Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 506
Filter
1.
Annu Rev Biochem ; 85: 455-83, 2016 Jun 02.
Article in English | MEDLINE | ID: mdl-26844394

ABSTRACT

Nitrogenase is a versatile metalloenzyme that is capable of catalyzing two important reactions under ambient conditions: the reduction of nitrogen (N2) to ammonia (NH3), a key step in the global nitrogen cycle; and the reduction of carbon monoxide (CO) and carbon dioxide (CO2) to hydrocarbons, two reactions useful for recycling carbon waste into carbon fuel. The molybdenum (Mo)- and vanadium (V)-nitrogenases are two homologous members of this enzyme family. Each of them contains a P-cluster and a cofactor, two high-nuclearity metalloclusters that have crucial roles in catalysis. This review summarizes the progress that has been made in elucidating the biosynthetic mechanisms of the P-cluster and cofactor species of nitrogenase, focusing on what is known about the assembly mechanisms of the two metalloclusters in Mo-nitrogenase and giving a brief account of the possible assembly schemes of their counterparts in V-nitrogenase, which are derived from the homology between the two nitrogenases.


Subject(s)
Azotobacter vinelandii/enzymology , Bacterial Proteins/metabolism , Coenzymes/metabolism , Molybdenum/metabolism , Nitrogenase/metabolism , Protein Subunits/metabolism , Amino Acid Sequence , Ammonia/chemistry , Ammonia/metabolism , Azotobacter vinelandii/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Carbon Dioxide/chemistry , Carbon Dioxide/metabolism , Carbon Monoxide/chemistry , Carbon Monoxide/metabolism , Coenzymes/chemistry , Iron/chemistry , Iron/metabolism , Molybdenum/chemistry , Nitrogen/chemistry , Nitrogen/metabolism , Nitrogenase/chemistry , Nitrogenase/genetics , Oxidation-Reduction , Protein Subunits/chemistry , Protein Subunits/genetics , Sequence Alignment , Sequence Homology, Amino Acid , Vanadium/chemistry , Vanadium/metabolism
2.
Mar Drugs ; 22(9)2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39330300

ABSTRACT

This study explores the reasons behind the variations in the enantioselectivity of the sulfoxidation of methyl phenyl sulfide by marine-derived vanadium-dependent haloperoxidases (VHPOs). Twelve new VHPOs of marine organisms were overexpressed, purified, and tested for their ability to oxidize sulfide. Most of these marine enzymes exhibited nonenantioselective behavior, underscoring the uniqueness of AnVBPO from the brown seaweed Ascophyllum nodosum and CpVBPO from the red seaweed Corallina pilulifera, which produce (R)- and (S)-sulfoxides, respectively. The enantioselective sulfoxidation pathway is likely due to direct oxygen transfer within the VHPO active site. This was demonstrated through molecular docking and molecular dynamics simulations, which revealed differences in the positioning of sulfide within AnVBPO and CpVBPO, thus explaining their distinct enantioselectivities. Nonenantioselective VHPOs probably follow a different oxidation pathway, initiating with sulfide oxidation to form a positively charged radical. Further insights were gained from studying the catalytic effect of VO43- on H2O2-driven sulfoxidation. This research improves the understanding of VHPO-mediated sulfoxidation and aids in developing biocatalysts for sulfoxide synthesis.


Subject(s)
Aquatic Organisms , Oxidation-Reduction , Sulfides , Sulfoxides , Vanadium , Sulfides/metabolism , Sulfides/chemistry , Stereoisomerism , Vanadium/chemistry , Vanadium/metabolism , Sulfoxides/chemistry , Sulfoxides/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Rhodophyta/enzymology , Peroxidases/metabolism , Peroxidases/chemistry , Hydrogen Peroxide/metabolism , Phaeophyceae
3.
J Environ Manage ; 360: 121156, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744211

ABSTRACT

With continuous mine exploitation, regional ecosystems have been damaged, resulting in a decline in the carbon sink capacity of mining areas. There is a global shortage of effective soil ecological restoration techniques for mining areas, especially for vanadium (V) and titanium (Ti) magnetite tailings, and the impact of phytoremediation techniques on the soil carbon cycle remains unclear. Therefore, this study aimed to explore the effects of long-term Pongamia pinnata remediation on soil organic carbon transformation of V-Ti magnetite tailing to reveal the bacterial community driving mechanism. In this study, it was found that four soil active organic carbon components (ROC, POC, DOC, and MBC) and three carbon transformation related enzymes (S-CL, S-SC, and S-PPO) in vanadium titanium magnetite tailings significantly (P < 0.05) increased with P. pinnata remediation. The abundance of carbon transformation functional genes such as carbon degradation, carbon fixation, and methane oxidation were also significantly (P < 0.05) enriched. The network nodes, links, and modularity of the microbial community, carbon components, and carbon transformation genes were enhanced, indicating stronger connections among the soil microbes, carbon components, and carbon transformation functional genes. Structural equation model (SEM) analysis revealed that the bacterial communities indirectly affected the soil organic carbon fraction and enzyme activity to regulate the soil total organic carbon after P. pinnata remediation. The soil active organic carbon fraction and free light fraction carbon also directly regulated the soil carbon and nitrogen ratio by directly affecting the soil total organic carbon content. These results provide a theoretical reference for the use of phytoremediation to drive soil carbon transformation for carbon sequestration enhancement through the remediation of degraded ecosystems in mining areas.


Subject(s)
Biodegradation, Environmental , Carbon , Soil , Vanadium , Carbon/metabolism , Soil/chemistry , Vanadium/metabolism , Soil Microbiology , Millettia/metabolism , Titanium/chemistry , Mining , Bacteria/metabolism , Soil Pollutants/metabolism
4.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L215-L232, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37310758

ABSTRACT

Vanadium is available as a dietary supplement and also is known to be toxic if inhaled, yet little information is available concerning the effects of vanadium on mammalian metabolism when concentrations found in food and water. Vanadium pentoxide (V+5) is representative of the most common dietary and environmental exposures, and prior research shows that low-dose V+5 exposure causes oxidative stress measured by glutathione oxidation and protein S-glutathionylation. We examined the metabolic impact of V+5 at relevant dietary and environmental doses (0.01, 0.1, and 1 ppm for 24 h) in human lung fibroblasts (HLFs) and male C57BL/6J mice (0.02, 0.2, and 2 ppm in drinking water for 7 mo). Untargeted metabolomics using liquid chromatography-high-resolution mass spectrometry (LC-HRMS) showed that V+5 induced significant metabolic perturbations in both HLF cells and mouse lungs. We noted 30% of the significantly altered pathways in HLF cells, including pyrimidines and aminosugars, fatty acids, mitochondrial and redox pathways, showed similar dose-dependent patterns in mouse lung tissues. Alterations in lipid metabolism included leukotrienes and prostaglandins involved in inflammatory signaling, which have been associated with the pathogenesis of idiopathic pulmonary fibrosis (IPF) and other disease processes. Elevated hydroxyproline levels and excessive collagen deposition were also present in lungs from V+5-treated mice. Taken together, these results show that oxidative stress from environmental V+5, ingested at low levels, could alter metabolism to contribute to common human lung diseases.NEW & NOTEWORTHY We used relevant dietary and environmental doses of Vanadium pentoxide (V+5) to examine its metabolic impact in vitro and in vivo. Using liquid chromatography-high-resolution mass spectrometry (LC-HRMS), we found significant metabolic perturbations, with similar dose-dependent patterns observed in human lung fibroblasts and male mouse lungs. Alterations in lipid metabolism included inflammatory signaling, elevated hydroxyproline levels, and excessive collagen deposition were present in V+5-treated lungs. Our findings suggest that low levels of V+5 could trigger pulmonary fibrotic signaling.


Subject(s)
Idiopathic Pulmonary Fibrosis , Vanadium , Male , Humans , Mice , Animals , Hydroxyproline/metabolism , Hydroxyproline/pharmacology , Vanadium/toxicity , Vanadium/metabolism , Mice, Inbred C57BL , Lung/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Inflammation/pathology , Mammals
5.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38069032

ABSTRACT

Exposure to heavy metals, such as vanadium, poses an ongoing environmental and health threat, heightening the risk of neurodegenerative disorders. While several compounds have shown promise in mitigating vanadium toxicity, their efficacy is limited. Effective strategies involve targeting specific subunits of the NMDA receptor, a glutamate receptor linked to neurodegenerative conditions. The potential neuroprotective effects of ZA-II-05, an NMDA receptor antagonist, against vanadium-induced neurotoxicity were explored in this study. Organotypic rat hippocampal slices, and live mice, were used as models to comprehensively evaluate the compound's impact. Targeted in vivo fluorescence analyses of the hippocampal slices using propidium iodide as a marker for cell death was utilized. The in vivo study involved five dams, each with eight pups, which were randomly assigned to five experimental groups (n = 8 pups). After administering treatments intraperitoneally over six months, various brain regions were assessed for neuropathologies using different immunohistochemical markers. High fluorescence intensity was observed in the hippocampal slices treated with vanadium, signifying cell death. Vanadium-exposed mice exhibited demyelination, microgliosis, and neuronal cell loss. Significantly, treatment with ZA-II-05 resulted in reduced cellular death in the rat hippocampal slices and preserved cellular integrity and morphological architecture in different anatomical regions, suggesting its potential in countering vanadium-induced neurotoxicity.


Subject(s)
Neurotoxicity Syndromes , Receptors, N-Methyl-D-Aspartate , Rats , Mice , Animals , Receptors, N-Methyl-D-Aspartate/metabolism , N-Methylaspartate/metabolism , Vanadium/toxicity , Vanadium/metabolism , Cell Death , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Hippocampus/metabolism
6.
Inorg Chem ; 61(49): 19882-19889, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36441974

ABSTRACT

Ascidians use a class of cysteine-rich proteins generally referred to as vanabins to reduce vanadium ions, one of the many biological processes that involve the redox conversion between disulfide and dithiolate mediated by transition-metal ions. To further understand the nature of disulfide/dithiolate exchange facilitated by a vanadium center, we report herein a six-coordinate non-oxido VIV complex containing an unbound disulfide moiety, [VIV(PS3″)(PS1″S-S)] (1) (PS3″ = [P(C6H3-3-Me3Si-2-S)3]3-, where PS1″S-S is a disulfide form of PS3″). Complex 1 is obtained from a reaction of previously reported [VV(PS3″)(PS2″SH)] (2) (PS2″SH = [P(C6H3-3-Me3Si-2-SH)(C6H3-3-Me3Si-2-S)2] with TEMPO (TEMPO = 2,2,6,6-tetramethylpiperidin-1-yl)oxyl) via hydrogen atom transfer. Importantly, complex 1 can be reduced by two electrons to form an eight-coordinate VIV complex, [VIV(PS3″)2]2- (4). The reaction can be reversed through a two-electron oxidation process to regenerate complex 1. The redox pathways both proceed through a common intermediate, [V(PS3″)2]- (3), that has been previously reported as a resonance form of VV-dithiolate and a VIV-(thiolate)(thiyl-radical) species. This work demonstrates an unprecedented example of reversible disulfide/dithiolate interconversion mediated by a VIV center, as well as provides insights into understanding the function of VV reductases in vanabins.


Subject(s)
Disulfides , Vanadium , Vanadium/metabolism , Oxidation-Reduction , Electrons , Hydrogen
7.
Environ Sci Technol ; 56(18): 12898-12905, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36026692

ABSTRACT

Iron (Fe), molybdenum (Mo), and vanadium (V) are the main components of the three known biological nitrogenases, which constrain nitrogen fixation and affect ecosystem productivity. Atmospheric deposition is an important pathway of these trace metals into ecosystems. Here, we explored the deposition flux, spatiotemporal pattern, and influencing factors of atmospheric wet Fe, Mo, and V deposition based on China Wet Deposition Observation Network (ChinaWD) data from 2016 to 2020. Our results showed that atmospheric wet Fe, Mo, and V deposition was 7.77 ± 7.24, 0.16 ± 0.11, and 0.13 ± 0.12 mg m-2 a-1 in Chinese terrestrial ecosystems, respectively, and revealed obvious spatial patterns but no significant annual trends. Wet Fe deposition was significantly correlated with the soil Fe content. Mo and V deposition was more affected by anthropogenic activities than Fe deposition. Wet Mo deposition was significantly affected by Mo ore reserves and waste incineration. V deposition was significantly correlated with domestic biomass burning. This study quantified wet Fe, Mo, and V deposition in China for the first time, and the implications of atmospheric trace metal deposition on biological nitrogen fixation were discussed.


Subject(s)
Trace Elements , Vanadium , China , Ecosystem , Environmental Monitoring/methods , Iron/metabolism , Molybdenum , Nitrogen/metabolism , Soil , Vanadium/metabolism
8.
Proc Natl Acad Sci U S A ; 116(49): 24682-24688, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31727845

ABSTRACT

Biological nitrogen fixation (BNF) by microorganisms associated with cryptogamic covers, such as cyanolichens and bryophytes, is a primary source of fixed nitrogen in pristine, high-latitude ecosystems. On land, low molybdenum (Mo) availability has been shown to limit BNF by the most common form of nitrogenase (Nase), which requires Mo in its active site. Vanadium (V) and iron-only Nases have been suggested as viable alternatives to countering Mo limitation of BNF; however, field data supporting this long-standing hypothesis have been lacking. Here, we elucidate the contribution of vanadium nitrogenase (V-Nase) to BNF by cyanolichens across a 600-km latitudinal transect in eastern boreal forests of North America. Widespread V-Nase activity was detected (∼15-50% of total BNF rates), with most of the activity found in the northern part of the transect. We observed a 3-fold increase of V-Nase contribution during the 20-wk growing season. By including the contribution of V-Nase to BNF, estimates of new N input by cyanolichens increase by up to 30%. We find that variability in V-based BNF is strongly related to Mo availability, and we identify a Mo threshold of ∼250 ng·glichen-1 for the onset of V-based BNF. Our results provide compelling ecosystem-scale evidence for the use of the V-Nase as a surrogate enzyme that contributes to BNF when Mo is limiting. Given widespread findings of terrestrial Mo limitation, including the carbon-rich circumboreal belt where global change is most rapid, additional consideration of V-based BNF is required in experimental and modeling studies of terrestrial biogeochemistry.


Subject(s)
Bacterial Proteins/metabolism , Lichens/microbiology , Nitrogen Fixation/physiology , Nitrogenase/metabolism , Nostoc/enzymology , Atmosphere/analysis , Canada , Carbon/metabolism , Carbon Cycle , Forests , Lichens/metabolism , Molybdenum/analysis , Molybdenum/metabolism , Soil/chemistry , Symbiosis , Taiga , United States , Vanadium/analysis , Vanadium/metabolism
9.
Int J Mol Sci ; 23(11)2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35682917

ABSTRACT

Vanadium toxicology is a topic of considerable importance as this metal is widely used in industrial and biomedical fields. However, it represents a potential emerging environmental pollutant because wastewater treatment plants do not adequately remove metal compounds that are subsequently released into the environment. Vanadium applications are limited due to its toxicity, so it is urgent to define this aspect. This metal is associated with sea urchin embryo toxicity as it perturbs embryogenesis and skeletogenesis, triggering several stress responses. Here we investigated its bioaccumulation and the correlation with cellular and molecular developmental pathways. We used cytotoxic concentrations of 1 mM and 500 µM to perform quantitative analyses, showing that vanadium accumulation interferes with calcium uptake during sea urchin development and provokes a disruption in the biomineralization process. At the end of the whole treatment, the accumulation of vanadium was about 14 and 8 µg for embryos treated respectively with 1 mM and 500 µM, showing a dose-dependent response. Then, we monitored the cell signaling perturbation, analyzing key molecular markers of cell survival/cell death mechanisms and the DNA fragmentation associated with apoptosis. This paper clarifies vanadium's trend to accumulate directly into embryonic cells, interfering with calcium uptake. In addition, our results indicate that vanadium can modulate the ERK pathway and activate a cell-selective apoptosis. These results endorse the sea urchin embryo as an adequate experimental model to study metal-related cellular/molecular responses.


Subject(s)
Paracentrotus , Animals , Apoptosis , Bioaccumulation , Calcium/metabolism , Embryo, Nonmammalian/metabolism , Vanadium/metabolism , Vanadium/toxicity
10.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36430713

ABSTRACT

The increasing industrial use of vanadium (V), as well as its recent medical use in various pathologies has intensified its environmental release, making it an emerging pollutant. The sea urchin embryo has long been used to study the effects induced by metals, including V. In this study we used an integrated approach that correlates the biological effects on embryo development with proteolytic activities of gelatinases that could better reflect any metal-induced imbalances. V-exposure caused morphological/morphometric aberrations, mainly concerning the correct distribution of embryonic cells, the development of the skeleton, and the embryo volume. Moreover, V induced a concentration change in all the gelatinases expressed during embryo development and a reduction in their total proteolytic activity. The presence of three MMP-like gelatinases (MMP-2, -9, and -14) was also demonstrated and their levels depended on V-concentration. In particular, the MMP-14-like protein modified its expression level during embryo development in a time- and dose-dependent manner. This enzyme also showed a specific localization on filopodia, suggesting that primary mesenchyme cells (PMCs) could be responsible for its synthesis. In conclusion, these results indicate that an integrated study among morphology/morphometry, proteolytic activity, and MMP-14 expression constitutes an important response profile to V-action.


Subject(s)
Paracentrotus , Animals , Vanadium/pharmacology , Vanadium/metabolism , Matrix Metalloproteinase 14/genetics , Matrix Metalloproteinase 14/metabolism , Embryonic Development , Gelatinases/metabolism
11.
Int J Mol Sci ; 23(18)2022 Sep 16.
Article in English | MEDLINE | ID: mdl-36142718

ABSTRACT

As a prevalent progressive neurodegenerative disorder, Parkinson's disease (PD) is characterized by the neuropathological hallmark of the loss of nigrostriatal dopaminergic (DAergic) innervation and the appearance of Lewy bodies with aggregated α-synuclein. Although several familial forms of PD have been reported to be associated with several gene variants, most cases in nature are sporadic, triggered by a complex interplay of genetic and environmental risk factors. Numerous epidemiological studies during the past two decades have shown positive associations between PD and several environmental factors, including exposure to neurotoxic pesticides/herbicides and heavy metals as well as traumatic brain injury. Other environmental factors that have been implicated as potential risk factors for PD include industrial chemicals, wood pulp mills, farming, well-water consumption, and rural residence. In this review, we summarize the environmental toxicology of PD with the focus on the elaboration of chemical toxicity and the underlying pathogenic mechanisms associated with exposure to several neurotoxic chemicals, specifically 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, paraquat (PQ), dichloro-diphenyl-trichloroethane (DDT), dieldrin, manganese (Mn), and vanadium (V). Our overview of the current findings from cellular, animal, and human studies of PD provides information for possible intervention strategies aimed at halting the initiation and exacerbation of environmentally linked PD.


Subject(s)
Herbicides , Neurotoxicity Syndromes , Parkinson Disease , Pesticides , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , DDT , Dieldrin/metabolism , Herbicides/metabolism , Humans , Manganese/metabolism , Mitochondria/metabolism , Neuroinflammatory Diseases , Neurotoxicity Syndromes/pathology , Oxidative Stress , Paraquat , Parkinson Disease/metabolism , Pesticides/metabolism , Pesticides/toxicity , Risk Factors , Rotenone/metabolism , Trichloroethanes/metabolism , Vanadium/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
12.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36293069

ABSTRACT

Experimental liver injury with hepatocelluar necrosis and abnormal liver tests is caused by exposure to heavy metals (HMs) like aluminum, arsenic, beryllium, cadmium, chromium, cobalt, copper, iron, lead, mercury, molybdenum, nickel, platinum, thallium, titanium, vanadium, and zinc. As pollutants, HMs disturb the ecosystem, and as these substances are toxic, they may affect the health of humans and animals. HMs are not biodegradable and may be deposited preferentially in the liver. The use of animal models can help identify molecular and mechanistic steps leading to the injury. HMs commonly initiate hepatocellular overproduction of ROS (reactive oxygen species) due to oxidative stress, resulting in covalent binding of radicals to macromolecular proteins or lipids existing in membranes of subcellular organelles. Liver injury is facilitated by iron via the Fenton reaction, providing ROS, and is triggered if protective antioxidant systems are exhausted. Ferroptosis syn pyroptosis was recently introduced as mechanistic concept in explanations of nickel (Ni) liver injury. NiCl2 causes increased iron deposition in the liver, upregulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, downregulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1), nuclear receptor coactivator 4 (NCOA4) protein, and mRNA expression levels. Nickel may cause hepatic injury through mitochondrial damage and ferroptosis, defined as mechanism of iron-dependent cell death, similar to glutamate-induced excitotoxicity but likely distinct from apoptosis, necrosis, and autophagy. Under discussion were additional mechanistic concepts of hepatocellular uptake and biliary excretion of mercury in exposed animals. For instance, the organic anion transporter 3 (Oat3) and the multidrug resistance-associated protein 2 (Mrp2) were involved in the hepatic handling of mercury. Mercury treatment modified the expression of Mrp2 and Oat3 as assessed by immunoblotting, partially explaining its impaired biliary excretion. Concomitantly, a decrease in Oat3 abundance in the hepatocyte plasma membranes was observed that limits the hepatic uptake of mercury ions. Most importantly and shown for the first time in liver injury caused by HMs, titanium changed the diversity of gut microbiota and modified their metabolic functions, leading to increased generation of lipopolysaccharides (LPS). As endotoxins, LPS may trigger and perpetuate the liver injury at the level of gut-liver. In sum, mechanistic and molecular steps of experimental liver injury due to HM administration are complex, with ROS as the key promotional compound. However, additional concepts such as iron used in the Fenton reaction, ferroptosis, modification of transporter systems, and endotoxins derived from diversity of intestinal bacteria at the gut-liver level merit further consideration.


Subject(s)
Arsenic , Environmental Pollutants , Mercury , Metals, Heavy , Organic Anion Transporters , Humans , Animals , Nickel/metabolism , Zinc/metabolism , Copper/metabolism , Cadmium/metabolism , Cobalt/metabolism , Vanadium/metabolism , Molybdenum/metabolism , Aluminum/metabolism , Chromium/metabolism , Arsenic/toxicity , Arsenic/metabolism , Titanium/metabolism , Beryllium/metabolism , Iron/metabolism , Platinum/metabolism , Thallium/metabolism , Reactive Oxygen Species/metabolism , Cyclooxygenase 2/metabolism , Mercury/toxicity , Antioxidants/metabolism , Lipopolysaccharides/metabolism , Ecosystem , Apoferritins/metabolism , Metals, Heavy/toxicity , Metals, Heavy/metabolism , Liver/metabolism , Environmental Pollutants/metabolism , Glutathione/metabolism , Necrosis/metabolism , Glutamates/metabolism , Nuclear Receptor Coactivators , Organic Anion Transporters/metabolism , RNA, Messenger/metabolism
13.
Toxicol Mech Methods ; 32(2): 114-122, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34431458

ABSTRACT

Vanadium toxicity is a globally recognized threat to the reproductive health of man and animal. However the mechanism of vanadium-induced damage to the testicular and adrenocortical tissues is not fully characterized. It was hypothesized that prostaglandins may partially mediate the inflammatory response to vanadate damage. In this study prostaglandin (PG) mediated effects of vanadate on testicular and adrenocortical functions was substantiated by using indomethacin to block prostaglandin synthesis. Significant inhibition of spermatogenesis, decreased serum level of testosterone and gonadotropins in the vanadium-exposed group of rats indicated the damaging effects of vanadium-induced reactive oxygen species. This was also reflected in the appreciable increase in testicular lipid peroxidation (LPO) level and decline in the activities of steroidogenic and antioxidant enzymes. Histopathological studies revealed regressive and degenerative changes in testis. However, inhibition of cyclooxygenase activity by indomethacin increased steroid hormone production, gonadotropin level, elevated the specific activities of enzymes and decreased LPO level in rat testis exposed to vanadium. Vanadium also caused prostaglandin mediated adrenocortical hyperactivity, as inhibition of PG synthesis abolished these adrenal responses to vanadium. The studies showed that vanadium toxicity is directly linked to stimulation of prostaglandin synthesis. Therefore, indomethacin can be a good prospect to alleviate vanadium induced male infertility.


Subject(s)
Testis , Vanadium , Animals , Indomethacin/metabolism , Indomethacin/toxicity , Lipid Peroxidation , Male , Rats , Spermatogenesis , Testis/metabolism , Testosterone/metabolism , Vanadium/metabolism , Vanadium/toxicity
14.
Ecotoxicol Environ Saf ; 207: 111297, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32949932

ABSTRACT

The metal tolerance mechanism of plants is of great importance to explore the plant-based clean-up of environmental substrata contaminated by heavy metals. Indoor experiment of tobacco (Nicotiana tabacum L.) seedlings growing hydroponically in nutrient solution containing 0, 0.1, 0.5, 2.0, and 4.0 mg L-1 V was conducted. The results indicated that plant overall growth performance was significantly affected at ≥ 2.0 mg L-1 V. Oxidative stress degree as indicated by foliar O2-· and H2O2 content intensified markedly at ≥ 0.5 mg L-1 V treatments. In response, the plant activated its enzyme and non-enzyme protecting mechanism to cope with oxidative stress inflicted by vanadium. The activities of antioxidant enzymes, including SOD, POD, CAT, APX, and the concentration of non-enzyme antioxidants, e.g., AsA and GSH were all conspicuously (p < 0.5 or p < 0.1) enhanced at ≥ 0.5 mg L-1 V treatments. Vanadium accumulated in leaves, stems, and roots increased with increasing vanadium level. The majority of the absorbed vanadium retained in plant root, and minor portions were transferred to aerial parts. Vanadium concentration in plant tissues ordered as root ˃ stem ˃ leaf. Translocation factors (TF) in vanadium-treated tobaccos (TF « 1) were significantly lower than that of control (TF ˃ 1). In conclusion, although vanadium at ≥ 2.0 mg L-1 inhibited plant growth, tobacco exhibited a relatively good vanadium tolerance through self-adaptive regulation and has the potential as a phytostabilizer in decontaminating the environment contaminated by vanadium.


Subject(s)
Bioaccumulation , Nicotiana/growth & development , Soil Pollutants/metabolism , Vanadium/metabolism , Antioxidants/metabolism , Biodegradation, Environmental , Hydrogen Peroxide/metabolism , Oxidative Stress/drug effects , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/metabolism , Soil Pollutants/toxicity , Nicotiana/drug effects , Nicotiana/metabolism , Vanadium/toxicity
15.
Molecules ; 26(9)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922063

ABSTRACT

An improved methodology was developed for V redox speciation in estuarine waters using a hyphenated technique consisting of ion chromatograph (IC) with an anion exchange column and a high-resolution inductively coupled plasma mass spectrometer (HR ICP-MS). This approach enables the direct determination of V(V), whereas reduced species (mainly V(IV)) are calculated by subtracting V(V) concentrations from the measured total V concentration. Based on the "on-column" V(V) chelation mechanism by EDTA, with the eluent composed of 40 mmol L-1 ammonium bicarbonate, 40 mmol L-1 ammonium sulphate, 8 mmol L-1 ethylenediaminetetraacetic acid and 3% acetonitrile, the method was successfully used for analyses of V redox speciation in samples taken in the vertical salinity gradient of the highly stratified Krka River estuary. Due to the matrix effects causing different sensitivities, a standard addition method was used for V(V) quantification purposes. The limit of detection (LOD) was also found to be matrix related: 101.68 ng L-1 in the seawater and 30.56 µg L-1 in the freshwater. Performed stability tests showed that V redox speciation is preserved at least 7 days in un-treated samples, possibly due to the stabilization of V-reduced species with natural organic matter (NOM). The dominant V form in the analysed samples was V(V) with the reduced V(IV) accounting for up to 26% of the total dissolved pool. The concentration of V(IV) was found to correlate negatively with the oxygen concentration. Significant removal of dissolved V was detected in oxygen depleted zones possibly related to the particle scavenging.


Subject(s)
Chromatography, Ion Exchange , Estuaries , Mass Spectrometry , Oxidation-Reduction , Seawater/chemistry , Vanadium/metabolism , Geography
16.
Environ Microbiol ; 22(4): 1397-1408, 2020 04.
Article in English | MEDLINE | ID: mdl-32090445

ABSTRACT

Biological nitrogen fixation is catalyzed by the molybdenum (Mo), vanadium (V) and iron (Fe)-only nitrogenase metalloenzymes. Studies with purified enzymes have found that the 'alternative' V- and Fe-nitrogenases generally reduce N2 more slowly and produce more byproduct H2 than the Mo-nitrogenase, leading to an assumption that their usage results in slower growth. Here we show that, in the metabolically versatile photoheterotroph Rhodopseudomonas palustris, the type of carbon substrate influences the relative rates of diazotrophic growth based on different nitrogenase isoforms. The V-nitrogenase supports growth as fast as the Mo-nitrogenase on acetate but not on the more oxidized substrate succinate. Our data suggest that this is due to insufficient electron flux to the V-nitrogenase isoform on succinate compared with acetate. Despite slightly faster growth based on the V-nitrogenase on acetate, the wild-type strain uses exclusively the Mo-nitrogenase on both carbon substrates. Notably, the differences in H2 :N2 stoichiometry by alternative nitrogenases (~1.5 for V-nitrogenase, ~4-7 for Fe-nitrogenase) and Mo-nitrogenase (~1) measured here are lower than prior in vitro estimates. These results indicate that the metabolic costs of V-based nitrogen fixation could be less significant for growth than previously assumed, helping explain why alternative nitrogenase genes persist in diverse diazotroph lineages and are broadly distributed in the environment.


Subject(s)
Carbon/metabolism , Nitrogen Fixation , Nitrogenase/metabolism , Rhodopseudomonas/metabolism , Iron/metabolism , Molybdenum/metabolism , Nitrogen/metabolism , Oxidation-Reduction , Rhodopseudomonas/enzymology , Rhodopseudomonas/growth & development , Vanadium/metabolism
17.
Chembiochem ; 21(12): 1773-1778, 2020 06 15.
Article in English | MEDLINE | ID: mdl-31392810

ABSTRACT

The nitrogenase cofactors are structurally and functionally unique in biological chemistry. Despite a substantial amount of spectroscopic characterization of protein-bound and isolated nitrogenase cofactors, electrochemical characterization of these cofactors and their related species is far from complete. Herein we present voltammetric studies of three isolated nitrogenase cofactor species: the iron-molybdenum cofactor (M-cluster), iron-vanadium cofactor (V-cluster), and a homologue to the iron-iron cofactor (L-cluster). We observe two reductive events in the redox profiles of all three cofactors. Of the three, the V-cluster is the most reducing. The reduction potentials of the isolated cofactors are significantly more negative than previously measured values within the molybdenum-iron and vanadium-iron proteins. The outcome of this study provides insight into the importance of the heterometal identity, the overall ligation of the cluster, and the impact of the protein scaffolds on the overall electronic structures of the cofactors.


Subject(s)
Azotobacter vinelandii/chemistry , Electrochemical Techniques , Iron/metabolism , Metalloproteins/metabolism , Molybdenum/metabolism , Vanadium/metabolism , Azotobacter vinelandii/metabolism , Iron/chemistry , Iron/isolation & purification , Metalloproteins/chemistry , Metalloproteins/isolation & purification , Molecular Conformation , Molybdenum/chemistry , Molybdenum/isolation & purification , Oxidation-Reduction , Vanadium/chemistry , Vanadium/isolation & purification
18.
Inorg Chem ; 59(22): 16143-16153, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-32578416

ABSTRACT

The role of vanadium binding to transferrin (Tf) in the biological activities of vanadium-based drugs is a matter of considerable debate. In order to determine whether V(V) and/or V(IV) binding to Tf (in apo, monoferric(III), and diferric(III) forms) enhances or inhibits biological activities, cellular V uptake and in vitro antiproliferative activity were examined in the presence and absence of different forms of Tf and other biomolecules under normoxic conditions. These data were combined with studies on V-Tf binding in cell culture medium and its role in Tf interactions with transferrin receptor 1 (TfR1), using the biolayer interferometry (BLI) model of the Tf cycle that was developed in our group. The results showed that both V(V) and V(IV) oxidation states efficiently bind to vacant Fe(III) binding sites of Tf even in the presence of a 20-fold molar excess of albumin, although V does not displace Tf-bound Fe(III) under these conditions. Binding of V(V) or V(IV) to Tf in cell culture medium drastically reduced its cellular uptake and antiproliferative activity in the A549 (human lung cancer) cell line that expresses TfR1. BLI and gel electrophoresis studies showed that V(V/IV) binding to partially Fe(III) saturated Tf did not enhance the affinity of Tf binding to TfR1 at pH 7.4 but did disrupt Tf conformational changes under endosome-mimicking conditions (pH 5.6, 0.10 mM citrate). Hence, it is postulated that the absence of a significant cellular uptake of Tf-bound V(V/IV) is likely to be due to the return of undissociated V(V/IV)-Tf adducts to the cell surface after the endosomal step. Collectively, these data show that the biotransformation of V-based drugs leads to V(V/IV)-Tf binding in the blood serum and inhibits, rather than enhances, the biological activity of such drugs under aerobic conditions. These results indicate that the design of V-based drugs that are stable enough to survive in the blood, enter cells intact, and release the active components intracellularly is likely to be required for their clinical success.


Subject(s)
Antineoplastic Agents/pharmacology , Transferrin/pharmacology , Vanadium/pharmacology , A549 Cells , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Binding Sites , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Transferrin/chemistry , Transferrin/metabolism , Tumor Cells, Cultured , Vanadium/chemistry , Vanadium/metabolism
19.
Proc Natl Acad Sci U S A ; 114(52): E11092-E11100, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29229856

ABSTRACT

Synthesizing published data, we provide a quantitative summary of the global biogeochemical cycle of vanadium (V), including both human-derived and natural fluxes. Through mining of V ores (130 × 109 g V/y) and extraction and combustion of fossil fuels (600 × 109 g V/y), humans are the predominant force in the geochemical cycle of V at Earth's surface. Human emissions of V to the atmosphere are now likely to exceed background emissions by as much as a factor of 1.7, and, presumably, we have altered the deposition of V from the atmosphere by a similar amount. Excessive V in air and water has potential, but poorly documented, consequences for human health. Much of the atmospheric flux probably derives from emissions from the combustion of fossil fuels, but the magnitude of this flux depends on the type of fuel, with relatively low emissions from coal and higher contributions from heavy crude oils, tar sands bitumen, and petroleum coke. Increasing interest in petroleum derived from unconventional deposits is likely to lead to greater emissions of V to the atmosphere in the near future. Our analysis further suggests that the flux of V in rivers has been incremented by about 15% from human activities. Overall, the budget of dissolved V in the oceans is remarkably well balanced-with about 40 × 109 g V/y to 50 × 109 g V/y inputs and outputs, and a mean residence time for dissolved V in seawater of about 130,000 y with respect to inputs from rivers.


Subject(s)
Models, Biological , Vanadium/chemistry , Vanadium/metabolism , Humans , Vanadium/adverse effects
20.
Ecotoxicol Environ Saf ; 195: 110463, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32182531

ABSTRACT

Microbial treatment for vanadium contamination of soils is a favorable and environment-friendly method. However, information of the resistant mechanism of the strains in soils to vanadium, especially to tetravalent vanadium [vanadium(IV)], is still limited. Herein, potential of the vanadium(IV) biosorption and biotransformation of the strains (4K1, 4K2, 4K3 and 4K4) which were capable of tolerating vanadium(IV) was determined. For biosorption, the bioadsorption and the bioabsorption of vanadium(IV) occur on the bacterial cell wall and within the cell, respectively, were taken into consideration. Comparison of the vanadium(IV) adsorbed on the bacterial cell walls and remained in the cells after sorption indicated the major bacterial vanadium(IV) sorption role of the bioadsorption which was at least one order of magnitude higher than the bioabsorption amount. Isotherm study using various isotherm models revealed a monolayer and a multilayer vanadium(IV) biosorption by 4K2 and the others (4K1, 4K3 and 4K4), respectively. Higher biosorption was observed in acidic conditions than in alkaline conditions, and the maximum biosorption was 2.41, 9.35, 7.76 and 8.44 mg g-1 observed at pH 6 for 4K1, at pH 3 for 4K2, and at pH 4 for 4K3 and 4K4, respectively. At the present experimental range of the initial vanadium(IV) concentration, optimal biosorption capacity of the bacteria was observed at the vanadium(IV) level of 100-250 mg L-1. Different biotransformation level of vanadium(IV) in soils by the stains was observed during a 28-d pot incubation of the soils mixed with the strains, which can be attributed to the discrepancy of both soil properties and bacterial species. Present study can help to fill up the gaps of the insufficient knowledge of the vanadium(IV) resistant mechanism of the strains in soils.


Subject(s)
Bacteria/metabolism , Soil Pollutants/metabolism , Vanadium/metabolism , Adsorption , Bacteria/drug effects , Bacteria/isolation & purification , Biotransformation , Ferrosoferric Oxide , Hydrogen-Ion Concentration , Mining , Soil/chemistry , Soil Microbiology , Soil Pollutants/toxicity , Titanium , Vanadium/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL