Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 450
Filter
1.
Mol Cell ; 81(24): 5039-5051.e5, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34784509

ABSTRACT

Cyclic oligonucleotide-based antiphage signaling systems (CBASS) are antiviral defense operons that protect bacteria from phage replication. Here, we discover a widespread class of CBASS transmembrane (TM) effector proteins that respond to antiviral nucleotide signals and limit phage propagation through direct membrane disruption. Crystal structures of the Yersinia TM effector Cap15 reveal a compact 8-stranded ß-barrel scaffold that forms a cyclic dinucleotide receptor domain that oligomerizes upon activation. We demonstrate that activated Cap15 relocalizes throughout the cell and specifically induces rupture of the inner membrane. Screening for active effectors, we identify the function of distinct families of CBASS TM effectors and demonstrate that cell death via disruption of inner-membrane integrity is a common mechanism of defense. Our results reveal the function of the most prominent class of effector protein in CBASS immunity and define disruption of the inner membrane as a widespread strategy of abortive infection in bacterial phage defense.


Subject(s)
Bacterial Proteins/metabolism , Bacteriophages/pathogenicity , Cell Membrane/virology , Escherichia coli/virology , Yersinia/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacteriophages/immunology , Cell Death , Cell Membrane/genetics , Cell Membrane/metabolism , Escherichia coli/genetics , Escherichia coli/immunology , Escherichia coli/metabolism , Host-Pathogen Interactions , Ligands , Protein Conformation , Protein Multimerization , Protein Transport , Signal Transduction , Structure-Activity Relationship , Yersinia/genetics
2.
J Biol Chem ; 300(6): 107331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703997

ABSTRACT

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.


Subject(s)
Bacterial Proteins , Tyrosine , Yersinia , Glycosylation , Humans , Yersinia/metabolism , Yersinia/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Tyrosine/metabolism , Tyrosine/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , rhoA GTP-Binding Protein/metabolism , Yersinia enterocolitica/metabolism , Yersinia enterocolitica/genetics , Animals , HeLa Cells , Mice , Crystallography, X-Ray , Yersinia Infections/metabolism , Yersinia Infections/microbiology
3.
PLoS Genet ; 18(7): e1010321, 2022 07.
Article in English | MEDLINE | ID: mdl-35901167

ABSTRACT

The type III secretion system (T3SS) is an appendage used by many bacterial pathogens, such as pathogenic Yersinia, to subvert host defenses. However, because the T3SS is energetically costly and immunogenic, it must be tightly regulated in response to environmental cues to enable survival in the host. Here we show that expression of the Yersinia Ysc T3SS master regulator, LcrF, is orchestrated by the opposing activities of the repressive H-NS/YmoA histone-like protein complex and induction by the iron and oxygen-regulated IscR transcription factor. While deletion of iscR or ymoA has been shown to decrease and increase LcrF expression and type III secretion, respectively, the role of H-NS in this system has not been definitively established because hns is an essential gene in Yersinia. Using CRISPRi knockdown of hns, we show that hns depletion causes derepression of lcrF. Furthermore, we find that while YmoA is dispensable for H-NS binding to the lcrF promoter, YmoA binding to H-NS is important for H-NS repressive activity. We bioinformatically identified three H-NS binding regions within the lcrF promoter and demonstrate binding of H-NS to these sites in vivo using chromatin immunoprecipitation. Using promoter truncation and binding site mutation analysis, we show that two of these H-NS binding regions are important for H-NS/YmoA-mediated repression of the lcrF promoter. Surprisingly, we find that IscR is dispensable for lcrF transcription in the absence of H-NS/YmoA. Indeed, IscR-dependent regulation of LcrF and type III secretion in response to changes in oxygen, such as those Yersinia is predicted to experience during host infection, only occurs in the presence of an H-NS/YmoA complex. These data suggest that, in the presence of host tissue cues that drive sufficient IscR expression, IscR can act as a roadblock to H-NS/YmoA-dependent repression of RNA polymerase at the lcrF promoter to turn on T3SS expression.


Subject(s)
Gene Expression Regulation, Bacterial , Yersinia , Bacterial Proteins/metabolism , Histones/genetics , Oxygen/metabolism , Yersinia/genetics , Yersinia/metabolism
4.
Med Microbiol Immunol ; 213(1): 15, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008129

ABSTRACT

Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.


Subject(s)
Bacterial Proteins , Chlamydia trachomatis , Phylogeny , Type III Secretion Systems , Humans , Chlamydia trachomatis/genetics , Chlamydia trachomatis/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Type III Secretion Systems/metabolism , Type III Secretion Systems/genetics , Virulence Factors/metabolism , Virulence Factors/genetics , HeLa Cells , Yersinia/genetics , Yersinia/metabolism , Protein Transport , Host-Pathogen Interactions , Evolution, Molecular , Chlamydiaceae/genetics , Chlamydiaceae/metabolism , Chlamydiaceae/classification
5.
Antonie Van Leeuwenhoek ; 117(1): 86, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829455

ABSTRACT

Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.


Subject(s)
Genome, Bacterial , Phylogeny , Virulence Factors , Yersinia , Yersinia/genetics , Yersinia/classification , Yersinia/pathogenicity , Yersinia/isolation & purification , Virulence Factors/genetics , Brazil , Yersinia Infections/microbiology , Yersinia Infections/veterinary , Humans , Genomics , Prophages/genetics , Plasmids/genetics , Multilocus Sequence Typing , Virulence/genetics
6.
PLoS Pathog ; 17(2): e1009102, 2021 02.
Article in English | MEDLINE | ID: mdl-33540421

ABSTRACT

Tc toxins were originally identified in entomopathogenic bacteria, which are important as biological pest control agents. Tc toxins are heteromeric exotoxins composed of three subunit types, TcA, TcB, and TcC. The C-terminal portion of the TcC protein encodes the actual toxic domain, which is translocated into host cells by an injectosome nanomachine comprising the other subunits. Currently the pathogenic roles and distribution of Tc toxins among different bacterial genera remain unclear. Here we have performed a comprehensive genome-wide analysis, and established a database that includes 1,608 identified Tc loci containing 2,528 TcC proteins in 1,421 Gram-negative and positive bacterial genomes. Our findings indicate that TcCs conform to the architecture of typical polymorphic toxins, with C-terminal hypervariable regions (HVR) encoding more than 100 different classes of putative toxic domains, most of which have not been previously recognized. Based on further analysis of Tc loci in the genomes of all Salmonella and Yersinia strains in EnteroBase, a "two-level" evolutionary dynamics scenario is proposed for TcC homologues. This scenario implies that the conserved TcC RHS core domain plays a critical role in the taxonomical specific distribution of TcC HVRs. This study provides an extensive resource for the future development of Tc toxins as valuable agrochemical tools. It furthermore implies that Tc proteins, which are encoded by a wide range of pathogens, represent an important versatile toxin superfamily with diverse pathogenic mechanisms.


Subject(s)
Bacterial Proteins/genetics , Bacterial Toxins/genetics , Biological Evolution , Genome, Bacterial , Salmonella/genetics , Yersinia/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/classification , Bacterial Toxins/metabolism , HEK293 Cells , HeLa Cells , Humans , Salmonella/growth & development , Salmonella/pathogenicity , Yersinia/growth & development , Yersinia/pathogenicity
7.
Mol Phylogenet Evol ; 188: 107903, 2023 11.
Article in English | MEDLINE | ID: mdl-37574177

ABSTRACT

Yersinia spp. vary significantly in their ability to cause diseases that threaten public health. Their pathogenicity is frequently associated with increasing antimicrobial resistance (AMR) and various virulence factors. The aim of the study was to investigate the AMR genes, virulence factors, and genetic diversity of Yersinia strains isolated from meats and fish in Wenzhou in 2020 by using whole-genome sequencing (WGS). A total of 50 isolates were collected. The phylogenetic relationships among the Yersinia species were also analyzed using multilocus sequence typing (MLST), core genome multi-locus sequence typing (cgMLST), and single nucleotide polymorphism (SNP) analysis. According to the results, all the strains could be classified into five species, with most isolated from beef, followed by poultry, pork, and fish. AMR genes were identified in 23 strains. And the qnrD1 genes were all located in the Col3M plasmid. Virulence genes, such as yaxA, ystB, pla, and yplA, were also found in the 15 Y. enterocolitica strains. And this study also found the presence of icm/dot type IVB-related genes in one Yersinia massiliensis isolate. MLST analysis identified 43 sequence types (STs), 19 of which were newly detected in Yersinia. Moreover, cgMLST analysis revealed that no dense genotype clusters were formed (cgMLST 5341, 5344, 5346-5350, 5353-5390). Instead, the strains appeared to be dispersed over large distances, except when multiple isolates shared the same ST. Isolates Y4 and Y26 were closely related to strains originating from South Korea and Denmark. This study showed considerable diversity in Yersinia spp. isolated from local areas (Wenzhou City). The data generated in our study may enrich the molecular traceability database of Yersinia and provide a basis for the development of more effective antipathogen control strategies.


Subject(s)
Anti-Bacterial Agents , Virulence Factors , Animals , Cattle , Virulence Factors/genetics , Multilocus Sequence Typing/methods , Phylogeny , Drug Resistance, Bacterial/genetics , Yersinia/genetics , Genetic Variation , Genome, Bacterial
8.
Int J Mol Sci ; 23(12)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35743219

ABSTRACT

Yersinia enterocolitica is a heterogeneous species comprising highly pathogenic, weakly pathogenic and non-pathogenic strains. Previous data suggest that gene exchange may occur in Yersinia. Only scarce information exists about temperate phages of Y. enterocolitica, even though many prophage sequences are present in this species. We have examined 102 pathogenic Y. enterocolitica strains for the presence of inducible prophages by mitomycin C treatment. Ten phages were isolated from nine strains belonging to the bio (B)/serotypes (O) B2/O:5,27, B2/O:9 and 1B/O:8. All phages are myoviruses showing lytic activity only at room temperature. Whole-genome sequencing of the phage genomes revealed that they belong to three groups, which, however, are not closely related to known phages. Group 1 is composed of five phages (type phage: vB_YenM_06.16.1) with genome sizes of 43.8 to 44.9 kb, whereas the four group 2 phages (type phage: vB_YenM_06.16.2) possess smaller genomes of 29.5 to 33.2 kb. Group 3 contains only one phage (vB_YenM_42.18) whose genome has a size of 36.5 kb, which is moderately similar to group 2. The host range of the phages differed significantly. While group 1 phages almost exclusively lysed strains of B2/O:5,27, phages of group 2 and 3 were additionally able to lyse B4/O:3, and some of them even B2/O:9 and 1B/O:8 strains.


Subject(s)
Bacteriophages , Yersinia enterocolitica , Bacteriophages/genetics , Host Specificity , Sequence Analysis , Yersinia/genetics , Yersinia enterocolitica/genetics
9.
Molecules ; 27(9)2022 May 02.
Article in English | MEDLINE | ID: mdl-35566248

ABSTRACT

A high enzyme-yield strain Yersinia sp. 298 was screened from marine bacteria harvested from the coastal water. The screening conditions were extensive, utilizing hyaluronic acid (HA)/chondroitin sulfate (CS) as the carbon source. A coding gene yshyl8A of the family 8 polysaccharide lyase (PL8) was cloned from the genome of Yersinia sp. 298 and subjected to recombinant expression. The specific activity of the recombinase YsHyl8A was 11.19 U/mg, with an optimal reaction temperature of 40 °C and 50% of its specific activity remaining after thermal incubation at 30 °C for 1 h. In addition, its optimal reaction pH was 7.5, and while it was most stable at pH 6.0 in Na2HPO4-citric acid buffer, it remained highly stable at pH 6.0-11.0. Further, its enzymatic activity was increased five-fold with 0.1 M NaCl. YsHyl8A, as an endo-lyase, can degrade both HA and CS, producing disaccharide end-products. These properties suggested that YsHyl8A possessed both significant alkalophilic and cold-adapted features while being dependent on NaCl, likely resulting from its marine source. Yersinia is a typical fish pathogen, with glycosaminoglycan lyase (GAG lyase) as a potential pathogenic factor, exhibiting strong hyaluronidase and chondroitinase activity. Further research on the pathogenic mechanism of GAG lyase may benefit the prevention and treatment of related diseases.


Subject(s)
Glycosaminoglycans , Lyases , Animals , Chondroitin Sulfates , Hyaluronic Acid/chemistry , Hydrogen-Ion Concentration , Polysaccharide-Lyases/chemistry , Sodium Chloride , Yersinia/genetics , Yersinia/metabolism
10.
Plasmid ; 114: 102562, 2021 03.
Article in English | MEDLINE | ID: mdl-33497686

ABSTRACT

Pathogenic Yersinia bacteria, including Y. pseudotubuclosis Y. enterocolitica, and Y. pestis, contain the mosaic plasmid pYV that encodes for, among other things, a number of proteinaceous virulence factors. While the evolutionary histories of many of the biovars and strains of pathogenic Yersinia species are well documented, the origins of many of the individual virulence factors have not been comprehensively examined. Here, the evolutionary origins of the genes coding for a set of Yersinia outer protein (Yop) virulence factors were investigated through phylogenetic reconstruction and subsequence analysis. It was found that many of these genes had only a few sequenced homologs and none of the resolved phylogenies recovered the same relationships as was resolved from chromosomal analyses. Many of the evolutionary relationships differ greatly among genes on the plasmid, and variation is also found across different domains of the same gene, which provides evidence of the mosaic nature of the plasmid as well as multiple genes on the plasmid. This mosaic aspect also relates to patterns of selection, which vary among the studied domains.


Subject(s)
Yersinia enterocolitica , Yersinia , Phylogeny , Plasmids/genetics , Virulence Factors/genetics , Yersinia/genetics , Yersinia enterocolitica/genetics
11.
Biotechnol Bioeng ; 117(1): 49-61, 2020 01.
Article in English | MEDLINE | ID: mdl-31549734

ABSTRACT

Enzyme immobilization is extensively studied to improve enzyme properties in catalysis and analytical applications. Here, we introduce a simple and versatile enzyme immobilization platform based on adhesion-promoting peptides, namely Matter-tags. Matter-tags immobilize enzymes in an oriented way as a dense monolayer. The immobilization platform was established with three adhesion-promoting peptides; Cecropin A (CecA), liquid chromatography peak I (LCI), and Tachystatin A2 (TA2), that were genetically fused to enhanced green fluorescent protein and to two industrially important enzymes: a phytase (from Yersinia mollaretii) and a cellulase (CelA2 from a metagenomic library). Here, we report a universal and simple Matter-tag-based immobilization platform for enzymes on various materials including polymers (polystyrene, polypropylene, and polyethylene terephthalate), metals (stainless steel and gold), and silicon-based materials (silicon wafer). The Matter-tag-based enzyme immobilization is performed at ambient temperature within minutes (<10 min) in an aqueous solution harboring the phytase or cellulase by immersing the targeted material. The peptide LCI was identified as universal adhesion promoter; LCI immobilized both enzymes on all investigated materials. The attachment of phytase-LCI onto gold was characterized with surface plasmon resonance spectroscopy obtaining a dissociation constant value (KD ) of 2.9·10-8 M and a maximal surface coverage of 504 ng/cm².


Subject(s)
Enzymes, Immobilized , Recombinant Fusion Proteins , Adsorption , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/genetics , Enzymes, Immobilized/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Metals/chemistry , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Polymers/chemistry , Protein Binding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Silicon/chemistry , Surface Properties , Yersinia/enzymology , Yersinia/genetics
12.
Microbiol Immunol ; 64(11): 768-777, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32902897

ABSTRACT

The Gram-negative bacterial pathogen Yersinia delivers six effector proteins into the host cells to block the host innate immune response. One of the effectors, YopT, is a potent cysteine protease that causes the disruption of the actin cytoskeleton to inhibit phagocytosis of the pathogen; however, its molecular mechanism and relevance to pathogenesis need further investigation. In this report, we show that RIG-I is a novel target of the YopT protein. Remarkably, YopT interacts with RIG-I and inhibits rat liver homogenate-mediated nuclear factor-κB and interferon regulatory factor-3 activation. Further studies revealed a YopT-dependent increase in the K48-polymerized ubiquitination of RIG-I. These findings suggest that YopT negatively regulates RIG-I-mediated cellular antibacterial response by targeting RIG-I.


Subject(s)
Bacterial Proteins/metabolism , Cysteine Endopeptidases/metabolism , Interferon Regulatory Factor-3/metabolism , NF-kappa B/metabolism , Signal Transduction/physiology , Yersinia/metabolism , Animals , Bacterial Proteins/genetics , Cell Line , Cysteine Endopeptidases/genetics , HEK293 Cells , Humans , Mice , NF-kappa B/genetics , Phagocytosis , RAW 264.7 Cells , Transcription Factor RelA , Yersinia/genetics
13.
Int J Mol Sci ; 21(5)2020 Feb 29.
Article in English | MEDLINE | ID: mdl-32121349

ABSTRACT

A dramatic increase in global antimicrobial resistance (AMR) has been well documented. Of particular concern is the dearth of information regarding the spectrum and prevalence of AMR within Category A Select Agents. Here, we performed a survey of horizontally and vertically transferred AMR determinants among Category A agents and their near neighbors. Microarrays provided broad spectrum screening of 127 Francisella spp., Yersinia spp., and Bacillus spp. strains for the presence/absence of 500+ AMR genes (or families of genes). Detecting a broad variety of AMR genes in each genus, microarray analysis also picked up the presence of an engineered plasmid in a Y. pestis strain. High resolution melt analysis (HRMA) was also used to assess the presence of quinolone resistance-associated mutations in 100 of these strains. Though HRMA was able to detect resistance-causing point mutations in B. anthracis strains, it was not capable of discriminating these point mutations from other nucleotide substitutions (e.g., arising from sequence differences in near neighbors). Though these technologies are well-established, to our knowledge, this is the largest survey of Category A agents and their near-neighbor species for genes covering multiple mechanisms of AMR.


Subject(s)
Bacterial Infections/genetics , Drug Resistance, Bacterial/genetics , Quinolones/therapeutic use , Bacillus/drug effects , Bacillus/genetics , Bacillus/pathogenicity , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Francisella/drug effects , Francisella/genetics , Francisella/pathogenicity , Gene Expression Regulation, Bacterial/drug effects , Humans , Mutation/genetics , Plasmids/genetics , Yersinia/drug effects , Yersinia/genetics , Yersinia/pathogenicity
14.
Int J Mol Sci ; 20(16)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434224

ABSTRACT

Psychrotrophic foodborne pathogens, such as enteropathogenic Yersinia, which are able to survive and multiply at low temperatures, require cold shock proteins (Csps). The Csp superfamily consists of a diverse group of homologous proteins, which have been found throughout the eubacteria. They are related to cold shock tolerance and other cellular processes. Csps are mainly named following the convention of those in Escherichia coli. However, the nomenclature of certain Csps reflects neither their sequences nor functions, which can be confusing. Here, we performed phylogenetic analyses on Csp sequences in psychrotrophic enteropathogenic Yersinia and E. coli. We found that representative Csps in enteropathogenic Yersinia and E. coli can be clustered into six phylogenetic groups. When we extended the analysis to cover Enterobacteriales, the same major groups formed. Moreover, we investigated the evolutionary and structural relationships and the origin time of Csp superfamily members in eubacteria using nucleotide-level comparisons. Csps in eubacteria were classified into five clades and 12 subclades. The most recent common ancestor of Csp genes was estimated to have existed 3585 million years ago, indicating that Csps have been important since the beginning of evolution and have enabled bacterial growth in unfavorable conditions.


Subject(s)
Bacterial Proteins/classification , Bacterial Proteins/metabolism , Cold Shock Proteins and Peptides/classification , Cold Shock Proteins and Peptides/metabolism , Escherichia coli/metabolism , Eubacterium/metabolism , Yersinia/metabolism , Bacterial Proteins/genetics , Cold Shock Proteins and Peptides/genetics , Escherichia coli/genetics , Eubacterium/genetics , Phylogeny , Yersinia/genetics
15.
BMC Microbiol ; 18(1): 86, 2018 08 17.
Article in English | MEDLINE | ID: mdl-30119648

ABSTRACT

BACKGROUND: Yersinia enterocolitica is widespread within the humans, pigs and wild boars. The low isolation rate of Y. enterocolitica from food or environmental and clinical samples may be caused by limited sensitivity of culture methods. The main goal of present study was identification of presumptive Y. enterocolitica isolates using MALDI TOF MS. The identification of isolates may be difficult due to variability of bacterial strains in terms of biochemical characteristics. This work emphasizes the necessity of use of multiple methods for zoonotic Y. enterocolitica identification. RESULTS: Identification of Y. enterocolitica isolates was based on MALDI TOF MS, and verified by VITEK® 2 Compact and PCR. There were no discrepancies in identification of all human' and pig' isolates using MALDI TOF MS and VITEK® 2 Compact. However three isolates from wild boars were not decisively confirmed as Y. enterocolitica. MALDI TOF MS has identified the wild boar' isolates designated as 3dz, 4dz, 8dz as Y. enterocolitica with a high score of matching with the reference spectra of MALDI Biotyper. In turn, VITEK® 2 Compact identified 3dz and 8dz as Y. kristensenii, and isolate 4dz as Y. enterocolitica. The PCR for Y. enterocolitica 16S rDNA for these three isolates was negative, but the 16S rDNA sequence analysis identified these isolates as Y. kristensenii (3dz, 4dz) and Y. pekkanenii (8dz). The wild boar' isolates 3dz, 4dz and 8dz could not be classified using biotyping. The main bioserotype present within pigs and human faeces was 4/O:3. It has been shown that Y. enterocolitica 1B/O:8 can be isolated from human faeces using ITC/CIN culturing. CONCLUSION: The results of our study indicate wild boars as a reservoir of new and atypical strains of Yersinia, for which protein and biochemical profiles are not included in the MALDI Biotyper or VITEK® 2 Compact databases. Pigs in the south-west Poland are the reservoir for pathogenic Y. enterocolitica strains. Four biochemical features included in VITEK® 2 Compact known to be common with Wauters scheme were shown to produce incompatible results, thus VITEK® 2 Compact cannot be applied in biotyping of Y. enterocolitica.


Subject(s)
Bacterial Typing Techniques/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Sus scrofa/microbiology , Swine/microbiology , Yersinia enterocolitica/isolation & purification , Animals , DNA, Ribosomal , Disease Reservoirs/microbiology , Feces/microbiology , Humans , Poland , Polymerase Chain Reaction/methods , RNA, Ribosomal, 16S/genetics , Sequence Analysis , Species Specificity , Yersinia/classification , Yersinia/genetics , Yersinia/isolation & purification , Yersinia enterocolitica/classification , Yersinia enterocolitica/genetics
16.
Curr Top Microbiol Immunol ; 399: 201-220, 2017.
Article in English | MEDLINE | ID: mdl-27744508

ABSTRACT

Pathogenic bacteria of the genus Yersinia include Y. pestis-the agent of plaque-and two enteropathogens, Y. enterocolitica, and Y. pseudotuberculosis. These pathogens have developed an array of virulence factors aimed at manipulating Rho GTP-binding proteins and the actin cytoskeleton in host cells to cross the intestinal barrier and suppress the immune system. Yersinia virulence factors include outer membrane proteins triggering cell invasion by binding to integrins, effector proteins injected into host cells to manipulate Rho protein functions and a Rho protein-activating exotoxin. Here, we present an overview of how Yersinia and host factors are integrated in a regulatory network that orchestrates the subversion of host defense.


Subject(s)
Actins/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Yersinia Infections/enzymology , Yersinia/metabolism , rho-Associated Kinases/metabolism , Actins/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Host-Pathogen Interactions , Humans , Proto-Oncogene Proteins c-akt/genetics , Signal Transduction , Yersinia/genetics , Yersinia Infections/metabolism , Yersinia Infections/microbiology , rho-Associated Kinases/genetics
17.
Anal Biochem ; 560: 60-66, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30217500

ABSTRACT

The recently developed methods of nucleic acids isothermal amplification are promising tools for point-of-care diagnostics and in the field detection of pathogenic microorganisms. However, application of these methods outside a laboratory faces some challenges such as the rapid and sensitive detection of amplified products and the absence of cross-reactivity with genetically related microorganisms. In the presented study we compared three methods of isothermal DNA amplification loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA) and thermophilic helicase-dependent isothermal DNA amplification (tHDA), for detection of highly dangerous pathogens, such as Bacillus anthracis, Francisella tularensis and Yersinia pestis, and combined them with lateral flow dipsticks for the rapid visualization of amplified products. We observed low specificity of the three methods for B. antharcis, medium for Y. pestis and high for F. tularensis detection. Sensitivity and the detection limit were high and comparable for all the methods. We concluded that the lateral flow dipsticks have been a very useful tool for product detection of the isothermal amplification methods and enable reading the results without the use of any equipment. However, our results showed that the use of isothermal amplification methods is strongly related to the risk of false positive results.


Subject(s)
Bacillus/isolation & purification , Bacterial Typing Techniques/methods , Biological Warfare Agents , Francisella tularensis/isolation & purification , Nucleic Acid Amplification Techniques , Yersinia/isolation & purification , Bacillus/classification , Bacillus/genetics , DNA, Bacterial/isolation & purification , Francisella tularensis/classification , Francisella tularensis/genetics , Limit of Detection , Sensitivity and Specificity , Yersinia/classification , Yersinia/genetics
18.
Appl Microbiol Biotechnol ; 102(22): 9607-9620, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30141080

ABSTRACT

Phytases are phosphohydrolases that initiate the sequential hydrolysis of phosphate from phytate, which is the main storage form of phosphorous in numerous plant seeds, especially in cereals and grains. Phytate is indigestible for most monogastric animals, such as poultry, swine, fish, and humans; therefore, microbial phytases have been widely used in plant (specially soy)-based animal feeding to improve nutrition by enhanced phosphorus, mineral, and trace element absorption, and reducing phosphorus pollution by animal waste. Most phytases used as animal feed additives have an acid pH optimum (pH 2.5 and 5.5 for Aspergillus and pH 4.5 for E. coli phytases) and show a sharp decrease in performance at neutral pH, correlating with intestinal digestion. Directed evolution of phytases has been previously reported to improve enzyme thermostability, pH, or specific activity. In this manuscript, we report a directed evolution campaign of the highly active bacterial phytase from Yersinia mollaretii (YmPh) towards a broadened pH activity spectrum. Directed evolution identified the key positions T44 and K45 for increased YmPh activity at neutral pH. Both positions are located in the active site loop of the phytase and have a synergistic effect on activity with a broadened pH spectrum. Kinetic characterization of the improved variants, YmPh-M10 and -M16, showed up to sevenfold increased specific activity and up to 2.2-fold reduced Khalf at pH 6.6 under screening conditions compared to Yersinia mollaretii phytase wild type (YmPhWT).


Subject(s)
6-Phytase/chemistry , 6-Phytase/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Yersinia/enzymology , 6-Phytase/metabolism , Bacterial Proteins/metabolism , Directed Molecular Evolution , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Yersinia/chemistry , Yersinia/genetics
19.
Curr Top Microbiol Immunol ; 397: 69-90, 2016.
Article in English | MEDLINE | ID: mdl-27460805

ABSTRACT

The innate immune system plays an essential role in initiating the early response against microbial infection, as well as instructing and shaping subsequent responses. Microbial pathogens are enormously diverse in terms of the niches they occupy, their metabolic properties and requirements, and the cellular pathways that they target. Nevertheless, innate sensing of pathogens triggers a relatively stereotyped set of responses that involve transcriptional induction of key inflammatory mediators, as well as post-translational assembly and activation of a multiprotein inflammatory complex termed 'the inflammasome.' Along with classical Pattern Recognition Receptors, the inflammasome activation pathway has emerged as a key regulator of tissue homeostasis and immune defense. Components of the inflammasome generally exist within the cell in a soluble, monomeric state, and oligomerize in response to diverse enzymatic activities associated with infection or cellular stress. Inflammasome assembly triggers activation of the pro-enzyme caspase-1, resulting in the cleavage of caspase-1 targets. The most extensively studied targets are the cytokines of the IL-1 family, but the recent discovery of Gasdermin D as a novel target of caspase-1 and the related inflammatory caspase, caspase-11, has begun to mechanistically define the links between caspase-1 activation and cell death. Cell death is a hallmark of macrophage infection by many pathogens, including the gram-negative bacterial pathogens of the genus Yersinia. Intriguingly, the activities of the Yersinia-secreted effector proteins and the type III secretion system (T3SS) itself have been linked to both inflammasome activation and evasion during infection. The balance between these activating and inhibitory activities shapes the outcome of Yersinia infection. Here, we describe the current state of knowledge on interactions between Yersinia and the inflammasome system, with the goal of integrating these findings within the general framework of inflammasome responses to microbial pathogens.


Subject(s)
Immune Evasion , Inflammasomes/immunology , Yersinia Infections/immunology , Yersinia Infections/microbiology , Yersinia/immunology , Animals , Apoptosis , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Host-Pathogen Interactions , Humans , Inflammasomes/genetics , Yersinia/genetics , Yersinia/physiology , Yersinia Infections/physiopathology
20.
Proc Natl Acad Sci U S A ; 111(18): 6768-73, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24753568

ABSTRACT

The genus Yersinia has been used as a model system to study pathogen evolution. Using whole-genome sequencing of all Yersinia species, we delineate the gene complement of the whole genus and define patterns of virulence evolution. Multiple distinct ecological specializations appear to have split pathogenic strains from environmental, nonpathogenic lineages. This split demonstrates that contrary to hypotheses that all pathogenic Yersinia species share a recent common pathogenic ancestor, they have evolved independently but followed parallel evolutionary paths in acquiring the same virulence determinants as well as becoming progressively more limited metabolically. Shared virulence determinants are limited to the virulence plasmid pYV and the attachment invasion locus ail. These acquisitions, together with genomic variations in metabolic pathways, have resulted in the parallel emergence of related pathogens displaying an increasingly specialized lifestyle with a spectrum of virulence potential, an emerging theme in the evolution of other important human pathogens.


Subject(s)
Evolution, Molecular , Virulence/genetics , Yersinia/genetics , Yersinia/pathogenicity , Genome, Bacterial , Humans , Metabolic Networks and Pathways/genetics , Phylogeny , Species Specificity , Yersinia/metabolism , Yersinia enterocolitica/genetics , Yersinia enterocolitica/metabolism , Yersinia enterocolitica/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL