Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Plant Cell ; 35(11): 4002-4019, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37648256

ABSTRACT

Heading date (flowering time), which greatly influences regional and seasonal adaptability in rice (Oryza sativa), is regulated by many genes in different photoperiod pathways. Here, we characterized a heading date gene, Early heading date 5 (Ehd5), using a modified bulked segregant analysis method. The ehd5 mutant showed late flowering under both short-day and long-day conditions, as well as reduced yield, compared to the wild type. Ehd5, which encodes a WD40 domain-containing protein, is induced by light and follows a circadian rhythm expression pattern. Transcriptome analysis revealed that Ehd5 acts upstream of the flowering genes Early heading date 1 (Ehd1), RICE FLOWERING LOCUS T 1 (RFT1), and Heading date 3a (Hd3a). Functional analysis showed that Ehd5 directly interacts with Rice outermost cell-specific gene 4 (Roc4) and Grain number, plant height, and heading date 8 (Ghd8), which might affect the formation of Ghd7-Ghd8 complexes, resulting in increased expression of Ehd1, Hd3a, and RFT1. In a nutshell, these results demonstrate that Ehd5 functions as a positive regulator of rice flowering and provide insight into the molecular mechanisms underlying heading date.


Subject(s)
Flowers , Oryza , Circadian Rhythm , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant/genetics , Oryza/genetics , Oryza/metabolism , Photoperiod , Plant Proteins/genetics , Plant Proteins/metabolism , WD40 Repeats/genetics
2.
BMC Genomics ; 25(1): 796, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179961

ABSTRACT

The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.


Subject(s)
Autophagy-Related Proteins , Autophagy , Foot-and-Mouth Disease Virus , Gene Knockout Techniques , Virus Replication , Foot-and-Mouth Disease Virus/genetics , Foot-and-Mouth Disease Virus/physiology , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Animals , Autophagy/genetics , Cell Line , WD40 Repeats/genetics , CRISPR-Cas Systems , Foot-and-Mouth Disease/virology
3.
BMC Genomics ; 25(1): 851, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39261781

ABSTRACT

BACKGROUND: The WD40 domain, one of the most abundant in eukaryotic genomes, is widely involved in plant growth and development, secondary metabolic biosynthesis, and mediating responses to biotic and abiotic stresses. WD40 repeat (WD40) protein has been systematically studied in several model plants but has not been reported in the Capsicum annuum (pepper) genome. RESULTS: Herein, 269, 237, and 257 CaWD40 genes were identified in the Zunla, CM334, and Zhangshugang genomes, respectively. CaWD40 sequences from the Zunla genome were selected for subsequent analysis, including chromosomal localization, phylogenetic relationships, sequence characteristics, motif compositions, and expression profiling. CaWD40 proteins were unevenly distributed on 12 chromosomes, encompassing 19 tandem duplicate gene pairs. The 269 CaWD40s were divided into six main branches (A to F) with 17 different types of domain distribution. The CaWD40 gene family exhibited diverse expression patterns, and several genes were specifically expressed in flowers and seeds. Yeast two-hybrid (Y2H) and dual-luciferase assay indicated that CaWD40-91 could interact with CaAN1 and CaDYT1, suggesting its involvement in anthocyanin biosynthesis and male sterility in pepper. CONCLUSIONS: In summary, we systematically characterized the phylogeny, classification, structure, and expression of the CaWD40 gene family in pepper. Our findings provide a valuable foundation for further functional investigations on WD40 genes in pepper.


Subject(s)
Anthocyanins , Capsicum , Phylogeny , Plant Proteins , Capsicum/genetics , Capsicum/metabolism , Anthocyanins/biosynthesis , Anthocyanins/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Gene Expression Regulation, Plant , Plant Infertility/genetics , WD40 Repeats/genetics , Multigene Family , Gene Expression Profiling , Chromosomes, Plant/genetics
4.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38674078

ABSTRACT

Canonical autophagy is an evolutionarily conserved process that forms double-membrane structures and mediates the degradation of long-lived proteins (LLPs). Noncanonical autophagy (NCA) is an important alternative pathway involving the formation of microtubule-associated protein 1 light chain 3 (LC3)-positive structures that are independent of partial core autophagy proteins. NCA has been defined by the conjugation of ATG8s to single membranes (CASM). During canonical autophagy and NCA/CASM, LC3 undergoes a lipidation modification, and ATG16L1 is a crucial protein in this process. Previous studies have reported that the WDR domain of ATG16L1 is not necessary for canonical autophagy. However, our study found that WDR domain deficiency significantly impaired LLP degradation in basal conditions and slowed down LC3-II accumulation in canonical autophagy. We further demonstrated that the observed effect was due to a reduced interaction between ATG16L1 and FIP200/WIPI2, without affecting lysosome function or fusion. Furthermore, we also found that the WDR domain of ATG16L1 is crucial for chemical-induced NCA/CASM. The results showed that removing the WDR domain or introducing the K490A mutation in ATG16L1 significantly inhibited the NCA/CASM, which interrupted the V-ATPase-ATG16L1 axis. In conclusion, this study highlights the significance of the WDR domain of ATG16L1 for both canonical autophagy and NCA functions, improving our understanding of its role in autophagy.


Subject(s)
Autophagy-Related Proteins , Autophagy , Membrane Proteins , Microtubule-Associated Proteins , Phosphate-Binding Proteins , WD40 Repeats , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Autophagy/genetics , Humans , WD40 Repeats/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Lysosomes/metabolism , HEK293 Cells , HeLa Cells
5.
J Virol ; 96(5): e0182721, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35020472

ABSTRACT

Human cytomegalovirus (HCMV) has a large (∼235 kb) genome with more than 200 predicted open reading frames that exploits numerous cellular factors to facilitate its replication. A key feature of HCMV-infected cells is the emergence of a distinctive membranous cytoplasmic compartment termed the virion assembly compartment (vAC). Here, we report that host protein WD repeat domain 11 (WDR11) plays a key role in vAC formation and virion morphogenesis. We found that WDR11 was upregulated at both mRNA and protein levels during HCMV infection. At the late stage of HCMV replication, WDR11 relocated to the vAC and colocalized with markers of the trans-Golgi network (TGN) and vAC. Depletion of WDR11 hindered HCMV-induced membrane reorganization of the Golgi and TGN, altered vAC formation, and impaired HCMV secondary envelopment and virion morphogenesis. Further, motifs critical for the localization of WDR11 in TGN were identified by alanine-scanning mutagenesis. Mutation of these motifs led to WDR11 mislocation outside the TGN and loss of vAC formation. Taken together, these data indicate that host protein WDR11 is required for efficient viral replication at the stage of virion assembly, possibly by facilitating the remodeling of the endomembrane system for vAC formation and virion morphogenesis. IMPORTANCE During the late phase of human cytomegalovirus (HCMV) infection, the endomembrane system is dramatically reorganized, resulting in the formation of a unique structure termed the virion assembly compartment (vAC), which is critical for the assembly of infectious virions. The mechanism of HCMV-induced vAC formation is still not fully understood. In this report, we identified a host factor, WDR11, that plays an important role in vAC formation. Our findings argue that WDR11 contributes to the relocation of the Golgi and trans-Golgi network to the vAC, a membrane reorganization process that appears to be required for efficient virion maturation. The present work provides new insights into the vAC formation and HCMV virion morphogenesis and a potential novel target for antiviral treatment.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Host Microbial Interactions , WD40 Repeats , Cytomegalovirus/genetics , Cytomegalovirus/metabolism , Cytomegalovirus Infections/physiopathology , Cytomegalovirus Infections/virology , Humans , Morphogenesis , Virion/metabolism , Virus Assembly/genetics , Virus Replication/genetics , WD40 Repeats/genetics , trans-Golgi Network/metabolism
6.
Am J Hum Genet ; 105(2): 425-433, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31327510

ABSTRACT

While genetic causes are known for many syndromes involving developmental anomalies, a large number of individuals with overlapping phenotypes remain undiagnosed. Using exome-sequencing analysis and review of matchmaker databases, we have discovered four de novo missense variants predicted to affect the N-terminal region of WDR37-p.Ser119Phe, p.Thr125Ile, p.Ser129Cys, and p.Thr130Ile-in unrelated individuals with a previously unrecognized syndrome. Features of WDR37 syndrome include the following: ocular anomalies such as corneal opacity/Peters anomaly, coloboma, and microcornea; dysmorphic facial features; significant neurological impairment with structural brain defects and seizures; poor feeding; poor post-natal growth; variable skeletal, cardiac, and genitourinary defects; and death in infancy in one individual. WDR37 encodes a protein of unknown function with seven predicted WD40 domains and no previously reported human pathogenic variants. Immunocytochemistry and western blot studies showed that wild-type WDR37 is localized predominantly in the cytoplasm and mutant proteins demonstrate similar protein levels and localization. CRISPR-Cas9-mediated genome editing generated zebrafish mutants with novel missense and frameshift alleles: p.Ser129Phe, p.Ser129Cys (which replicates one of the human variants), p.Ser129Tyr, p.Lys127Cysfs, and p.Gln95Argfs. Zebrafish carrying heterozygous missense variants demonstrated poor growth and larval lethality, while heterozygotes with frameshift alleles survived to adulthood, suggesting a potential dominant-negative mechanism for the missense variants. RNA-seq analysis of zebrafish embryos carrying a missense variant detected significant upregulation of cholesterol biosynthesis pathways. This study identifies variants in WDR37 associated with human disease and provides insight into its essential role in vertebrate development and possible molecular functions.


Subject(s)
Abnormalities, Multiple/genetics , Coloboma/genetics , Developmental Disabilities/genetics , Intellectual Disability/genetics , Mutation, Missense , Nuclear Proteins/genetics , WD40 Repeats/genetics , Abnormalities, Multiple/pathology , Adult , Amino Acid Sequence , Animals , Child , Child, Preschool , Coloboma/pathology , Developmental Disabilities/pathology , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/pathology , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Sequence Homology , Syndrome , Zebrafish
7.
Am J Hum Genet ; 105(2): 413-424, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31327508

ABSTRACT

WD40 repeat-containing proteins form a large family of proteins present in all eukaryotes. Here, we identified five pediatric probands with de novo variants in WDR37, which encodes a member of the WD40 repeat protein family. Two probands shared one variant and the others have variants in nearby amino acids outside the WD40 repeats. The probands exhibited shared phenotypes of epilepsy, colobomas, facial dysmorphology reminiscent of CHARGE syndrome, developmental delay and intellectual disability, and cerebellar hypoplasia. The WDR37 protein is highly conserved in vertebrate and invertebrate model organisms and is currently not associated with a human disease. We generated a null allele of the single Drosophila ortholog to gain functional insights and replaced the coding region of the fly gene CG12333/wdr37 with GAL4. These flies are homozygous viable but display severe bang sensitivity, a phenotype associated with seizures in flies. Additionally, the mutant flies fall when climbing the walls of the vials, suggesting a defect in grip strength, and repeat the cycle of climbing and falling. Similar to wall clinging defect, mutant males often lose grip of the female abdomen during copulation. These phenotypes are rescued by using the GAL4 in the CG12333/wdr37 locus to drive the UAS-human reference WDR37 cDNA. The two variants found in three human subjects failed to rescue these phenotypes, suggesting that these alleles severely affect the function of this protein. Taken together, our data suggest that variants in WDR37 underlie a novel syndromic neurological disorder.


Subject(s)
Body Dysmorphic Disorders/pathology , Cerebellum/abnormalities , Coloboma/pathology , Developmental Disabilities/pathology , Epilepsy/pathology , Intellectual Disability/pathology , Mutation , Nervous System Malformations/pathology , WD40 Repeats/genetics , Adult , Amino Acid Sequence , Animals , Body Dysmorphic Disorders/genetics , Cerebellum/pathology , Child , Coloboma/genetics , Developmental Disabilities/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Epilepsy/genetics , Female , Humans , Infant , Infant, Newborn , Intellectual Disability/genetics , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Nervous System Malformations/genetics , Phenotype , Sequence Homology , Young Adult
8.
Biochem Biophys Res Commun ; 596: 71-75, 2022 03 12.
Article in English | MEDLINE | ID: mdl-35121371

ABSTRACT

The mouse WD repeat and FYVE domain containing 1 (Wdfy1) gene is located in chromosome 1qC4 and spans over 73.7 kilobases. It encodes a protein of 410-amino acid protein that shares 97.8% amino acid sequence identity with the human WDFY1 protein. However, the expression pattern of WDFY1 in reproductive organs and its function in male fertility remain unknown. In this study, we generated transgenic mice expressing FLAG-Wdfy1-mCherry cDNA driven by the Wdfy1 promoter to clarify the expression of WDFY1. The results showed that WDFY1 is highly expressed in mouse testes and located in the cytoplasm of late pachytene spermatocytes to elongated spermatids. Interestingly, the global Wdfy1 knockout (KO) male mice displayed normal growth, development, and fertility. Further histological analysis of Wdfy1 knockout mouse testes revealed that all spermatogenic cells are present in Wdfy1 KO seminiferous tubules. Together, our data demonstrate that WDFY1 is dispensable for mouse spermatogenesis and male fertility.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Fertility/genetics , Gene Expression Regulation , Spermatogenesis/genetics , Testis/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Blotting, Western , Female , Gene Expression Profiling/methods , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction , Spermatids/cytology , Spermatids/metabolism , Testis/cytology , WD40 Repeats/genetics
9.
Plant Cell ; 31(10): 2332-2352, 2019 10.
Article in English | MEDLINE | ID: mdl-31427469

ABSTRACT

A crucial step for mRNA polyadenylation is poly(A) signal recognition by trans-acting factors. The mammalian cleavage and polyadenylation specificity factor (CPSF) complex components CPSF30 and WD repeat-containing protein33 (WDR33) recognize the canonical AAUAAA for polyadenylation. In Arabidopsis (Arabidopsis thaliana), the flowering time regulator FY is the homolog of WDR33. However, its role in mRNA polyadenylation is poorly understood. Using poly(A) tag sequencing, we found that >50% of alternative polyadenylation (APA) events are altered in fy single mutants or double mutants with oxt6 (a null mutant of AtCPSF30), but mutation of the FY WD40-repeat has a stronger effect than deletion of the plant-unique Pro-Pro-Leu-Pro-Pro (PPLPP) domain. fy mutations disrupt AAUAAA or AAUAAA-like poly(A) signal recognition. Notably, A-rich signal usage is suppressed in the WD40-repeat mutation but promoted in PPLPP-domain deficiency. However, fy mutations do not aggravate the altered signal usage in oxt6 Furthermore, the WD40-repeat mutation shows a preference for 3' untranslated region shortening, but the PPLPP-domain deficiency shows a preference for lengthening. Interestingly, the WD40-repeat mutant exhibits shortened primary roots and late flowering with alteration of APA of related genes. Importantly, the long transcripts of two APA genes affected in fy are related to abiotic stress responses. These results reveal a conserved and specific role of FY in mRNA polyadenylation.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Polyadenylation/genetics , RNA 3' Polyadenylation Signals/genetics , RNA, Messenger/genetics , Transcriptome/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , 3' Untranslated Regions/genetics , Cleavage And Polyadenylation Specificity Factor/genetics , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Gene Ontology , Gene Regulatory Networks , Mutation , Phenotype , Plant Roots/metabolism , Protein Binding , Protein Domains/genetics , WD40 Repeats/genetics
10.
Proc Natl Acad Sci U S A ; 116(5): 1579-1584, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30635421

ABSTRACT

Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein with both a Ras of complex (ROC) domain and a kinase domain (KD) and, therefore, exhibits both GTPase and kinase activities. Human genetics studies have linked LRRK2 as a major genetic contributor to familial and sporadic Parkinson's disease (PD), a neurodegenerative movement disorder that inflicts millions worldwide. The C-terminal region of LRRK2 is a Trp-Asp-40 (WD40) domain with poorly defined biological functions but has been implicated in microtubule interaction. Here, we present the crystal structure of the WD40 domain of human LRRK2 at 2.6-Å resolution, which reveals a seven-bladed WD40 fold. The structure displays a dimeric assembly in the crystal, which we further confirm by measurements in solution. We find that structure-based and PD-associated disease mutations in the WD40 domain including the common G2385R polymorphism mainly compromise dimer formation. Assessment of full-length LRRK2 kinase activity by measuring phosphorylation of Rab10, a member of the family of Rab GTPases known to be important kinase substrates of LRRK2, shows enhancement of kinase activity by several dimerization-defective mutants including G2385R, although dimerization impairment does not always result in kinase activation. Furthermore, mapping of phylogenetically conserved residues onto the WD40 domain structure reveals surface patches that may be important for additional functions of LRRK2. Collectively, our analyses provide insights for understanding the structures and functions of LRRK2 and suggest the potential utility of LRRK2 kinase inhibitors in treating PD patients with WD40 domain mutations.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , WD40 Repeats/genetics , Crystallization/methods , Crystallography, X-Ray , Dimerization , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mutation/genetics , Parkinson Disease/drug therapy , Parkinson Disease/genetics , Parkinson Disease/metabolism , Protein Kinase Inhibitors/pharmacology
11.
J Cell Mol Med ; 25(14): 6573-6583, 2021 07.
Article in English | MEDLINE | ID: mdl-34050597

ABSTRACT

Asthma is a serious public health problem worldwide, without effective therapeutic methods. Our previous study indicated that glucocorticoid-induced transcript 1 gene (GLCCI1) knockout reduces the sensitivity to glucocorticoid in asthmatic mouse. Here, we explored the role and action mechanism of GLCCI1 in asthma development. In ovalbumin-sensitized mice, airway resistance and tissue damage increased, the production of inflammatory cytokines were up-regulated, GLCCI1 expression was reduced and autophagy was activated. Increasing of GLCCI1 inhibited human and mouse airway epithelial cell (AEC) autophagy, while decreasing of GLCCI1 promoted autophagy. Furthermore, we found that GLCCI1 bound with WD repeat domain 45B (WDR45B) and inhibited its expression. Increasing of WDR45B partly reversed the inhibition of GLCCI1 to autophagy-related proteins expression and autophagosome formation in vitro. Increasing of WDR45B in vivo reversed the improvement of GLCCI1 on airway remodelling in asthma and the inhibition to autophagy level in lung tissues. Overall, our data showed that GLCCI1 improved airway remodelling in ovalbumin-sensitized mice through inhibiting autophagy via combination with WDR45B and inhibiting its expression. Our results proved a new idea for asthma treatment.


Subject(s)
Asthma/genetics , Collagen/metabolism , Receptors, Glucocorticoid/genetics , Respiratory Hypersensitivity/genetics , Administration, Inhalation , Airway Remodeling/genetics , Animals , Asthma/pathology , Asthma/therapy , Autophagy/genetics , Autophagy-Related Proteins/genetics , Disease Models, Animal , Humans , Lung/metabolism , Mice , Protein Binding/genetics , Respiratory Hypersensitivity/pathology , WD40 Repeats/genetics
12.
Plant Cell Environ ; 44(10): 3273-3282, 2021 10.
Article in English | MEDLINE | ID: mdl-34251043

ABSTRACT

The Arabidopsis COP1/SPA complex acts as a cullin4-based E3 ubiquitin ligase to suppress photomorphogenesis in darkness. It is a tetrameric complex of two COP1 and two SPA proteins. Both COP1 and SPA are essential for the activity of this complex, and they both contain a C-terminal WD-repeat domain responsible for substrate recruitment and binding of DDB1. Here, we used a WD domain swap-approach to address the cooperativity of COP1 and SPA proteins. We found that expression of a chimeric COP1 carrying the WD-repeat domain of SPA1 mostly complemented the cop1-4-mutant phenotype in darkness, indicating that the WD repeat of SPA1 can replace the WD repeat of COP1. In the light, SPA1-WD partially substituted for COP1-WD. In contrast, expression of a chimeric SPA1 protein carrying the WD repeat of COP1 did not rescue the spa-mutant phenotype. Together, our findings demonstrate that a SPA1-type WD repeat is essential for COP1/SPA activity, while a COP1-type WD is in part dispensible. Moreover, a complex with four SPA1-WDs is more active than a complex with only two SPA1-WDs. A homology model of SPA1-WD based on the crystal structure of COP1-WD uncovered two insertions and several amino acid substitutions at the predicted substrate-binding pocket of SPA1-WD.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/growth & development , Arabidopsis/genetics , Cell Cycle Proteins/genetics , Coat Protein Complex I/genetics , WD40 Repeats/genetics , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/metabolism , Cell Cycle Proteins/metabolism , Coat Protein Complex I/metabolism , Plant Development/radiation effects
13.
Nucleic Acids Res ; 47(7): 3795-3810, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30788511

ABSTRACT

Upon triggering by their inducer, signal transduction ATPases with numerous domains (STANDs), initially in monomeric resting forms, multimerize into large hubs that activate target macromolecules. This process requires conversion of the STAND conserved core (the NOD) from a closed form encasing an ADP molecule to an ATP-bound open form prone to multimerize. In the absence of inducer, autoinhibitory interactions maintain the NOD closed. In particular, in resting STAND proteins with an LRR- or WD40-type sensor domain, the latter establishes interactions with the NOD that are disrupted in the multimerization-competent forms. Here, we solved the first crystal structure of a STAND with a tetratricopeptide repeat sensor domain, PH0952 from Pyrococcus horikoshii, revealing analogous NOD-sensor contacts. We use this structural information to experimentally demonstrate that similar interactions also exist in a PH0952 homolog, the MalT STAND archetype, and actually contribute to the MalT autoinhibition in vitro and in vivo. We propose that STAND activation occurs by stepwise release of autoinhibitory contacts coupled to the unmasking of inducer-binding determinants. The MalT example suggests that STAND weak autoinhibitory interactions could assist the binding of inhibitory proteins by placing in register inhibitor recognition elements born by two domains.


Subject(s)
Adenosine Triphosphatases/chemistry , Protein Conformation , Protein Domains/genetics , Tetratricopeptide Repeat/genetics , Adenosine Triphosphatases/genetics , Crystallography, X-Ray , Escherichia coli/genetics , Humans , Models, Molecular , Protein Structure, Tertiary/genetics , Signal Transduction/genetics , WD40 Repeats/genetics
14.
Nucleic Acids Res ; 47(17): 9433-9447, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31400120

ABSTRACT

Histone H3K4 methylation is an epigenetic mark associated with actively transcribed genes. This modification is catalyzed by the mixed lineage leukaemia (MLL) family of histone methyltransferases including MLL1, MLL2, MLL3, MLL4, SET1A and SET1B. The catalytic activity of this family is dependent on interactions with additional conserved proteins, but the structural basis for subunit assembly and the mechanism of regulation is not well understood. We used a hybrid methods approach to study the assembly and biochemical function of the minimally active MLL1 complex (MLL1, WDR5 and RbBP5). A combination of small angle X-ray scattering, cross-linking mass spectrometry, nuclear magnetic resonance spectroscopy and computational modeling were used to generate a dynamic ensemble model in which subunits are assembled via multiple weak interaction sites. We identified a new interaction site between the MLL1 SET domain and the WD40 ß-propeller domain of RbBP5, and demonstrate the susceptibility of the catalytic function of the complex to disruption of individual interaction sites.


Subject(s)
DNA-Binding Proteins/chemistry , Histone-Lysine N-Methyltransferase/chemistry , Histones/chemistry , Myeloid-Lymphoid Leukemia Protein/chemistry , Catalysis , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Histone-Lysine N-Methyltransferase/genetics , Histones/genetics , Humans , Intracellular Signaling Peptides and Proteins , Lysine/genetics , Methylation , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Myeloid-Lymphoid Leukemia Protein/genetics , PR-SET Domains/genetics , Protein Conformation , Protein Interaction Maps/genetics , WD40 Repeats/genetics
15.
Proc Natl Acad Sci U S A ; 115(50): 12799-12804, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30420498

ABSTRACT

Drug resistance is an obstacle to global malaria control, as evidenced by the recent emergence and rapid spread of delayed artemisinin (ART) clearance by mutant forms of the PfKelch13 protein in Southeast Asia. Identifying genetic determinants of ART resistance in African-derived parasites is important for surveillance and for understanding the mechanism of resistance. In this study, we carried out long-term in vitro selection of two recently isolated West African parasites (from Pikine and Thiès, Senegal) with increasing concentrations of dihydroartemisinin (DHA), the biologically active form of ART, over a 4-y period. We isolated two parasite clones, one from each original isolate, that exhibited enhanced survival to DHA in the ring-stage survival assay. Whole-genome sequence analysis identified 10 mutations in seven different genes. We chose to focus on the gene encoding PfCoronin, a member of the WD40-propeller domain protein family, because mutations in this gene occurred in both independent selections, and the protein shares the ß-propeller motif with PfKelch13 protein. For functional validation, when pfcoronin mutations were introduced into the parental parasites by CRISPR/Cas9-mediated gene editing, these mutations were sufficient to reduce ART susceptibility in the parental lines. The discovery of a second gene for ART resistance may yield insights into the molecular mechanisms of resistance. It also suggests that pfcoronin mutants could emerge as a nonkelch13 type of resistance to ART in natural settings.


Subject(s)
4-Butyrolactone/analogs & derivatives , Artemisinins/pharmacology , Microfilament Proteins/genetics , Mutation/genetics , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , 4-Butyrolactone/genetics , Antimalarials/pharmacology , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Drug Resistance/genetics , Gene Editing/methods , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , WD40 Repeats/genetics
16.
Dev Growth Differ ; 62(6): 423-437, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32359074

ABSTRACT

Motile cilia propel directed cell movements and sweep fluids across the surface of tissues. Orthologs of Dynein Assembly Factor with WD Repeat Domains 1 (DAW1) support normal ciliary beating by enhancing delivery of dynein complexes to axonemal microtubules. DAW1 mutations in vertebrates result in multiple developmental abnormalities and early or prenatal lethality, complicating functional assessment of DAW1 in adult structures. Planarian flatworms maintain cellular homeostasis and regenerate through differentiation of adult pluripotent stem cells, and systemic RNA-interference (RNAi) can be induced to analyze gene function at any point after birth. A single ortholog of DAW1 was identified in the genome of the planarian Schmidtea mediterranea (Smed-daw1). Smed-DAW1 is composed of eight WD repeats, which are 55% identical to the founding member of this protein family (Chlamydomonas reinhardtii ODA16) and 58% identical to human DAW1. Smed-daw1 is expressed in the planarian epidermis, protonephridial excretory system, and testes, all of which contain cells functionally dependent on motile cilia. Smed-daw1 RNAi resulted in locomotion defects and edema, which are phenotypes characteristic of multiciliated epidermis and protonephridial dysfunction, respectively. Changes in abundance or length of motile cilia were not observed at the onset of phenotypic manifestations upon Smed-daw1 RNAi, corroborating with studies showing that DAW-1 loss of function leads to aberrant movement of motile cilia in other organisms, rather than loss of cilia per se. However, extended RNAi treatments did result in shorter epidermal cilia and decreased abundance of ciliated protonephridia, suggesting that Smed-daw1 is required for homeostatic maintenance of these structures in flatworms.


Subject(s)
Cilia/metabolism , Dyneins/metabolism , Planarians/cytology , Planarians/metabolism , WD40 Repeats , Animals , Cilia/genetics , Dyneins/genetics , Planarians/genetics , WD40 Repeats/genetics
17.
Nucleic Acids Res ; 46(7): 3802-3812, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29897600

ABSTRACT

The multi-protein complex WRAD, formed by WDR5, RbBP5, Ash2L and Dpy30, binds to the MLL SET domain to stabilize the catalytically active conformation required for histone H3K4 methylation. In addition, the WRAD complex contributes to the targeting of the activated complex to specific sites on chromatin. RbBP5 is central to MLL catalytic activation, by making critical contacts with the other members of the complex. Interestingly its only major structural domain, a canonical WD40 repeat ß-propeller, is not implicated in this function. Here, we present the structure of the RbBP5 ß-propeller domain revealing a distinct, feature rich surface, dominated by clusters of Arginine residues. Our nuclear magnetic resonance binding data supports the hypothesis that in addition to the role of RbBP5 in catalytic activation, its ß-propeller domain is a platform for the recruitment of the MLL complexes to chromatin targets through its direct interaction with nucleic acids.


Subject(s)
DNA-Binding Proteins/chemistry , Methylation , Multiprotein Complexes/chemistry , Nuclear Proteins/chemistry , Binding Sites , Catalysis , Chromatin/chemistry , Chromatin/genetics , DNA-Binding Proteins/genetics , Histones/chemistry , Histones/genetics , Humans , Multiprotein Complexes/genetics , Nuclear Proteins/genetics , Protein Binding/genetics , Protein Conformation , Protein Domains , Transcription Factors/chemistry , Transcription Factors/genetics , WD40 Repeats/genetics
18.
J Proteome Res ; 18(9): 3479-3491, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31353912

ABSTRACT

A hub protein in protein interaction networks will typically have a large number of diverse interactions. Determining the core interactions and the function of such a hub protein remains a significant challenge in the study of networks. Proteins with WD40 repeats represent a large class of proteins that can be hub proteins. WDR76 is a poorly characterized WD40 repeat protein with possible involvement in DNA damage repair, cell-cycle progression, apoptosis, gene expression regulation, and protein quality control. WDR76 has a large and diverse interaction network that has made its study challenging. Here we rigorously carry out a series of affinity purification coupled to mass spectrometry (AP-MS) analyses to map out the WDR76 interactome through different biochemical conditions. We apply AP-MS analysis coupled to size-exclusion chromatography to resolve WDR76-based protein complexes. Furthermore, we also show that WDR76 interacts with the CCT complex via its WD40 repeat domain and with DNA-PK-KU, PARP1, GAN, SIRT1, and histones outside of the WD40 domain. An evaluation of the stability of WDR76 interactions led to focused and streamlined reciprocal analyses that validate the interactions with GAN and SIRT1. Overall, the approaches used to study WDR76 would be valuable to study other proteins containing WD40 repeat domains, which are conserved in a large number of proteins in many organisms.


Subject(s)
Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Mass Spectrometry/methods , Protein Interaction Maps/genetics , WD40 Repeats/genetics , Apoptosis/genetics , Cytoskeletal Proteins/genetics , DNA Damage/genetics , DNA Repair/genetics , Gene Expression Regulation/genetics , Humans , Poly (ADP-Ribose) Polymerase-1/genetics , Sirtuin 1/genetics
19.
Development ; 143(19): 3506-3513, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27702784

ABSTRACT

Notch signaling at the dorsoventral (DV) boundary is essential for patterning and growth of wings in Drosophila The WD40 domain protein Ebi has been implicated in the regulation of Notch signaling at the DV boundary. Here we show that Ebi regulates wing growth by antagonizing the function of the transmembrane protein Crumbs (Crb). Ebi physically binds to the extracellular domain of Crb (Crbext), and this interaction is specifically mediated by WD40 repeats 7-8 of Ebi and a laminin G domain of Crbext Wing notching resulting from reduced levels of Ebi is suppressed by decreasing the Crb function. Consistent with this antagonistic genetic relationship, Ebi knockdown in the DV boundary elevates the Crb protein level. Furthermore, we show that Ebi is required for downregulation of Crb by ubiquitylation. Taken together, we propose that the interplay of Crb expression in the DV boundary and ubiquitin-dependent Crb downregulation by Ebi provides a mechanism for the maintenance of Notch signaling during wing development.


Subject(s)
Cell Cycle Proteins/metabolism , Drosophila Proteins/metabolism , GTP-Binding Proteins/metabolism , Membrane Proteins/metabolism , Ubiquitin/metabolism , Wings, Animal/embryology , Wings, Animal/metabolism , Animals , Cell Cycle Proteins/genetics , Down-Regulation/genetics , Down-Regulation/physiology , Drosophila , Drosophila Proteins/genetics , GTP-Binding Proteins/genetics , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Membrane Proteins/genetics , Receptors, Notch/genetics , Receptors, Notch/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Ubiquitin/genetics , WD40 Repeats/genetics , WD40 Repeats/physiology
20.
J Hum Genet ; 64(6): 561-572, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30858506

ABSTRACT

Variants have been identified in the embryonic ectoderm development (EED) gene in seven patients with syndromic overgrowth similar to that observed in Weaver syndrome. Here, we present three additional patients with missense variants in the EED gene. All the missense variants reported to date (including the three presented here) have localized to one of seven WD40 domains of the EED protein, which are necessary for interaction with enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2). In addition, among the seven patients reported in the literature and the three new patients presented here, all of the reported pathogenic variants except one occurred at one of four amino acid residues in the EED protein. The recurrence of pathogenic variation at these loci suggests that these residues are functionally important (mutation hotspots). In silico modeling and calculations of the free energy changes resulting from these variants suggested that they not only destabilize the EED protein structure but also adversely affect interactions between EED, EZH2, and/or H3K27me3. These cases help demonstrate the mechanism(s) by which apparently deleterious variants in the EED gene might cause overgrowth and lend further support that amino acid residues in the WD40 domain region may be mutation hotspots.


Subject(s)
Abnormalities, Multiple/genetics , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Hand Deformities, Congenital/genetics , Histone-Lysine N-Methyltransferase/genetics , Polycomb Repressive Complex 2/genetics , Abnormalities, Multiple/etiology , Abnormalities, Multiple/physiopathology , Adolescent , Child , Computer Simulation , Congenital Hypothyroidism/etiology , Congenital Hypothyroidism/physiopathology , Craniofacial Abnormalities/etiology , Craniofacial Abnormalities/physiopathology , Enhancer of Zeste Homolog 2 Protein/chemistry , Female , Hand Deformities, Congenital/etiology , Hand Deformities, Congenital/physiopathology , Histone-Lysine N-Methyltransferase/chemistry , Humans , Male , Molecular Dynamics Simulation , Mutation Rate , Mutation, Missense/genetics , Polycomb Repressive Complex 2/chemistry , Protein Conformation , WD40 Repeats/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL