Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25.526
Filter
Add more filters

Publication year range
1.
Physiol Rev ; 103(3): 1827-1897, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36422993

ABSTRACT

The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/pathology , Ion Channels , Lung , Vasoconstriction/physiology , Calcium Signaling/physiology , Myocytes, Smooth Muscle
2.
Nature ; 633(8030): 654-661, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39261724

ABSTRACT

Heart failure is a leading cause of morbidity and mortality1,2. Elevated intracardiac pressures and myocyte stretch in heart failure trigger the release of counter-regulatory natriuretic peptides, which act through their receptor (NPR1) to affect vasodilation, diuresis and natriuresis, lowering venous pressures and relieving venous congestion3-8. Recombinant natriuretic peptide infusions were developed to treat heart failure but have been limited by a short duration of effect9,10. Here we report that in a human genetic analysis of over 700,000 individuals, lifelong exposure to coding variants of the NPR1 gene is associated with changes in blood pressure and risk of heart failure. We describe the development of REGN5381, an investigational monoclonal agonist antibody that targets the membrane-bound guanylate cyclase receptor NPR1. REGN5381, an allosteric agonist of NPR1, induces an active-like receptor conformation that results in haemodynamic effects preferentially on venous vasculature, including reductions in systolic blood pressure and venous pressure in animal models. In healthy human volunteers, REGN5381 produced the expected haemodynamic effects, reflecting reductions in venous pressures, without obvious changes in diuresis and natriuresis. These data support the development of REGN5381 for long-lasting and selective lowering of venous pressures that drive symptomatology in patients with heart failure.


Subject(s)
Antibodies, Monoclonal , Blood Pressure , Receptors, Atrial Natriuretic Factor , Vasoconstriction , Veins , Adult , Animals , Dogs , Female , Humans , Male , Mice , Middle Aged , Young Adult , Allosteric Regulation/drug effects , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal/pharmacology , Blood Pressure/drug effects , Blood Pressure/genetics , Diuresis/drug effects , Healthy Volunteers , Heart Failure/drug therapy , Heart Failure/physiopathology , Hemodynamics/drug effects , Macaca fascicularis , Muscle, Smooth, Vascular/drug effects , Natriuresis/drug effects , Receptors, Atrial Natriuretic Factor/metabolism , Receptors, Atrial Natriuretic Factor/agonists , Receptors, Atrial Natriuretic Factor/genetics , Vasoconstriction/drug effects , Vasoconstriction/physiology , Veins/drug effects , Veins/physiology
3.
Proc Natl Acad Sci U S A ; 121(37): e2321021121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39236241

ABSTRACT

In the brain, a microvascular sensory web coordinates oxygen delivery to regions of neuronal activity. This involves a dense network of capillaries that send conductive signals upstream to feeding arterioles to promote vasodilation and blood flow. Although this process is critical to the metabolic supply of healthy brain tissue, it may also be a point of vulnerability in disease. Deterioration of capillary networks is a feature of many neurological disorders and injuries and how this web is engaged during vascular damage remains unknown. We performed in vivo two-photon microscopy on young adult mural cell reporter mice and induced focal capillary injuries using precise two-photon laser irradiation of single capillaries. We found that ~59% of the injuries resulted in regression of the capillary segment 7 to 14 d following injury, and the remaining repaired to reestablish blood flow within 7 d. Injuries that resulted in capillary regression induced sustained vasoconstriction in the upstream arteriole-capillary transition (ACT) zone at least 21 days postinjury in both awake and anesthetized mice. The degree of vasomotor dynamics was chronically attenuated in the ACT zone consequently reducing blood flow in the ACT zone and in secondary, uninjured downstream capillaries. These findings demonstrate how focal capillary injury and regression can impair the microvascular sensory web and contribute to cerebral hypoperfusion.


Subject(s)
Capillaries , Cerebrovascular Circulation , Animals , Mice , Capillaries/physiology , Cerebrovascular Circulation/physiology , Vasoconstriction/physiology , Brain/blood supply , Arterioles/physiopathology , Male , Vasodilation/physiology , Mice, Inbred C57BL
4.
Annu Rev Physiol ; 85: 165-189, 2023 02 10.
Article in English | MEDLINE | ID: mdl-36763969

ABSTRACT

Resistance arteries and arterioles evolved as specialized blood vessels serving two important functions: (a) regulating peripheral vascular resistance and blood pressure and (b) matching oxygen and nutrient delivery to metabolic demands of organs. These functions require control of vessel lumen cross-sectional area (vascular tone) via coordinated vascular cell responses governed by precise spatial-temporal communication between intracellular signaling pathways. Herein, we provide a contemporary overview of the significant roles that redox switches play in calcium signaling for orchestrated endothelial, smooth muscle, and red blood cell control of arterial vascular tone. Three interrelated themes are the focus: (a) smooth muscle to endothelial communication for vasoconstriction, (b) endothelial to smooth muscle cell cross talk for vasodilation, and (c) oxygen and red blood cell interregulation of vascular tone and blood flow. We intend for this thematic framework to highlight gaps in our current knowledge and potentially spark interest for cross-disciplinary studies moving forward.


Subject(s)
Vasoconstriction , Vasodilation , Humans , Microcirculation , Vasodilation/physiology , Vasoconstriction/physiology , Oxidation-Reduction , Oxygen
5.
Circ Res ; 134(10): 1259-1275, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38597112

ABSTRACT

BACKGROUND: GPCRs (G-protein-coupled receptors) play a central role in the regulation of smooth muscle cell (SMC) contractility, but the function of SMC-expressed orphan GPCR class C group 5 member C (GPRC5C) is unclear. The aim of this project is to define the role of GPRC5C in SMC in vitro and in vivo. METHODS: We studied the role of GPRC5C in the regulation of SMC contractility and differentiation in human and murine SMC in vitro, as well as in tamoxifen-inducible, SMC-specific GPRC5C knockout mice under basal conditions and in vascular disease in vivo. RESULTS: Mesenteric arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed ex vivo significantly reduced angiotensin II (Ang II)-dependent calcium mobilization and contraction, whereas responses to other relaxant or contractile factors were normal. In vitro, the knockdown of GPRC5C in human aortic SMC resulted in diminished Ang II-dependent inositol phosphate production and lower myosin light chain phosphorylation. In line with this, tamoxifen-inducible, SMC-specific GPRC5C knockout mice showed reduced Ang II-induced arterial hypertension, and acute inactivation of GPRC5C was able to ameliorate established arterial hypertension. Mechanistically, we show that GPRC5C and the Ang II receptor AT1 dimerize, and knockdown of GPRC5C resulted in reduced binding of Ang II to AT1 receptors in HEK293 cells, human and murine SMC, and arteries from tamoxifen-inducible, SMC-specific GPRC5C knockout mice. CONCLUSIONS: Our data show that GPRC5C regulates Ang II-dependent vascular contraction by facilitating AT1 receptor-ligand binding and signaling.


Subject(s)
Angiotensin II , Muscle, Smooth, Vascular , Receptors, G-Protein-Coupled , Animals , Humans , Male , Mice , Angiotensin II/pharmacology , Cells, Cultured , Hypertension/metabolism , Hypertension/physiopathology , Hypertension/chemically induced , Hypertension/genetics , Mesenteric Arteries/metabolism , Mice, Inbred C57BL , Mice, Knockout , Muscle Contraction , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Vasoconstriction
6.
Circ Res ; 135(6): e133-e149, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39082135

ABSTRACT

BACKGROUND: Prostaglandin I2 synthesized by endothelial COX (cyclooxygenase) evokes potent vasodilation in some blood vessels but is paradoxically responsible for endothelium-dependent constriction (EDC) in others. Prostaglandin I2 production and EDC may be enhanced in diseases such as hypertension. However, how PGIS (prostaglandin I2 synthase) deficiency affects EDC and how this is implicated in the consequent cardiovascular pathologies remain largely unknown. METHODS: Experiments were performed with wild-type, Pgis knockout (Pgis-/-) and Pgis/thromboxane-prostanoid receptor gene (Tp) double knockout (Pgis-/-Tp-/-) mice and Pgis-/- mice transplanted with unfractionated wild-type or Cox-1-/- bone marrow cells, as well as human umbilical arteries. COX-derived prostanoids were measured by high-performance liquid chromatography-mass spectrometry. Vasomotor responses of distinct types of arteries were assessed by isometric force measurement. Parameters of hypertension, vascular remodeling, and cardiac hypertrophy in mice at different ages were monitored. RESULTS: PGF2α, PGE2, and a trace amount of PGD2, but not thromboxane A2 (TxA2), were produced in response to acetylcholine in Pgis-/- or PGIS-inhibited arteries. PGIS deficiency resulted in exacerbation or occurrence of EDC ex vivo and in vivo. Endothelium-dependent hyperpolarization was unchanged, but phosphorylation levels of eNOS (endothelial nitric oxide synthase) at Ser1177 and Thr495 were altered and NO production and the NO-dependent relaxation evoked by acetylcholine were remarkably reduced in Pgis-/- aortas. Pgis-/- mice developed high blood pressure and vascular remodeling at 16 to 17 weeks and subsequently cardiac hypertrophy at 24 to 26 weeks. Meanwhile, blood pressure and cardiac parameters remained normal at 8 to 10 weeks. Additional ablation of TP (TxA2 receptor) not only restrained EDC and the downregulation of NO signaling in Pgis-/- mice but also ameliorated the cardiovascular abnormalities. Stimulation of Pgis-/- vessels with acetylcholine in the presence of platelets led to increased TxA2 generation. COX-1 disruption in bone marrow-derived cells failed to affect the development of high blood pressure and vascular remodeling in Pgis-/- mice though it largely suppressed the increase of plasma TxB2 (TxA2 metabolite) level. CONCLUSIONS: Our study demonstrates that the non-TxA2 prostanoids/TP axis plays an essential role in mediating the augmentation of EDC and cardiovascular disorders when PGIS is deficient, suggesting TP as a promising therapeutic target in diseases associated with PGIS insufficiency.


Subject(s)
Endothelium, Vascular , Intramolecular Oxidoreductases , Mice, Inbred C57BL , Mice, Knockout , Prostaglandins , Vasoconstriction , Animals , Humans , Male , Mice , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Cardiovascular Diseases/etiology , Cyclooxygenase 1/deficiency , Cyclooxygenase 1/genetics , Cyclooxygenase 1/metabolism , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/deficiency , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/deficiency , Intramolecular Oxidoreductases/metabolism , Prostaglandins/metabolism , Receptors, Thromboxane/metabolism , Receptors, Thromboxane/genetics , Signal Transduction , Thromboxane A2/metabolism , Vascular Remodeling , Vasodilation
7.
Mol Cell Proteomics ; 23(7): 100794, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38839039

ABSTRACT

Reversible cerebral vasoconstriction syndrome (RCVS) is a complex neurovascular disorder characterized by repetitive thunderclap headaches and reversible cerebral vasoconstriction. The pathophysiological mechanism of this mysterious syndrome remains underexplored and there is no clinically available molecular biomarker. To provide insight into the pathogenesis of RCVS, this study reported the first landscape of dysregulated proteome of cerebrospinal fluid (CSF) in patients with RCVS (n = 21) compared to the age- and sex-matched controls (n  = 20) using data-independent acquisition mass spectrometry. Protein-protein interaction and functional enrichment analysis were employed to construct functional protein networks using the RCVS proteome. An RCVS-CSF proteome library resource of 1054 proteins was established, which illuminated large groups of upregulated proteins enriched in the brain and blood-brain barrier (BBB). Personalized RCVS-CSF proteomic profiles from 17 RCVS patients and 20 controls reveal proteomic changes involving the complement system, adhesion molecules, and extracellular matrix, which may contribute to the disruption of BBB and dysregulation of neurovascular units. Moreover, an additional validation cohort validated a panel of biomarker candidates and a two-protein signature predicted by machine learning model to discriminate RCVS patients from controls with an area under the curve of 0.997. This study reveals the first RCVS proteome and a potential pathogenetic mechanism of BBB and neurovascular unit dysfunction. It also nominates potential biomarker candidates that are mechanistically plausible for RCVS, which may offer potential diagnostic and therapeutic opportunities beyond the clinical manifestations.


Subject(s)
Biomarkers , Proteome , Humans , Female , Proteome/metabolism , Male , Adult , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Vasoconstriction , Middle Aged , Headache Disorders, Primary/cerebrospinal fluid , Headache Disorders, Primary/metabolism , Proteomics/methods , Case-Control Studies , Protein Interaction Maps , Syndrome
8.
Proc Natl Acad Sci U S A ; 120(18): e2220777120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098063

ABSTRACT

The role of parvalbumin (PV) interneurons in vascular control is poorly understood. Here, we investigated the hemodynamic responses elicited by optogenetic stimulation of PV interneurons using electrophysiology, functional magnetic resonance imaging (fMRI), wide-field optical imaging (OIS), and pharmacological applications. As a control, forepaw stimulation was used. Stimulation of PV interneurons in the somatosensory cortex evoked a biphasic fMRI response in the photostimulation site and negative fMRI signals in projection regions. Activation of PV neurons engaged two separable neurovascular mechanisms in the stimulation site. First, an early vasoconstrictive response caused by the PV-driven inhibition is sensitive to the brain state affected by anesthesia or wakefulness. Second, a later ultraslow vasodilation lasting a minute is closely dependent on the sum of interneuron multiunit activities, but is not due to increased metabolism, neural or vascular rebound, or increased glial activity. The ultraslow response is mediated by neuropeptide substance P (SP) released from PV neurons under anesthesia, but disappears during wakefulness, suggesting that SP signaling is important for vascular regulation during sleep. Our findings provide a comprehensive perspective about the role of PV neurons in controlling the vascular response.


Subject(s)
Parvalbumins , Substance P , Parvalbumins/metabolism , Substance P/pharmacology , Substance P/metabolism , Vasodilation , Vasoconstriction , Interneurons/physiology
9.
FASEB J ; 38(17): e70046, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39259502

ABSTRACT

Large-conductance, calcium-activated potassium channels (BK channels) and the Na/K-ATPase are expressed universally in vascular smooth muscle. The Na/K-ATPase may act via changes in the intracellular Ca2+ concentration mediated by the Na/Ca exchanger (NCX) and via Src kinase. Both pathways are known to regulate BK channels. Whether BK channels functionally interact in vascular smooth muscle cells with the Na/K-ATPase remains to be elucidated. Thus, this study addressed the hypothesis that BK channels limit ouabain-induced vasocontraction. Rat mesenteric arteries were studied using isometric myography, FURA-2 fluorimetry and proximity ligation assay. The BK channel blocker iberiotoxin potentiated methoxamine-induced contractions. The cardiotonic steroid, ouabain (10-5 M), induced a contractile effect of IBTX at basal tension prior to methoxamine administration and enhanced the pro-contractile effect of IBTX on methoxamine-induced contractions. These facilitating effects of ouabain were prevented by the inhibition of either NCX or Src kinase. Furthermore, inhibition of NCX or Src kinase reduced the BK channel-mediated negative feedback regulation of arterial contraction. The effects of NCX and Src kinase inhibition were independent of each other. Co-localization of the Na/K-ATPase and the BK channel was evident. Our data suggest that BK channels limit ouabain-induced vasocontraction by a dual mechanism involving the NCX and Src kinase signaling. The data propose that the NCX and the Src kinase pathways, mediating the ouabain-induced activation of the BK channel, act in an independent manner.


Subject(s)
Large-Conductance Calcium-Activated Potassium Channels , Mesenteric Arteries , Muscle, Smooth, Vascular , Ouabain , Sodium-Calcium Exchanger , Sodium-Potassium-Exchanging ATPase , src-Family Kinases , Animals , Ouabain/pharmacology , src-Family Kinases/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/drug effects , Rats , Male , Large-Conductance Calcium-Activated Potassium Channels/metabolism , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Sodium-Calcium Exchanger/metabolism , Vasoconstriction/drug effects , Rats, Wistar , Muscle Contraction/drug effects
10.
Arterioscler Thromb Vasc Biol ; 44(7): 1601-1616, 2024 07.
Article in English | MEDLINE | ID: mdl-38660803

ABSTRACT

BACKGROUND: RAB27A is a member of the RAS oncogene superfamily of GTPases and regulates cell secretory function. It, is expressed within blood vessels and perivascular adipose tissue. We hypothesized that loss of RAB27A would alter cardiovascular function. METHODS: Body weight of Rab27aash mice was measured from 2 to 18 months of age, along with glucose resorption at 6 and 12 months of age and glucose sensitivity at 18 months of age. Body weight and cellular and molecular features of perivascular adipose tissue and aortic tissue were examined in a novel C57BL/6J Rab27a null strain. Analyses included morphometric quantification and proteomic analyses. Wire myography measured vasoreactivity, and echocardiography measured cardiac function. Comparisons across ages and genotypes were evaluated via 2-way ANOVA with multiple comparison testing. Significance for myography was determined via 4-parameter nonlinear regression testing. RESULTS: Genome-wide association data linked rare human RAB27A variants with body mass index and glucose handling. Changes in glucose tolerance were observed in Rab27aash male mice at 18 months of age. In WT (wild-type) and Rab27a null male mice, body weight, adipocyte lipid area, and aortic area increased with age. In female mice, only body weight increased with age, independent of RAB27A presence. Protein signatures from male Rab27a null mice suggested greater associations with cardiovascular and metabolic phenotypes compared with female tissues. Wire myography results showed Rab27a null males exhibited increased vasoconstriction and reduced vasodilation at 8 weeks of age. Rab27a null females exhibited increased vasoconstriction and vasodilation at 20 weeks of age. Consistent with these vascular changes, male Rab27a null mice experienced age-related cardiomyopathy, with severe differences observed by 21 weeks of age. CONCLUSIONS: Global RAB27A loss impacted perivascular adipose tissue and thoracic aorta proteomic signatures, altered vasocontractile responses, and decreased left ventricular ejection fraction in mice.


Subject(s)
Mice, Inbred C57BL , Mice, Knockout , rab27 GTP-Binding Proteins , Animals , rab27 GTP-Binding Proteins/genetics , rab27 GTP-Binding Proteins/metabolism , Male , Female , Mice , Phenotype , Adipose Tissue/metabolism , Vasodilation , Vasoconstriction , Age Factors , Proteomics , Sex Factors , Aorta/metabolism , Aorta/physiopathology , Humans
11.
J Physiol ; 602(10): 2199-2226, 2024 May.
Article in English | MEDLINE | ID: mdl-38656747

ABSTRACT

During the urine storage phase, tonically contracting urethral musculature would have a higher energy consumption than bladder muscle that develops phasic contractions. However, ischaemic dysfunction is less prevalent in the urethra than in the bladder, suggesting that urethral vasculature has intrinsic properties ensuring an adequate blood supply. Diameter changes in rat or mouse urethral arterioles were measured using a video-tracking system. Intercellular Ca2+ dynamics in arteriolar smooth muscle (SMCs) and endothelial cells were visualised using NG2- and parvalbumin-GCaMP6 mice, respectively. Fluorescence immunohistochemistry was used to visualise the perivascular innervation. In rat urethral arterioles, sympathetic vasoconstrictions were predominantly suppressed by α,ß-methylene ATP (10 µM) but not prazosin (1 µM). Tadalafil (100 nM), a PDE5 inhibitor, diminished the vasoconstrictions in a manner reversed by N-ω-propyl-l-arginine hydrochloride (l-NPA, 1 µM), a neuronal NO synthesis (nNOS) inhibitor. Vesicular acetylcholine transporter immunoreactive perivascular nerve fibres co-expressing nNOS were intertwined with tyrosine hydroxylase immunoreactive sympathetic nerve fibres. In phenylephrine (1 µM) pre-constricted rat or mouse urethral arterioles, nerve-evoked vasodilatations or transient SMC Ca2+ reductions were largely diminished by l-nitroarginine (l-NA, 10 µM), a broad-spectrum NOS inhibitor, but not by l-NPA. The CGRP receptor antagonist BIBN-4096 (1 µM) shortened the vasodilatory responses, while atropine (1 µM) abolished the l-NA-resistant transient vasodilatory responses. Nerve-evoked endothelial Ca2+ transients were abolished by atropine plus guanethidine (10 µM), indicating its neurotransmitter origin and absence of non-adrenergic non-cholinergic endothelial NO release. In urethral arterioles, NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions pre- and post-synaptically to restrict arteriolar contractility. KEY POINTS: Despite a higher energy consumption of the urethral musculature than the bladder detrusor muscle, ischaemic dysfunction of the urethra is less prevalent than that of the bladder. In the urethral arterioles, sympathetic vasoconstrictions are predominately mediated by ATP, not noradrenaline. NO released from parasympathetic nerves counteracts sympathetic vasoconstrictions by its pre-synaptic inhibition of sympathetic transmission as well as post-synaptic arteriolar smooth muscle relaxation. Acetylcholine released from parasympathetic nerves contributes to endothelium-dependent, transient vasodilatations, while CGRP released from sensory nerves prolongs NO-mediated vasodilatations. PDE5 inhibitors could be beneficial to maintain and/or improve urethral blood supply and in turn the volume and contractility of urethral musculature.


Subject(s)
Urethra , Vasoconstriction , Animals , Female , Urethra/innervation , Urethra/physiology , Urethra/drug effects , Vasoconstriction/drug effects , Mice , Arterioles/drug effects , Arterioles/physiology , Arterioles/metabolism , Rats , Mice, Inbred C57BL , Rats, Sprague-Dawley , Sympathetic Nervous System/physiology , Sympathetic Nervous System/drug effects
12.
Stroke ; 55(4): 1113-1117, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38362763

ABSTRACT

Reversible cerebral vasoconstriction syndrome (RCVS) refers to segmental, multifocal constriction of intracranial arteries along with acute headache and resolves within weeks. It occurs more commonly in women, and 1 well-known manifestation of RCVS is postpartum angiopathy. Furthermore, the female sex is included in scoring systems designed to assist with diagnosing RCVS. Nonetheless, the literature is mixed regarding the true role of female and pregnancy-related factors in the pathophysiology of RCVS, and it is similarly unclear whether management of this disorder differs by sex. Given the association of RCVS with female sex and the importance of highlighting, recognizing, and managing stroke etiologies in women, herein, the author reviews what is currently known and unknown about the topic of RCVS in women.


Subject(s)
Headache Disorders, Primary , Stroke , Vasospasm, Intracranial , Pregnancy , Humans , Female , Vasoconstriction/physiology , Vasospasm, Intracranial/etiology , Stroke/diagnosis , Headache/etiology , Headache Disorders, Primary/etiology , Headache Disorders, Primary/complications
13.
Pflugers Arch ; 476(10): 1555-1570, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39023562

ABSTRACT

In the gastrointestinal tract, nitrergic inhibition of the arteriolar contractility has not been demonstrated. Here, we explored whether neurally-released nitric oxide (NO) inhibits sympathetic vasoconstrictions in the rat rectal arterioles. Changes in sympathetic vasoconstrictions and their nitrergic modulation in rats exposed to water avoidance stress (WAS, 10 days, 1 h per day) were also examined. In rectal submucosal preparations, changes in arteriolar diameter were monitored using video microscopy. In control or sham-treated rats, electrical field stimulation (EFS)-induced sympathetic vasoconstrictions were increased by the neuronal nitric oxide synthase (nNOS) inhibitor L-NPA (1 µM) and diminished by the cyclic guanosine monophosphate-specific phosphodiesterase 5 (PDE5) inhibitor tadalafil (10 nM). In phenylephrine-constricted, guanethidine-treated arterioles, EFS-induced vasodilatations were inhibited by the calcitonin gene-related peptide (CGRP) receptor antagonist BIBN-4096 (1 µM) but not L-NPA. Perivascular nNOS-immunoreactive nitrergic fibres co-expressing the parasympathetic marker vesicular acetylcholine transporter (VAChT) were intermingled with tyrosine hydroxylase (TH)-immunoreactive sympathetic fibres expressing soluble guanylate cyclase (sGC), a receptor for NO. In WAS rats in which augmented sympathetic vasoconstrictions were developed, L-NPA failed to further increase the vasoconstrictions, while tadalafil-induced inhibition of the vasoconstrictions was attenuated. Phenylephrine- or α,ß-methylene ATP-induced vasoconstrictions and acetylcholine-induced vasodilatations were unaltered by WAS. Thus, in arterioles of the rat rectal submucosa, NO released from parasympathetic nerves appears to inhibit sympathetic vasoconstrictions presumably by reducing sympathetic transmitter release. In WAS rats, sympathetic vasoconstrictions are augmented at least partly due to the diminished pre-junctional nitrergic inhibition of transmitter release without changing α-adrenoceptor or P2X-purinoctor mediated vasoconstriction and endothelium-dependent vasodilatation.


Subject(s)
Nitric Oxide , Rectum , Vasoconstriction , Animals , Rats , Male , Vasoconstriction/drug effects , Nitric Oxide/metabolism , Arterioles/drug effects , Arterioles/metabolism , Arterioles/physiology , Tadalafil/pharmacology , Rats, Wistar , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide Synthase Type I/antagonists & inhibitors , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Sympathetic Nervous System/metabolism , Stress, Psychological/physiopathology , Stress, Psychological/metabolism , Parasympathetic Nervous System/drug effects , Parasympathetic Nervous System/physiology
14.
Am J Physiol Renal Physiol ; 326(5): F802-F813, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38545652

ABSTRACT

Men are likely at greater risk for heat-induced acute kidney injury compared with women, possibly due to differences in vascular control. We tested the hypothesis that the renal vasoconstrictor and vasodilator responses will be greater in younger women compared with men during passive heat stress. Twenty-five healthy adults [12 women (early follicular phase) and 13 men] completed two experimental visits, heat stress or normothermic time-control, assigned in a block-randomized crossover design. During heat stress, participants wore a water-perfused suit perfused with 50°C water. Core temperature was increased by ∼0.8°C in the first hour before commencing a 2-min cold pressor test (CPT). Core temperature remained clamped and at 1-h post-CPT, subjects ingested a whey protein shake (1.2 g of protein/kg body wt), and measurements were taken pre-, 75 min, and 150 min post-protein. Beat-to-beat blood pressure (Penaz method) was measured and segmental artery vascular resistance (VR, Doppler ultrasound) was calculated as segmental artery blood velocity ÷ mean arterial pressure. CPT-induced increases in segmental artery VR did not differ between trials (trial effect: P = 0.142) nor between men (heat stress: 1.5 ± 1.0 mmHg/cm/s, normothermia: 1.4 ± 1.0 mmHg/cm/s) and women (heat stress: 1.4 ± 1.2 mmHg/cm/s, normothermia: 2.1 ± 1.1 mmHg/cm/s) (group effect: P = 0.429). Reductions in segmental artery VR following oral protein loading did not differ between trials (trial effect: P = 0.080) nor between men (heat stress: -0.6 ± 0.8 mmHg/cm/s, normothermia: -0.6 ± 0.6 mmHg/cm/s) and women (heat stress: -0.5 ± 0.5 mmHg/cm/s, normothermia: -1.1 ± 0.6 mmHg/cm/s) (group effect: P = 0.204). Renal vasoconstrictor responses to the cold pressor test and vasodilator responses following an oral protein load during heat stress or normothermia do not differ between younger men and younger women in the early follicular phase of the menstrual cycle.NEW & NOTEWORTHY The mechanisms underlying greater heat-induced acute kidney injury risk in men versus women remain unknown. This study examined renal vascular control, including both vasodilatory (oral protein load) and vasoconstrictor (cold presser test) responses, during normothermia and heat stress and compared these responses between men and women. The results indicated that in both conditions neither renal vasodilatory nor vasoconstrictor responses differ between younger men and younger women.


Subject(s)
Heat-Shock Response , Vasodilation , Humans , Female , Male , Adult , Young Adult , Heat-Shock Response/physiology , Cross-Over Studies , Sex Factors , Vascular Resistance , Kidney/blood supply , Vasoconstriction , Renal Circulation , Renal Artery , Heat Stress Disorders/physiopathology , Blood Pressure/physiology , Age Factors
15.
Am J Physiol Heart Circ Physiol ; 327(1): H45-H55, 2024 07 01.
Article in English | MEDLINE | ID: mdl-38700474

ABSTRACT

Patients with heart failure with reduced ejection fraction (HFrEF) have exaggerated sympathoexcitation and impaired peripheral vascular conductance. Evidence demonstrating consequent impaired functional sympatholysis is limited in HFrEF. This study aimed to determine the magnitude of reduced limb vascular conductance during sympathoexcitation and whether functional sympatholysis would abolish such reductions in HFrEF. Twenty patients with HFrEF and 22 age-matched controls performed the cold pressor test (CPT) [left foot 2-min in -0.5 (1)°C water] alone and with right handgrip exercise (EX + CPT). Right forearm vascular conductance (FVC), forearm blood flow (FBF), and mean arterial pressure (MAP) were measured. Patients with HFrEF had greater decreases in %ΔFVC and %ΔFBF during CPT (both P < 0.0001) but not EX + CPT (P = 0.449, P = 0.199) compared with controls, respectively. %ΔFVC and %ΔFBF decreased from CPT to EX + CPT in patients with HFrEF (both P < 0.0001) and controls (P = 0.018, P = 0.015), respectively. MAP increased during CPT and EX + CPT in both groups (all P < 0.0001). MAP was greater in controls than in patients with HFrEF during EX + CPT (P = 0.025) but not CPT (P = 0.209). In conclusion, acute sympathoexcitation caused exaggerated peripheral vasoconstriction and reduced peripheral blood flow in patients with HFrEF. Handgrip exercise abolished sympathoexcitatory-mediated peripheral vasoconstriction and normalized peripheral blood flow in patients with HFrEF. These novel data reveal intact functional sympatholysis in the upper limb and suggest that exercise-mediated, local control of blood flow is preserved when cardiac limitations that are cardinal to HFrEF are evaded with dynamic handgrip exercise.NEW & NOTEWORTHY Patients with HFrEF demonstrate impaired peripheral blood flow regulation, evidenced by heightened peripheral vasoconstriction that reduces limb blood flow in response to physiological sympathoexcitation (cold pressor test). Despite evidence of exaggerated sympathetic vasoconstriction, patients with HFrEF demonstrate a normal hyperemic response to moderate-intensity handgrip exercise. Most importantly, acute, simultaneous handgrip exercise restores normal limb vasomotor control and vascular conductance during acute sympathoexcitation (cold pressor test), suggesting intact functional sympatholysis in patients with HFrEF.


Subject(s)
Exercise , Forearm , Hand Strength , Heart Failure , Stroke Volume , Sympathetic Nervous System , Vasoconstriction , Humans , Male , Sympathetic Nervous System/physiopathology , Female , Heart Failure/physiopathology , Middle Aged , Forearm/blood supply , Aged , Regional Blood Flow , Case-Control Studies , Ventricular Function, Left , Cold Temperature , Arterial Pressure , Rest
16.
Biochem Biophys Res Commun ; 712-713: 149961, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38648679

ABSTRACT

Blood pressure is a crucial physiological parameter and its abnormalities can cause a variety of health problems. We have previously reported that mice with systemic deletion of nardilysin (NRDC), an M16 family metalloprotease, exhibit hypotension. In this study, we aimed to clarify the role of NRDC in vascular smooth muscle cell (VSMC) by generating VSMC-specific Nrdc knockout (VSMC-KO) mice. Our findings reveal that VSMC-KO mice also exhibit hypotension. Aortas isolated from VSMC-KO mice exhibited a weakened contractile response to phenylephrine, accompanied by reduced phosphorylation of myosin light chain 2 and decreased rhoA expression. VSMC isolated from VSMC-KO aortas showed a reduced increase in intracellular Ca2+ concentration induced by α-stimulants. These findings suggest that NRDC in VSMC regulates vascular contraction and blood pressure by modulating Ca2+ dynamics.


Subject(s)
Blood Pressure , Calcium , Metalloendopeptidases , Mice, Knockout , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Calcium/metabolism , Mice , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Male , Mice, Inbred C57BL , Hypotension/metabolism , Cells, Cultured , Aorta/metabolism , Aorta/cytology , Vasoconstriction/drug effects , Calcium Signaling
17.
Microcirculation ; 31(6): e12874, 2024 08.
Article in English | MEDLINE | ID: mdl-39011763

ABSTRACT

Shock is characterized with vascular hyporesponsiveness to vasoconstrictors, thereby to cause refractory hypotension, insufficient tissue perfusion, and multiple organ dysfunction. The vascular hyporeactivity persisted even though norepinephrine and fluid resuscitation were administrated, it is of critical importance to find new potential target. Ion channels are crucial in the regulation of cell membrane potential and affect vasoconstriction and vasodilation. It has been demonstrated that many types of ion channels including K+ channels, Ca2+ permeable channels, and Na+ channels exist in vascular smooth muscle cells and endothelial cells, contributing to the regulation of vascular homeostasis and vasomotor function. An increasing number of studies suggested that the structural and functional alterations of ion channels located in arteries contribute to vascular hyporesponsiveness during shock, but the underlying mechanisms remained to be fully clarified. Therefore, the expression and functional changes in ion channels in arteries associated with shock are reviewed, to pave the way for further exploring the potential of ion channel-targeted compounds in treating refractory hypotension in shock.


Subject(s)
Ion Channels , Shock , Humans , Shock/physiopathology , Shock/metabolism , Animals , Ion Channels/metabolism , Vasoconstriction/physiology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/physiopathology , Vasodilation/physiology , Hypotension/physiopathology , Hypotension/metabolism
18.
J Pharmacol Exp Ther ; 390(3): 280-287, 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-38262743

ABSTRACT

Ischemia with non-obstructive coronary arteries (INOCA), caused by coronary artery spasm, has gained increasing attention owing to the poor quality of life of impacted patients. Therapeutic options to address INOCA remain limited, and developing new therapeutic agents is desirable. Here, we examined whether soluble guanylate cyclase (sGC) activators could be beneficial in preventing coronary spasms. In organ chamber experiments with isolated canine coronary arteries, prostaglandin F2 α -induced, endothelin-1-induced, 5-hydroxytryptamine-induced, and potassium chloride-induced contractions were suppressed by the sGC activator BAY 60-2770 (0.1, 1, and 10 nM). In isolated pig coronary arteries, BAY 60-2770 (0.1, 1, and 10 nM) could prolong the cycle length of phasic contractions induced by 3,4-diaminopyridine, as well as lower the peak and bottom tension of the contraction in a concentration-dependent manner. Additionally, BAY 60-2770 (1 pM-0.1 µM) evoked a concentration-related relaxation to a greater extent in small (first diagonal branch) coronary arteries than in large (left anterior descending) coronary arteries. In vasopressin-induced angina model rats, pretreatment with BAY 60-2770 (3 µg/kg) suppressed electrocardiogram S-wave depression induced by arginine vasopressin without affecting changes in mean blood pressure and heart rate. These findings suggest that BAY 60-2770 could be valuable in preventing both large and small coronary spasms. Therefore, sGC activators could represent a novel and efficacious therapeutic option for INOCA. SIGNIFICANCE STATEMENT: The soluble guanylate cyclase (sGC) activator BAY 60-2770 exerted antispastic effects on the coronary arteries in animal vasospasm models as proof-of-concept studies. These data can help to support potential clinical development with sGC activators, suitable for human use in patients with vasospastic angina.


Subject(s)
Benzoates , Coronary Vessels , Hydrocarbons, Fluorinated , Soluble Guanylyl Cyclase , Animals , Soluble Guanylyl Cyclase/metabolism , Dogs , Rats , Coronary Vessels/drug effects , Male , Swine , Benzoates/pharmacology , Benzoates/therapeutic use , Hydrocarbons, Fluorinated/pharmacology , Guanylate Cyclase/metabolism , Disease Models, Animal , Rats, Sprague-Dawley , Enzyme Activators/pharmacology , Enzyme Activators/therapeutic use , Vasoconstriction/drug effects , Biphenyl Compounds
19.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R110-R120, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38009212

ABSTRACT

Exercise intolerance is a hallmark symptom of heart failure and to a large extent stems from reductions in cardiac output that occur due to the inherent ventricular dysfunction coupled with enhanced muscle metaboreflex-induced functional coronary vasoconstriction, which limits increases in coronary blood flow. This creates a further mismatch between O2 delivery and O2 demand, which may activate the cardiac sympathetic afferent reflex (CSAR), causing amplification of the already increased sympathetic activity in a positive-feedback fashion. We used our chronically instrumented conscious canine model to evaluate if chronic ablation of afferents responsible for the CSAR would attenuate the gain of muscle metaboreflex before and after induction of heart failure. After afferent ablation, the gain of the muscle metaboreflex control of mean arterial pressure was significantly reduced before (-239.5 ± 16 to -95.2 ± 8 mmHg/L/min) and after the induction of heart failure (-185.6 ± 14 to -95.7 ± 12 mmHg/L/min). Similar results were observed for the strength (gain) of muscle metaboreflex control of heart rate, cardiac output, and ventricular contractility. Thus, we conclude that the CSAR contributes significantly to the strength of the muscle metaboreflex in normal animals with heart failure serving as an effective positive-feedback amplifier thereby further increasing sympathetic activity.NEW & NOTEWORTHY The powerful pressor responses from the CSAR arise via O2 delivery versus O2 demand imbalance. Muscle metaboreflex activation (MMA) simultaneously elicits coronary vasoconstriction (which is augmented in heart failure) and profound increases in cardiac work thereby upsetting oxygen balance. Whether MMA activates the CSAR thereby amplifying MMA responses is unknown. We observed that removal of the CSAR afferents attenuated the strength of the muscle metaboreflex in normal and subjects with heart failure.


Subject(s)
Heart Failure , Muscle, Skeletal , Animals , Dogs , Humans , Feedback , Vasoconstriction , Reflex/physiology , Heart Rate , Blood Pressure
20.
Am J Physiol Regul Integr Comp Physiol ; 327(1): R14-R24, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38738294

ABSTRACT

Blood flow to the active muscles and arterial blood pressure (ABP) increase during dynamic exercise, whereas blood flow to inactive organs (e.g., splanchnic organs and inactive limbs) declines. Aging leads to exaggerated ABP responses to exercise in females, but whether this is related to greater splanchnic vasoconstriction is unknown. This study sought to clarify the effect of aging in females on celiac artery blood flow during dynamic light-intensity exercise. Twelve healthy young females (YF: 20 ± 2 yr, mean ± SD) and 12 healthy older females (OF: 71 ± 4 yr) performed dynamic knee-extension and knee-flexion exercises at 30% of heart rate reserve for 4 min. The absolute changes from baseline (Δ) for mean arterial blood pressure (MAP), celiac artery mean blood flow (celMBF), and celiac vascular conductance (celVC) during exercise were calculated. ABP was measured using an automated sphygmomanometer, and celMBF was recorded by Doppler ultrasonography. The increase in MAP during exercise was greater in OF than in YF (YF: +14 ± 7 mmHg, OF: +24 ± 13 mmHg, P = 0.028). The celMBF decreased during exercise in both groups, but there was no significant difference in the response between YF and OF (YF: -93.0 ± 66.1 mL/min, OF: -89.6 ± 64.0 mL/min, P = 0.951). The celVC also decreased during exercise and remained lower than baseline during exercise. However, the response was not different between YF and OF (YF: -1.8 ± 1.0 mL/min/mmHg, OF: -1.5 ± 0.6 mL/min/mmHg, P = 0.517). These results demonstrate that aging in females has minimal influence on splanchnic artery hemodynamic responses during dynamic light-intensity exercise, suggesting that exaggerated ABP responses during exercise in OF are not due to greater splanchnic vasoconstriction.NEW & NOTEWORTHY During exercise, the splanchnic arteries vasoconstrict, contributing to blood flow redistribution and the blood pressure response. Blood pressure responses to exercise are exaggerated with aging in females; however, the physiological mechanism responsible has not been clarified. We show that celiac artery blood flow changes during light-intensity dynamic exercise do not differ with age in females. This indicates the exaggerated blood pressure to exercise with aging is likely not due to a difference in splanchnic vasoconstriction.


Subject(s)
Aging , Celiac Artery , Exercise , Humans , Female , Exercise/physiology , Aging/physiology , Young Adult , Aged , Regional Blood Flow , Splanchnic Circulation , Blood Flow Velocity , Arterial Pressure , Vasoconstriction , Blood Pressure/physiology , Adult , Age Factors
SELECTION OF CITATIONS
SEARCH DETAIL