In addition to the coupling distances of 19 A to 45 A between the chromophores which were observed and involved in the energy transfer pathway, high resolution structure of R-PE suggested other pathways of energy transfer, such as the ultrashort distance between alpha140a and beta155. It has been proposed that aromatic residues in linker proteins not only influence the conformation of chromophore, but may also bridge chromophores to improve the energy transfer efficiency.


Subject(s)
Phycoerythrin/chemistry , Rhodophyta/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Models, Molecular , Molecular Sequence Data , Molecular Structure , Phycobilins , Protein Conformation , Urobilin/analogs & derivatives
19.
J Struct Biol ; 126(2): 86-97, 1999 Jun 15.
Article in English | MEDLINE | ID: mdl-10388620

ABSTRACT

The structure of R-phycoerythrin (R-PE) from the red alga Griffithsia monilis was solved at 1.90-A resolution by molecular replacement, using the atomic coordinates of cyanobacterial phycocyanin from Fremyella diplosiphon as a model. The crystallographic R factor for the final model is 17.5% (Rfree 22.7%) for reflections in the range 100-1.90 A. The model consists of an (alphabeta)2 dimer with an internal noncrystallographic dyad and a fragment of the gamma-polypeptide. The alpha-polypeptide (164 amino acid residues) has two covalently bound phycoerythrobilins at positions alpha82 and alpha139. The beta-polypeptide (177 residues) has two phycoerythrobilins bound to residues beta82 and beta158 and one phycourobilin covalently attached to rings A and D at residues beta50 and beta61, respectively. The electron density of the gamma-polypeptide is mostly averaged out by threefold crystallographic symmetry, but a dipeptide (Gly-Tyr) and one single Tyr could be modeled. These two tyrosine residues of the gamma-polypeptide are in close proximity to the phycoerythrobilins at position beta82 of two symmetry-related beta-polypeptides and are related by the same noncrystallographic dyad as the (alphabeta)2 dimer. Possible energy transfer pathways are discussed briefly.


Subject(s)
Phycoerythrin/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Dimerization , Models, Molecular , Molecular Sequence Data , Molecular Structure , Phycobilins , Phycocyanin/chemistry , Protein Conformation , Protein Structure, Secondary , Rhodophyta , Urobilin/analogs & derivatives
20.
Appl Environ Microbiol ; 67(2): 991-4, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11157276

ABSTRACT

Characterization of two genetically distinct groups of marine Synechococcus sp. strains shows that one, but not the other, increases its phycourobilin/phycoerythrobilin chromophore ratio when growing in blue light. This ability of at least some marine Synechococcus strains to chromatically adapt may help explain their greater abundance in particular ocean environments than cyanobacteria of the genus Prochlorococcus.


Subject(s)
Adaptation, Physiological , Cyanobacteria/physiology , Phycoerythrin/metabolism , Pyrroles/metabolism , Seawater/microbiology , Cyanobacteria/classification , Cyanobacteria/genetics , Light , Phycobilins , Tetrapyrroles , Urobilin/analogs & derivatives
SELECTION OF CITATIONS
SEARCH DETAIL