Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.316
Filter
1.
Physiol Rev ; 101(1): 353-415, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32816652

ABSTRACT

The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.


Subject(s)
Neural Pathways/physiology , Sensation/physiology , Somatosensory Cortex/physiology , Vibrissae/physiology , Animals , Brain Diseases/physiopathology , Brain-Computer Interfaces , Humans , Mice , Signal Transduction/physiology , Vibrissae/innervation
2.
J Neurosci ; 44(34)2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39025676

ABSTRACT

During learning of a sensory discrimination task, the cortical and subcortical regions display complex spatiotemporal dynamics. During learning, both the amygdala and cortex link stimulus information to its appropriate association, for example, a reward. In addition, both structures are also related to nonsensory parameters such as body movements and licking during the reward period. However, the emergence of the cortico-amygdala relationships during learning is largely unknown. To study this, we combined wide-field cortical imaging with fiber photometry to simultaneously record cortico-amygdala population dynamics as male mice learn a whisker-dependent go/no-go task. We were able to simultaneously record neuronal populations from the posterior cortex and either the basolateral amygdala (BLA) or central/medial amygdala (CEM). Prior to learning, the somatosensory and associative cortex responded during sensation, while amygdala areas did not show significant responses. As mice became experts, amygdala responses emerged early during the sensation period, increasing in the CEM, while decreasing in the BLA. Interestingly, amygdala and cortical responses were associated with task-related body movement, displaying significant responses ∼200 ms before movement initiation which led to licking for the reward. A correlation analysis between the cortex and amygdala revealed negative and positive correlation with the BLA and CEM, respectively, only in the expert case. These results imply that learning induces an involvement of the cortex and amygdala which may aid to link sensory stimuli with appropriate associations.


Subject(s)
Amygdala , Mice, Inbred C57BL , Animals , Male , Amygdala/physiology , Mice , Cerebral Cortex/physiology , Vibrissae/physiology , Vibrissae/innervation , Discrimination Learning/physiology , Discrimination, Psychological/physiology , Reward , Learning/physiology
3.
J Neurosci ; 44(25)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38769008

ABSTRACT

Rapid eye movement (REM) sleep, also referred to as paradoxical sleep for the striking resemblance of its electroencephalogram (EEG) to the one observed in wakefulness, is characterized by the occurrence of transient events such as limb twitches or facial and rapid eye movements. Here, we investigated the local activity of the primary somatosensory or barrel cortex (S1) in naturally sleeping head-fixed male mice during REM. Through local field potential recordings, we uncovered local appearances of spindle waves in the barrel cortex during REM concomitant with strong delta power, challenging the view of a wakefulness-like activity in REM. We further performed extra- and intracellular recordings of thalamic cells in head-fixed mice. Our data show high-frequency thalamic bursts of spikes and subthreshold spindle oscillations in approximately half of the neurons of the ventral posterior medial nucleus which further confirmed the thalamic origin of local cortical spindles in S1 in REM. Cortical spindle oscillations were suppressed, while thalamus spike firing increased, associated with rapid mouse whisker movements and S1 cortical activity transitioned to an activated state. During REM, the sensory thalamus and barrel cortex therefore alternate between high (wake-like) and low (non-REM sleep-like) activation states, potentially providing a neuronal substrate for mnemonic processes occurring during this paradoxical sleep stage.


Subject(s)
Electroencephalography , Sleep, REM , Somatosensory Cortex , Thalamus , Animals , Mice , Sleep, REM/physiology , Somatosensory Cortex/physiology , Male , Thalamus/physiology , Mice, Inbred C57BL , Vibrissae/physiology , Vibrissae/innervation , Wakefulness/physiology , Neural Pathways/physiology
4.
Nat Rev Neurosci ; 20(9): 533-546, 2019 09.
Article in English | MEDLINE | ID: mdl-31367018

ABSTRACT

Tactile sensory information from facial whiskers provides nocturnal tunnel-dwelling rodents, including mice and rats, with important spatial and textural information about their immediate surroundings. Whiskers are moved back and forth to scan the environment (whisking), and touch signals from each whisker evoke sparse patterns of neuronal activity in whisker-related primary somatosensory cortex (wS1; barrel cortex). Whisking is accompanied by desynchronized brain states and cell-type-specific changes in spontaneous and evoked neuronal activity. Tactile information, including object texture and location, appears to be computed in wS1 through integration of motor and sensory signals. wS1 also directly controls whisker movements and contributes to learned, whisker-dependent, goal-directed behaviours. The cell-type-specific neuronal circuitry in wS1 that contributes to whisker sensory perception is beginning to be defined.


Subject(s)
Nerve Net/physiology , Signal Transduction/physiology , Somatosensory Cortex/physiology , Touch/physiology , Vibrissae/physiology , Animals , Mice , Rats , Rodentia , Sensorimotor Cortex/physiology , Vibrissae/innervation
5.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33688051

ABSTRACT

For neuronal circuits in the brain to mature, necessary synapses must be maintained and redundant synapses eliminated through experience-dependent mechanisms. However, the functional differentiation of these synapse types during the refinement process remains elusive. Here, we addressed this issue by distinct labeling and direct recordings of presynaptic terminals fated for survival and for elimination in the somatosensory thalamus. At surviving terminals, the number of total releasable vesicles was first enlarged, and then calcium channels and fast-releasing synaptic vesicles were tightly coupled in an experience-dependent manner. By contrast, transmitter release mechanisms did not mature at terminals fated for elimination, irrespective of sensory experience. Nonetheless, terminals fated for survival and for elimination both exhibited developmental shortening of action potential waveforms that was experience independent. Thus, we dissected experience-dependent and -independent developmental maturation processes of surviving and eliminated presynaptic terminals during neuronal circuit refinement.


Subject(s)
Presynaptic Terminals/physiology , Action Potentials , Afferent Pathways/physiology , Animals , Calcium Channels/metabolism , Mice , Nerve Net/physiology , Neurotransmitter Agents/metabolism , Synaptic Vesicles/metabolism , Trigeminal Nuclei/physiology , Ventral Thalamic Nuclei/physiology , Vibrissae/innervation , Vibrissae/physiology
6.
J Neurosci ; 42(22): 4435-4448, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35501157

ABSTRACT

The whiskers of rodents are a key sensory organ that provides critical tactile information for animal navigation and object exploration throughout life. Previous work has explored the developmental sensory-driven activation of the primary sensory cortex processing whisker information (wS1), also called barrel cortex. This body of work has shown that the barrel cortex is already activated by sensory stimuli during the first postnatal week. However, it is currently unknown when over the course of development these stimuli begin being processed by higher-order cortical areas, such as secondary whisker somatosensory area (wS2). Here we investigate the developmental engagement of wS2 by whisker stimuli and the emergence of corticocortical communication from wS1 to wS2. Using in vivo wide-field imaging and multielectrode recordings in control and conditional KO mice of either sex with thalamocortical innervation defects, we find that wS1 and wS2 are able to process bottom-up information coming from the thalamus from birth. We also identify that it is only at the end of the first postnatal week that wS1 begins to provide functional excitation into wS2, switching to more inhibitory actions after the second postnatal week. Therefore, we have uncovered a developmental window when information transfer between wS1 and wS2 reaches mature function.SIGNIFICANCE STATEMENT At the end of the first postnatal week, the primary whisker somatosensory area starts providing excitatory input to the secondary whisker somatosensory area 2. This excitatory drive weakens during the second postnatal week and switches to inhibition in the adult.


Subject(s)
Somatosensory Cortex , Vibrissae , Animals , Mice , Somatosensory Cortex/physiology , Thalamus , Touch/physiology , Vibrissae/innervation
7.
Annu Rev Neurosci ; 37: 183-203, 2014.
Article in English | MEDLINE | ID: mdl-24821429

ABSTRACT

Facial muscles drive whisker movements, which are important for active tactile sensory perception in mice and rats. These whisker muscles are innervated by cholinergic motor neurons located in the lateral facial nucleus. The whisker motor neurons receive synaptic inputs from premotor neurons, which are located within the brain stem, the midbrain, and the neocortex. Complex, distributed neural circuits therefore regulate whisker movement during behavior. This review focuses specifically on cortical whisker motor control. The whisker primary motor cortex (M1) strongly innervates brain stem reticular nuclei containing whisker premotor neurons, which might form a central pattern generator for rhythmic whisker protraction. In a parallel analogous pathway, the whisker primary somatosensory cortex (S1) strongly projects to the brain stem spinal trigeminal interpolaris nucleus, which contains whisker premotor neurons innervating muscles for whisker retraction. These anatomical pathways may play important functional roles, since stimulation of M1 drives exploratory rhythmic whisking, whereas stimulation of S1 drives whisker retraction.


Subject(s)
Brain Stem/physiology , Motor Cortex/physiology , Somatosensory Cortex/physiology , Vibrissae/innervation , Vibrissae/physiology , Animals , Facial Nucleus/physiology , Motor Neurons/physiology , Neural Inhibition/physiology , Neural Pathways
8.
J Comput Neurosci ; 50(2): 181-201, 2022 05.
Article in English | MEDLINE | ID: mdl-34854018

ABSTRACT

While cells within barrel cortex respond primarily to deflections of their principal whisker (PW), they also exhibit responses to non-principal, or adjacent, whiskers (AWs), albeit responses with diminished amplitudes and longer latencies. The origin of multiwhisker receptive fields of barrel cells remains a point of controversy within the experimental literature, with three contending possibilities: (i) barrel cells inherit their AW responses from the AW responses of thalamocortical (TC) cells within their aligned barreloid; (ii) the axons of TC cells within a barreloid ramify to innervate multiple barrels, rather than only terminating within their aligned barrel; (iii) lateral intracortical transmission between barrels conveys AW responsivity to barrel cells. In this work, we develop a detailed, biologically plausible model of multiple barrels in order to examine possibility (iii); in order to isolate the dynamics that possibility (iii) entails, we incorporate lateral connections between barrels while assuming that TC cells respond only to their PW and that TC cell axons are confined to their home barrel. We show that our model is capable of capturing a broad swath of experimental observations on multiwhisker receptive field dynamics within barrels, and we compare and contrast the dynamics of this model with model dynamics from prior work in which employ a similar general modeling strategy to examine possibility (i).


Subject(s)
Models, Neurological , Somatosensory Cortex , Animals , Axons/physiology , Physical Stimulation , Rats , Vibrissae/innervation , Vibrissae/physiology
9.
PLoS Comput Biol ; 17(5): e1008615, 2021 05.
Article in English | MEDLINE | ID: mdl-33989280

ABSTRACT

Extracellular recording is an accessible technique used in animals and humans to study the brain physiology and pathology. As the number of recording channels and their density grows it is natural to ask how much improvement the additional channels bring in and how we can optimally use the new capabilities for monitoring the brain. Here we show that for any given distribution of electrodes we can establish exactly what information about current sources in the brain can be recovered and what information is strictly unobservable. We demonstrate this in the general setting of previously proposed kernel Current Source Density method and illustrate it with simplified examples as well as using evoked potentials from the barrel cortex obtained with a Neuropixels probe and with compatible model data. We show that with conceptual separation of the estimation space from experimental setup one can recover sources not accessible to standard methods.


Subject(s)
Brain/physiology , Models, Neurological , Animals , Computational Biology , Computer Simulation , Electrodes , Evoked Potentials/physiology , Extracellular Space/physiology , Humans , Male , Rats , Rats, Wistar , Somatosensory Cortex/physiology , Vibrissae/innervation , Vibrissae/physiology
10.
PLoS Comput Biol ; 17(9): e1009353, 2021 09.
Article in English | MEDLINE | ID: mdl-34534208

ABSTRACT

Rats and mice use their whiskers to probe the environment. By rhythmically swiping their whiskers back and forth they can detect the existence of an object, locate it, and identify its texture. Localization can be accomplished by inferring the whisker's position. Rhythmic neurons that track the phase of the whisking cycle encode information about the azimuthal location of the whisker. These neurons are characterized by preferred phases of firing that are narrowly distributed. Consequently, pooling the rhythmic signal from several upstream neurons is expected to result in a much narrower distribution of preferred phases in the downstream population, which however has not been observed empirically. Here, we show how spike timing dependent plasticity (STDP) can provide a solution to this conundrum. We investigated the effect of STDP on the utility of a neural population to transmit rhythmic information downstream using the framework of a modeling study. We found that under a wide range of parameters, STDP facilitated the transfer of rhythmic information despite the fact that all the synaptic weights remained dynamic. As a result, the preferred phase of the downstream neuron was not fixed, but rather drifted in time at a drift velocity that depended on the preferred phase, thus inducing a distribution of preferred phases. We further analyzed how the STDP rule governs the distribution of preferred phases in the downstream population. This link between the STDP rule and the distribution of preferred phases constitutes a natural test for our theory.


Subject(s)
Models, Neurological , Vibrissae/innervation , Vibrissae/physiology , Action Potentials/physiology , Animals , Computational Biology , Computer Simulation , Evoked Potentials, Somatosensory/physiology , Learning/physiology , Mechanoreceptors/physiology , Mice , Motor Neurons/physiology , Neuronal Plasticity/physiology , Rats , Somatosensory Cortex/physiology , Thalamus/physiology
11.
Cereb Cortex ; 31(10): 4533-4553, 2021 08 26.
Article in English | MEDLINE | ID: mdl-33963394

ABSTRACT

Sparse population activity is a well-known feature of supragranular sensory neurons in neocortex. The mechanisms underlying sparseness are not well understood because a direct link between the neurons activated in vivo, and their cellular properties investigated in vitro has been missing. We used two-photon calcium imaging to identify a subset of neurons in layer L2/3 (L2/3) of mouse primary somatosensory cortex that are highly active following principal whisker vibrotactile stimulation. These high responders (HRs) were then tagged using photoconvertible green fluorescent protein for subsequent targeting in the brain slice using intracellular patch-clamp recordings and biocytin staining. This approach allowed us to investigate the structural and functional properties of HRs that distinguish them from less active control cells. Compared to less responsive L2/3 neurons, HRs displayed increased levels of stimulus-evoked and spontaneous activity, elevated noise and spontaneous pairwise correlations, and stronger coupling to the population response. Intrinsic excitability was reduced in HRs, while we found no evidence for differences in other electrophysiological and morphological parameters. Thus, the choice of which neurons participate in stimulus encoding may be determined largely by network connectivity rather than by cellular structure and function.


Subject(s)
Neurons/physiology , Somatosensory Cortex/physiology , Animals , Green Fluorescent Proteins , Individuality , Male , Mice , Mice, Inbred C57BL , Neurons/ultrastructure , Noise , Patch-Clamp Techniques , Physical Stimulation , Somatosensory Cortex/ultrastructure , Vibrissae/innervation
12.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499425

ABSTRACT

Recovery of mimic function after facial nerve transection is poor. The successful regrowth of regenerating motor nerve fibers to reinnervate their targets is compromised by (i) poor axonal navigation and excessive collateral branching, (ii) abnormal exchange of nerve impulses between adjacent regrowing axons, namely axonal crosstalk, and (iii) insufficient synaptic input to the axotomized facial motoneurons. As a result, axotomized motoneurons become hyperexcitable but unable to discharge. We review our findings, which have addressed the poor return of mimic function after facial nerve injuries, by testing the hypothesized detrimental component, and we propose that intensifying the trigeminal sensory input to axotomized and electrophysiologically silent facial motoneurons improves the specificity of the reinnervation of appropriate targets. We compared behavioral, functional, and morphological parameters after single reconstructive surgery of the facial nerve (or its buccal branch) with those obtained after identical facial nerve surgery, but combined with direct or indirect stimulation of the ipsilateral infraorbital nerve. We found that both methods of trigeminal sensory stimulation, i.e., stimulation of the vibrissal hairs and manual stimulation of the whisker pad, were beneficial for the outcome through improvement of the quality of target reinnervation and recovery of vibrissal motor performance.


Subject(s)
Facial Nerve Injuries , Rats , Animals , Nerve Regeneration/physiology , Rats, Wistar , Facial Nerve/surgery , Vibrissae/innervation , Recovery of Function/physiology
13.
J Neurosci ; 40(40): 7714-7723, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32913109

ABSTRACT

Injury induces synaptic, circuit, and systems reorganization. After unilateral amputation or stroke, this functional loss disrupts the interhemispheric interaction between intact and deprived somatomotor cortices to recruit deprived cortex in response to intact limb stimulation. This recruitment has been implicated in enhanced intact sensory function. In other patients, maladaptive consequences such as phantom limb pain can occur. We used unilateral whisker denervation in male and female mice to detect circuitry alterations underlying interhemispheric cortical reorganization. Enhanced synaptic strength from the intact cortex via the corpus callosum (CC) onto deep neurons in deprived primary somatosensory barrel cortex (S1BC) has previously been detected. It was hypothesized that specificity in this plasticity may depend on to which area these neurons projected. Increased connectivity to somatomotor areas such as contralateral S1BC, primary motor cortex (M1) and secondary somatosensory cortex (S2) may underlie beneficial adaptations, while increased connectivity to pain areas like anterior cingulate cortex (ACC) might underlie maladaptive pain phenotypes. Neurons from the deprived S1BC that project to intact S1BC were hyperexcitable, had stronger responses and reduced inhibitory input to CC stimulation. M1-projecting neurons also showed increases in excitability and CC input strength that was offset with enhanced inhibition. S2 and ACC-projecting neurons showed no changes in excitability or CC input. These results demonstrate that subgroups of output neurons undergo dramatic and specific plasticity after peripheral injury. The changes in S1BC-projecting neurons likely underlie enhanced reciprocal connectivity of S1BC after unilateral deprivation consistent with the model that interhemispheric takeover supports intact whisker processing.SIGNIFICANCE STATEMENT Amputation, peripheral injury, and stroke patients experience widespread alterations in neural activity after sensory loss. A hallmark of this reorganization is the recruitment of deprived cortical space which likely aids processing and thus enhances performance on intact sensory systems. Conversely, this recruitment of deprived cortical space has been hypothesized to underlie phenotypes like phantom limb pain and hinder recovery. A mouse model of unilateral denervation detected remarkable specificity in alterations in the somatomotor circuit. These changes underlie increased reciprocal connectivity between intact and deprived cortical hemispheres. This increased connectivity may help explain the enhanced intact sensory processing detected in humans.


Subject(s)
Corpus Callosum/physiology , Neuronal Plasticity , Somatosensory Cortex/physiology , Vibrissae/innervation , Afferent Pathways/cytology , Afferent Pathways/physiology , Animals , Corpus Callosum/cytology , Female , Functional Laterality , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Somatosensory Cortex/cytology
14.
J Neurosci ; 40(11): 2228-2245, 2020 03 11.
Article in English | MEDLINE | ID: mdl-32001612

ABSTRACT

Sensory cortex exhibits receptive field plasticity throughout life in response to changes in sensory experience and offers the experimental possibility of aligning functional changes in receptive field properties with underpinning structural changes in synapses. We looked at the effects on structural plasticity of two different patterns of whisker deprivation in male and female mice: chessboard deprivation, which causes functional plasticity; and all deprived, which does not. Using 2-photon microscopy and chronic imaging through a cranial window over the barrel cortex, we found that layer 2/3 neurones exhibit robust structural plasticity, but only in response to whisker deprivation patterns that cause functional plasticity. Chessboard pattern deprivation caused dual-component plasticity in layer 2/3 by (1) increasing production of new spines that subsequently persisted for weeks and (2) enlarging spine head sizes in the preexisting stable spine population. Structural plasticity occurred on basal dendrites, but not apical dendrites. Both components of plasticity were absent in αCaMKII-T286A mutants that lack LTP and experience-dependent potentiation in barrel cortex, implying that αCaMKII autophosphorylation is not only important for stabilization and enlargement of spines, but also for new spine production. These studies therefore reveal the relationship between spared whisker potentiation in layer 2/3 neurones and the form and mechanisms of structural plasticity processes that underlie them.SIGNIFICANCE STATEMENT This study provides a missing link in a chain of reasoning that connects LTP to experience-dependent functional plasticity in vivo We found that increases in dendritic spine formation and spine enlargement (both of which are characteristic of LTP) only occurred in barrel cortex during sensory deprivation that produced potentiation of sensory responses. Furthermore, the dendritic spine plasticity did not occur during sensory deprivation in mice lacking LTP and experience-dependent potentiation (αCaMKII autophosphorylation mutants). We also found that the dual-component dendritic spine plasticity only occurred on basal dendrites and not on apical dendrites, thereby resolving a paradox in the literature suggesting that layer 2/3 neurones lack structural plasticity in response to sensory deprivation.


Subject(s)
Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Dendritic Spines/physiology , Neuronal Plasticity/physiology , Neurons/enzymology , Sensory Deprivation/physiology , Somatosensory Cortex/physiopathology , Animals , Calcium-Calmodulin-Dependent Protein Kinase Type 2/deficiency , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Cell Size , Dendritic Spines/ultrastructure , Female , Male , Mice , Mice, Inbred C57BL , Neurons/ultrastructure , Phosphorylation , Protein Processing, Post-Translational , Skin Window Technique , Somatosensory Cortex/cytology , Somatosensory Disorders/physiopathology , Vibrissae/injuries , Vibrissae/innervation
15.
J Neurosci ; 40(42): 8160-8173, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32928888

ABSTRACT

The amyloid-ß (Aß) peptide, a key pathogenic factor in Alzheimer's disease, attenuates the increase in cerebral blood flow (CBF) evoked by neural activity (functional hyperemia), a vital homeostatic response in which NMDA receptors (NMDARs) play a role through nitric oxide, and the CBF increase produced by endothelial factors. Tissue plasminogen activator (tPA), which is reduced in Alzheimer's disease and in mouse models of Aß accumulation, is required for the full expression of the NMDAR-dependent component of functional hyperemia. Therefore, we investigated whether tPA is involved in the neurovascular dysfunction of Aß. tPA activity was reduced, and the tPA inhibitor plasminogen inhibitor-1 (PAI-1) was increased in male mice expressing the Swedish mutation of the amyloid precursor protein (tg2576). Counteracting the tPA reduction with exogenous tPA or with pharmacological inhibition or genetic deletion of PAI-1 completely reversed the attenuation of the CBF increase evoked by whisker stimulation but did not ameliorate the response to the endothelium-dependent vasodilator acetylcholine. The tPA deficit attenuated functional hyperemia by suppressing NMDAR-dependent nitric oxide production during neural activity. Pharmacological inhibition of PAI-1 increased tPA activity, prevented neurovascular uncoupling, and ameliorated cognition in 11- to 12-month-old tg2576 mice, effects associated with a reduction of cerebral amyloid angiopathy but not amyloid plaques. The data unveil a selective role of the tPA in the suppression of functional hyperemia induced by Aß and in the mechanisms of cerebral amyloid angiopathy, and support the possibility that modulation of the PAI-1-tPA pathway may be beneficial in diseases associated with amyloid accumulation.SIGNIFICANCE STATEMENT Amyloid-ß (Aß) peptides have profound neurovascular effects that may contribute to cognitive impairment in Alzheimer's disease. We found that Aß attenuates the increases in blood flow evoked by neural activation through a reduction in tissue plasminogen activator (tPA) caused by upregulation of its endogenous inhibitor plasminogen inhibitor-1 (PAI-1). tPA deficiency prevents NMDA receptors from triggering nitric oxide production, thereby attenuating the flow increase evoked by neural activity. PAI-1 inhibition restores tPA activity, rescues neurovascular coupling, reduces amyloid deposition around blood vessels, and improves cognition in a mouse model of Aß accumulation. The findings demonstrate a previously unappreciated role of tPA in Aß-related neurovascular dysfunction and in vascular amyloid deposition. Restoration of tPA activity could be of therapeutic value in diseases associated with amyloid accumulation.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Blood Vessels/drug effects , Blood Vessels/physiopathology , Cerebral Amyloid Angiopathy/physiopathology , Cerebrovascular Disorders/physiopathology , Neurons/drug effects , Tissue Plasminogen Activator/deficiency , Amyloid beta-Protein Precursor/metabolism , Animals , Cerebral Amyloid Angiopathy/genetics , Cerebrovascular Circulation , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/prevention & control , Cognition , Humans , Hyperemia/physiopathology , Male , Mice , Mice, Knockout , Mice, Transgenic , Nitric Oxide/biosynthesis , Physical Stimulation , Receptors, N-Methyl-D-Aspartate/metabolism , Serpin E2/genetics , Tissue Plasminogen Activator/genetics , Vibrissae/innervation
16.
J Neurochem ; 159(4): 778-788, 2021 11.
Article in English | MEDLINE | ID: mdl-34490902

ABSTRACT

Corticosteroids are stress-related hormones that maintain homeostasis. The most effective corticosteroids are corticosterone (CORT) in rodents and cortisol in primates. 11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1; EC 1.1.1.146), encoded by Hsd11b1, is a key regulator of the local concentration of CORT/cortisol. Hsd11b1 expression in layer 5 of the primary somatosensory cortex has been shown in adult mice. However, its localization in the entire neocortex, especially during development, has not been fully addressed. Here, we established robust and dynamic expression profiles of Hsd11b1 in the developing mouse neocortex. Hsd11b1 was found mostly in pyramidal neurons. By retrograde tracing, we observed that some Hsd11b1-positive cells were projection neurons, indicating that at least some were excitatory. At postnatal day 0 (P0), Hsd11b1 was expressed in the deep layer of the somatosensory cortex. Then, from P3 to P8, the expression area expanded broadly; it was observed in layers 4 and 5, spanning the whole neocortex, including the primary motor cortex (M1) and the primary visual cortex (V1). The positive region gradually narrowed from P14 onwards and was ultimately limited to layer 5 of the somatosensory cortex at P26 and later. Furthermore, we administered CORT to nursing dams to increase the systemic CORT level of their pups. Here, we observed a reduced number of Hsd11b1-positive cells in the neocortex of these pups. Our observation suggests that Hsd11b1 expression in the developing neocortex is affected by systemic CORT levels. It is possible that stress on mothers influences the neocortical development of their children.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/biosynthesis , 11-beta-Hydroxysteroid Dehydrogenase Type 1/genetics , Neocortex/metabolism , Animals , Corticosterone/pharmacology , Denervation , Female , Gene Expression , Mice , Mice, Inbred ICR , Motor Cortex/growth & development , Motor Cortex/metabolism , Neocortex/growth & development , Neurons/metabolism , Pregnancy , Pyramidal Cells/metabolism , Somatosensory Cortex/metabolism , Vibrissae/innervation , Visual Cortex/growth & development , Visual Cortex/metabolism
17.
J Anat ; 238(4): 942-955, 2021 04.
Article in English | MEDLINE | ID: mdl-33099774

ABSTRACT

Vibrissae are tactile hairs found mainly on the rostrum of most mammals. The follicle, which is surrounded by a large venous sinus, is called "follicle-sinus complex" (FSC). This complex is highly innervated by somatosensitive fibers and reached by visceromotor fibers that innervate the surrounding vessels. The surrounding striated muscles receive somatomotor fibers from the facial nerve. The bottlenose dolphin (Tursiops truncatus), a frequently described member of the delphinid family, possesses this organ only in the postnatal period. However, information on the function of the vibrissal complex in this latter species is scarce. Recently, psychophysical experiments on the river-living Guiana dolphin (Sotalia guianensis) revealed that the FSC could work as an electroreceptor in murky waters. In the present study, we analyzed the morphology and innervation of the FSC of newborn (n = 8) and adult (n = 3) bottlenose dolphins. We used Masson's trichrome stain and antibodies against neurofilament 200 kDa (NF 200), protein gene product (PGP 9.5), substance P (SP), calcitonin gene-related peptide, and tyrosine hydroxylase (TH) to characterize the FSC of the two age classes. Masson's trichrome staining revealed a structure almost identical to that of terrestrial mammals except for the fact that the FSC was occupied only by a venous sinus and that the vibrissal shaft lied within the follicle. Immunostaining for PGP 9.5 and NF 200 showed somatosensory fibers finishing high along the follicle with Merkel nerve endings and free nerve endings. We also found SP-positive fibers mostly in the surrounding blood vessels and TH both in the vessels and in the mesenchymal sheath. The FSC of the bottlenose dolphin, therefore, possesses a rich somatomotor innervation and a set of peptidergic visceromotor fibers. This anatomical disposition suggests a mechanoreceptor function in the newborns, possibly finalized to search for the opening of the mother's nipples. In the adult, however, this structure could change into a proprioceptive function in which the vibrissal shaft could provide information on the degree of rotation of the head. In the absence of psychophysical experiments in this species, the hypothesis of electroreception cannot be rejected.


Subject(s)
Bottle-Nosed Dolphin/anatomy & histology , Vibrissae/innervation , Animals , Animals, Newborn , Biological Evolution , Bottle-Nosed Dolphin/growth & development , Female , Male , Vibrissae/growth & development
18.
Cereb Cortex ; 30(4): 2070-2082, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31922194

ABSTRACT

Active sleep (AS) provides a unique developmental context for synchronizing neural activity within and between cortical and subcortical structures. In week-old rats, sensory feedback from myoclonic twitches, the phasic motor activity that characterizes AS, promotes coherent theta oscillations (4-8 Hz) in the hippocampus and red nucleus, a midbrain motor structure. Sensory feedback from twitches also triggers rhythmic activity in sensorimotor cortex in the form of spindle bursts, which are brief oscillatory events composed of rhythmic components in the theta, alpha/beta (8-20 Hz), and beta2 (20-30 Hz) bands. Here we ask whether one or more of these spindle-burst components are communicated from sensorimotor cortex to hippocampus. By recording simultaneously from whisker barrel cortex and dorsal hippocampus in 8-day-old rats, we show that AS, but not other behavioral states, promotes cortico-hippocampal coherence specifically in the beta2 band. By cutting the infraorbital nerve to prevent the conveyance of sensory feedback from whisker twitches, cortical-hippocampal beta2 coherence during AS was substantially reduced. These results demonstrate the necessity of sensory input, particularly during AS, for coordinating rhythmic activity between these two developing forebrain structures.


Subject(s)
Hippocampus/physiology , Sensorimotor Cortex/physiology , Sleep, REM/physiology , Theta Rhythm/physiology , Vibrissae/physiology , Animals , Animals, Newborn , Female , Male , Rats , Rats, Sprague-Dawley , Vibrissae/innervation
19.
Cereb Cortex ; 30(4): 2418-2433, 2020 04 14.
Article in English | MEDLINE | ID: mdl-31828301

ABSTRACT

Sensory experience regulates the structural and functional wiring of sensory cortices. In previous work, we showed that whisker deprivation (WD) from birth not only reduced excitatory synaptic transmission of layer (L) 2/3 pyramidal neurons of the correspondent barrel cortex in mice, but also cross-modally reduced synaptic transmission of L2/3 pyramidal neurons in other sensory cortices. Here, we used in utero electroporation, in combination with optical clearing, to examine the main morphological components regulating neural circuit wiring, namely presynaptic bouton density, spine density, as well as dendrite and axon arbor lengths. We found that WD from P0 to P14 reduced presynaptic bouton density in both L4 and L2/3 inputs to L2/3 pyramidal neurons, as well as spine density across the dendritic tree of L2/3 pyramidal neurons, in the barrel field of the primary somatosensory cortex. The cross-modal effects in the primary auditory cortex were manifested mostly as reduced dendrite and axon arbor size, as well as reduced bouton density of L2/3 inputs. Increasing sensory experience by rearing mice in an enriched environment rescued the effects of WD. Together, these results demonstrate that multiple morphological factors contribute to experience-dependent structural plasticity during early wiring of the sensory cortices.


Subject(s)
Auditory Cortex/cytology , Auditory Cortex/growth & development , Neuronal Plasticity/physiology , Somatosensory Cortex/cytology , Somatosensory Cortex/growth & development , Animals , Animals, Newborn , Axons/physiology , Dendrites/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Transgenic , Pyramidal Cells/physiology , Vibrissae/innervation , Vibrissae/physiology
20.
Cereb Cortex ; 30(5): 3352-3369, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32043145

ABSTRACT

Electrophysiological recordings have established that GABAergic interneurons regulate excitability, plasticity, and computational function within local neural circuits. Importantly, GABAergic inhibition is focally disrupted around sites of brain injury. However, it remains unclear whether focal imbalances in inhibition/excitation lead to widespread changes in brain activity. Here, we test the hypothesis that focal perturbations in excitability disrupt large-scale brain network dynamics. We used viral chemogenetics in mice to reversibly manipulate parvalbumin interneuron (PV-IN) activity levels in whisker barrel somatosensory cortex. We then assessed how this imbalance affects cortical network activity in awake mice using wide-field optical neuroimaging of pyramidal neuron GCaMP dynamics as well as local field potential recordings. We report 1) that local changes in excitability can cause remote, network-wide effects, 2) that these effects propagate differentially through intra- and interhemispheric connections, and 3) that chemogenetic constructs can induce plasticity in cortical excitability and functional connectivity. These findings may help to explain how focal activity changes following injury lead to widespread network dysfunction.


Subject(s)
Cortical Excitability/physiology , Interneurons/physiology , Neural Pathways/physiopathology , Pyramidal Cells/physiology , Somatosensory Cortex/physiopathology , Animals , Electrocorticography , Interneurons/metabolism , Mice , Neural Inhibition/physiology , Neural Pathways/diagnostic imaging , Neural Pathways/metabolism , Neuronal Plasticity/physiology , Optical Imaging , Parvalbumins , Pyramidal Cells/metabolism , Signal Processing, Computer-Assisted , Somatosensory Cortex/diagnostic imaging , Somatosensory Cortex/metabolism , Vibrissae/innervation
SELECTION OF CITATIONS
SEARCH DETAIL