Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.142
Filter
1.
J Biol Chem ; 300(6): 107331, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703997

ABSTRACT

Mono-O-glycosylation of target proteins by bacterial toxins or effector proteins is a well-known mechanism by which bacteria interfere with essential functions of host cells. The respective glycosyltransferases are important virulence factors such as the Clostridioides difficile toxins A and B. Here, we describe two glycosyltransferases of Yersinia species that have a high sequence identity: YeGT from the zoonotic pathogen Yersinia enterocolitica and YkGT from the murine pathogen Yersinia kristensenii. We show that both modify Rho family proteins by attachment of GlcNAc at tyrosine residues (Tyr-34 in RhoA). Notably, the enzymes differed in their target protein specificity. While YeGT modified RhoA, B, and C, YkGT possessed a broader substrate spectrum and glycosylated not only Rho but also Rac and Cdc42 subfamily proteins. Mutagenesis studies indicated that residue 177 is important for this broader target spectrum. We determined the crystal structure of YeGT shortened by 16 residues N terminally (sYeGT) in the ligand-free state and bound to UDP, the product of substrate hydrolysis. The structure assigns sYeGT to the GT-A family. It shares high structural similarity to glycosyltransferase domains from toxins. We also demonstrated that the 16 most N-terminal residues of YeGT and YkGT are important for the mediated translocation into the host cell using the pore-forming protective antigen of anthrax toxin. Mediated introduction into HeLa cells or ectopic expression of YeGT and YkGT caused morphological changes and redistribution of the actin cytoskeleton. The data suggest that YeGT and YkGT are likely bacterial effectors belonging to the family of tyrosine glycosylating bacterial glycosyltransferases.


Subject(s)
Bacterial Proteins , Tyrosine , Yersinia , Glycosylation , Humans , Yersinia/metabolism , Yersinia/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Tyrosine/metabolism , Tyrosine/chemistry , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/chemistry , rhoA GTP-Binding Protein/metabolism , Yersinia enterocolitica/metabolism , Yersinia enterocolitica/genetics , Animals , HeLa Cells , Mice , Crystallography, X-Ray , Yersinia Infections/metabolism , Yersinia Infections/microbiology
2.
Emerg Infect Dis ; 30(6): 1125-1132, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38781928

ABSTRACT

During October 2022, enteric redmouth disease (ERM) affected Chinese sturgeons at a farm in Hubei, China, causing mass mortality. Affected fish exhibited characteristic red mouth and intestinal inflammation. Investigation led to isolation of a prominent bacterial strain, zhx1, from the internal organs and intestines of affected fish. Artificial infection experiments confirmed the role of zhx1 as the pathogen responsible for the deaths. The primary pathologic manifestations consisted of degeneration, necrosis, and inflammatory reactions, resulting in multiple organ dysfunction and death. Whole-genome sequencing of the bacteria identified zhx1 as Yersinia ruckeri, which possesses 135 drug-resistance genes and 443 virulence factor-related genes. Drug-susceptibility testing of zhx1 demonstrated high sensitivity to chloramphenicol and florfenicol but varying degrees of resistance to 18 other antimicrobial drugs. Identifying the pathogenic bacteria associated with ERM in Chinese sturgeons establishes a theoretical foundation for the effective prevention and control of this disease.


Subject(s)
Fish Diseases , Fishes , Yersinia Infections , Yersinia ruckeri , Yersinia Infections/veterinary , Yersinia Infections/microbiology , Yersinia Infections/epidemiology , Animals , China/epidemiology , Fish Diseases/microbiology , Fish Diseases/epidemiology , Yersinia ruckeri/genetics , Fishes/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests , Whole Genome Sequencing , Drug Resistance, Bacterial
3.
Antonie Van Leeuwenhoek ; 117(1): 86, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829455

ABSTRACT

Yersinia is an important genus comprising foodborne, zoonotic and pathogenic bacteria. On the other hand, species of the so-called group Yersinia enterocolitica-like are understudied and mostly characterized as non-pathogenic, despite of some reports of human infections. The present study aimed to provide genomic insights of Yersinia frederiksenii (YF), Yersinia intermedia (YI) and Yersinia kristensenii (YK) isolated worldwide. A total of 22 YF, 20 YI and 14 YK genomes were searched for antimicrobial resistance genes, plasmids, prophages, and virulence factors. Their phylogenomic relatedness was analyzed by Gegenees and core-genome multi-locus sequence typing. Beta-lactam resistance gene blaTEM-116 and five plasmids replicons (pYE854, ColRNAI, ColE10, Col(pHAD28) and IncN3) were detected in less than five genomes. A total of 59 prophages, 106 virulence markers of the Yersinia genus, associated to adherence, antiphagocytosis, exoenzymes, invasion, iron uptake, proteases, secretion systems and the O-antigen, and virulence factors associated to other 20 bacterial genera were detected. Phylogenomic analysis revealed high inter-species distinction and four highly diverse YF clusters. In conclusion, the results obtained through the analyses of YF, YI and YK genomes suggest the virulence potential of these strains due to the broad diversity and high frequency of prophages and virulence factors found. Phylogenetic analyses were able to correctly distinguish these closely related species and show the presence of different genetic subgroups. These data contributed for a better understanding of YF, YI and YK virulence-associated features and global genetic diversity, and reinforced the need for better characterization of these Y. enterocolitica-like species considered non-pathogenic.


Subject(s)
Genome, Bacterial , Phylogeny , Virulence Factors , Yersinia , Yersinia/genetics , Yersinia/classification , Yersinia/pathogenicity , Yersinia/isolation & purification , Virulence Factors/genetics , Brazil , Yersinia Infections/microbiology , Yersinia Infections/veterinary , Humans , Genomics , Prophages/genetics , Plasmids/genetics , Multilocus Sequence Typing , Virulence/genetics
4.
Dis Aquat Organ ; 158: 21-25, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661134

ABSTRACT

In order to establish the meaning of data generated in antimicrobial agent susceptibility tests, it is necessary to develop internationally harmonised interpretive criteria. Currently, such criteria have not been developed for data generated in studies of the susceptibility of the fish pathogen Yersinia ruckeri. This work generated the data that would be required to set epidemiological cut-off values for the susceptibility data of this species that had been generated using a standardised disc diffusion method that specified the use of Mueller Hinton agar and incubation at 22°C for 24-28 h. Using this method, sets of inhibition zones data for 4 antimicrobial agents were generated by 3 independent laboratories. The data from these laboratories were aggregated and analysed using the statistically based normalised resistance interpretation. For ampicillin, florfenicol, oxytetracycline and trimethoprim-sulfamethoxazole the cut-off values calculated by this analysis were ≥16, ≥23, ≥24 and ≥30 mm, respectively. Evidence is presented demonstrating that the data for these 4 agents was of sufficient quantity and quality that they could be used by the relevant authorities to set internationally harmonised, consensus epidemiological cut-off values for Y. ruckeri.


Subject(s)
Anti-Bacterial Agents , Fish Diseases , Yersinia ruckeri , Anti-Bacterial Agents/pharmacology , Fish Diseases/microbiology , Fish Diseases/epidemiology , Yersinia ruckeri/drug effects , Animals , Microbial Sensitivity Tests , Yersinia Infections/veterinary , Yersinia Infections/microbiology , Yersinia Infections/epidemiology , Drug Resistance, Bacterial , Fishes
5.
Ecotoxicol Environ Saf ; 273: 116138, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394759

ABSTRACT

The mechanism by which Y. ruckeri infection induces enteritis in Chinese sturgeon remains unclear, and the efficacy of drug prevention and control measures is not only poor but also plagued with numerous issues. We conducted transcriptomic and 16 S rRNA sequencing analyses to examine the differences in the intestinal tract of hybrid sturgeon before and after Y. ruckeri infection and florfenicol intervention. Our findings revealed that Y. ruckeri induced the expression of multiple inflammatory factors, including il1ß, il6, and various chemokines, as well as casp3, casp8, and multiple tumor necrosis factor family members, resulting in pathological injury to the body. Additionally, at the phylum level, the relative abundance of Firmicutes and Bacteroidota increased, while the abundance of Plesiomonas and Cetobacterium decreased at the genus level, altering the composition of the intestinal flora. Following florfenicol intervention, the expression of multiple apoptosis and inflammation-related genes was down-regulated, promoting tissue repair. However, the flora became further dysregulated, increasing the risk of infection. In conclusion, our analysis of the transcriptome and intestinal microbial composition demonstrated that Y. ruckeri induces intestinal pathological damage by triggering apoptosis and altering the composition of the intestinal microbiota. Florfenicol intervention can repair pathological damage, but it also exacerbates flora imbalance, leading to a higher risk of infection. These findings help elucidate the molecular mechanism of Y. ruckeri-induced enteritis in sturgeon and evaluate the therapeutic effect of drugs on intestinal inflammation in sturgeon.


Subject(s)
Enteritis , Fish Diseases , Oncorhynchus mykiss , Thiamphenicol/analogs & derivatives , Yersinia Infections , Animals , Yersinia ruckeri/genetics , Yersinia Infections/microbiology , Fish Diseases/pathology , Fishes , Inflammation
6.
Infect Immun ; 91(7): e0015723, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37255474

ABSTRACT

Yersinia enterocolitica (Ye) is one of the major causes of foodborne zoonosis. The BT4/O:3 bioserotype is most commonly isolated in human infections. Pigs are considered the main reservoir of Ye, and hence, understanding the dynamics of infection by this pathogen at the individual and group levels is crucial. In the present study, an experimental model was validated in Large White pigs infected with a BT4/O:3 strain. This study showed that Ye contamination in pigs may occur via the introduction of the bacteria not only by mouth but also by snout, with a colonization process consisting of three periods corresponding to three contamination statuses of pigs: P1, corresponding to the 24 h following ingestion or inhalation of Ye with the appearance of bacteria in tonsils or in feces; P2, from 2 days postinoculation (dpi), corresponding to expansion of Ye and colonization of the digestive system and extraintestinal organs associated with an IgG serological response; and P3, after 21 dpi, corresponding to regression of colonization with intermittent Ye detection in tonsils and feces. Although the inoculated strain persisted up to 56 dpi in all pigs, genetic variations with the loss of the gene yadA (a gene involved in human infection) and the emergence of two new multilocus variable-number tandem-repeat analysis (MLVA) profiles were observed in 33% of the 30 isolates studied. This experimental infection model of pigs by Ye provides new insights into the colonization steps in pigs in terms of bacterial distribution over time and bacterial genetic stability.


Subject(s)
Yersinia Infections , Yersinia enterocolitica , Swine , Animals , Humans , Yersinia enterocolitica/genetics , Virulence , Yersinia Infections/veterinary , Yersinia Infections/microbiology , Genetic Markers , Mouth
7.
PLoS Pathog ; 17(11): e1010074, 2021 11.
Article in English | MEDLINE | ID: mdl-34793580

ABSTRACT

Various pathogens systematically reprogram gene expression in macrophages, but the underlying mechanisms are largely unknown. We investigated whether the enteropathogen Yersinia enterocolitica alters chromatin states to reprogram gene expression in primary human macrophages. Genome-wide chromatin immunoprecipitation (ChIP) seq analyses showed that pathogen-associated molecular patterns (PAMPs) induced up- or down-regulation of histone modifications (HMod) at approximately 14500 loci in promoters and enhancers. Effectors of Y. enterocolitica reorganized about half of these dynamic HMod, with the effector YopP being responsible for about half of these modulatory activities. The reorganized HMod were associated with genes involved in immune response and metabolism. Remarkably, the altered HMod also associated with 61% of all 534 known Rho GTPase pathway genes, revealing a new level in Rho GTPase regulation and a new aspect of bacterial pathogenicity. Changes in HMod were associated to varying degrees with corresponding gene expression, e. g. depending on chromatin localization and cooperation of the HMod. In summary, infection with Y. enterocolitica remodels HMod in human macrophages to modulate key gene expression programs of the innate immune response.


Subject(s)
Epigenesis, Genetic , Histone Code , Immunity, Innate , Macrophages/microbiology , Yersinia Infections/microbiology , Yersinia enterocolitica/pathogenicity , rho GTP-Binding Proteins/metabolism , Humans , Macrophages/immunology , Macrophages/metabolism , Yersinia Infections/genetics , Yersinia Infections/immunology , Yersinia Infections/metabolism , rho GTP-Binding Proteins/genetics
8.
Microb Pathog ; 182: 106258, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37482115

ABSTRACT

Foodborne illnesses are pervasive in raising public health concerns in both developed and developing nations. Yersinia enterocolitica a zoonotic bacterial species that causes food-transmitted infections, and gastroenteritis, is its most prevalent clinical manifestation. This study aims to investigate the differences, dependencies, and inhibitory mechanisms between the host and the microbiome. Proteus mirabilis DMTMMR-11, the bacterium found in the human gastrointestinal tract was used for the extraction of intracellular metabolite, because of its beneficial effects on the normal flora of the human gut. Phenyl propiolic acid was identified as the dominant compound in the metabolite after characterization using FT-IR, NMR, and LC-MS-MS. To assess its inhibitory mechanism against Yersinia enterocolitica, the pathogen was subjected to biological characterization by MBC and MIC, resulting in the rate of inhibition at 50 µg/ml. Anti-bacterial curve supports the inhibited growth of Y. enterocolitica. Mechanism of inhibition at its cellular level was indicated by the increase in alkaline phosphate content, which drastically reduced the cell membrane and cell wall potential expanding its permeability by intruding the membrane proteins, which was observed in SEM Imaging. Phenyl propiolic acid efficiently disrupts the biofilm formation by reducing the adherence and increasing the eradication property of the pathogen by exhibiting 65% of inhibition at the minimal duration of 12h. In-vivo study was carried out through host-pathogen interaction in C. elegans, an efficient model organism assessed for its life-span, physiological, and behavioral assays.


Subject(s)
Yersinia Infections , Yersinia enterocolitica , Animals , Humans , Proteus mirabilis , Caenorhabditis elegans , Spectroscopy, Fourier Transform Infrared , Yersinia Infections/microbiology
9.
Appl Microbiol Biotechnol ; 107(23): 7165-7180, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37728625

ABSTRACT

The fast envelope stress responses play a key role in the transmission and pathogenesis of Yersinia enterocolitica, one of the most common foodborne pathogens. Our previous study showed that deletion of the waaF gene, essential for the biosynthesis of lipopolysaccharide (LPS) core polysaccharides, led to the formation of a truncated LPS structure and induced cell envelope stress. This envelope stress may disturb the intracellular signal transduction, thereby affecting the physiological functions of Y. enterocolitica. In this study, truncated LPS caused by waaF deletion was used as a model of envelope stress in Y. enterocolitica. We investigated the mechanisms of envelope stress responses and the cellular functions affected by truncated LPS. Transcriptome analysis and phenotypic validation showed that LPS truncation reduced flagellar assembly, bacterial chemotaxis, and inositol phosphate metabolism, presenting lower pathogenicity and viability both in vivo and in vitro environments. Further 4D label-free phosphorylation analysis confirmed that truncated LPS perturbed multiple intracellular signal transduction pathways. Specifically, a comprehensive discussion was conducted on the mechanisms by which chemotactic signal transduction and Rcs system contribute to the inhibition of chemotaxis. Finally, the pathogenicity of Y. enterocolitica with truncated LPS was evaluated in vitro using IPEC-J2 cells as models, and it was found that truncated LPS exhibited reduced adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. Our research provides an understanding of LPS in the regulation of Y. enterocolitica viability and pathogenicity and, thus, opening new avenues to develop novel food safety strategies or drugs to prevent and control Y. enterocolitica infections. KEY POINTS: • Truncated LPS reduces flagellar assembly, chemotaxis, and inositol phosphate metabolism in Y. enterocolitica. • Truncated LPS reduces adhesion, invasion, and toxicity of Y. enterocolitica to IPEC-J2 cells. • Truncated LPS regulates intracellular signal transduction of Y. enterocolitica.


Subject(s)
Yersinia Infections , Yersinia enterocolitica , Humans , Yersinia enterocolitica/genetics , Yersinia enterocolitica/metabolism , Lipopolysaccharides/metabolism , Virulence , Gene Expression Profiling , Inositol Phosphates/metabolism , Yersinia Infections/microbiology
10.
Dis Aquat Organ ; 155: 7-19, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37534718

ABSTRACT

Enteric redmouth disease (ERM) caused by the enterobacterium Yersinia ruckeri poses a significant threat to salmonid aquaculture globally. Despite decades of experimental infection studies, key knowledge gaps remain regarding the onset of disease susceptibility and mechanisms of immunity during early developmental stages, undermining disease management efforts in all susceptible life-stages. In this study, a series of immersion challenges were conducted, challenging and re-challenging rainbow trout Oncorhynchus mykiss (Walbaum) at 7, 14 and 51 d post-hatch (dph; mean weights = 0.085, 0.1 and 2.0 g respectively) to high concentrations (1.72 × 107-1.1 × 108 CFU) of Y. ruckeri at 15°C. This study indicates the hitherto unknown initial point of susceptibility to infection as the time of first ingestion of exogenous food (14 dph), and shows that individuals surviving primary challenge at 14 dph are significantly more likely to survive re-challenge at 51 dph compared with naive individuals (hazard ratio = 1.446, p = 0.032). Other key findings include large variation in mortality between different development-stages, from 21.1% at 14 dph to 81.2% at 51 dph, and novel age-dependent symptoms not reported previously. Results from this study enhance our understanding of ERM in juvenile rainbow trout and inform the development of improved aquatic animal health management strategies, thereby contributing to the productivity and sustainability of salmonid aquaculture into the future.


Subject(s)
Fish Diseases , Oncorhynchus mykiss , Yersinia Infections , Animals , Yersinia ruckeri , Fish Diseases/microbiology , Yersinia Infections/veterinary , Yersinia Infections/microbiology , Aquaculture
11.
Int J Mol Sci ; 24(11)2023 May 27.
Article in English | MEDLINE | ID: mdl-37298300

ABSTRACT

YTH domain-containing genes are important readers of N6-methyladenosine (m6A) modifications with ability to directly affect the fates of distinct RNAs in organisms. Despite their importance, little is known about YTH domain-containing genes in teleosts until now. In the present study, a total of 10 YTH domain-containing genes have been systematically identified and functionally characterized in rainbow trout (Oncorhynchus mykiss). According to the phylogenetic tree, gene structure and syntenic analysis, these YTH domain-containing genes could be classified into three evolutionary subclades, including YTHDF, YTHDC1 and YTHDC2. Of them, the copy number of OmDF1, OmDF2, OmDF3, and OmDC1 were duplicated or even triplicated in rainbow trout due to the salmonid-specific whole-genome duplication event. The three-dimensional protein structure analysis revealed that there were similar structures and the same amino acid residues that were associated with cage formation between humans and rainbow trout, implying their similar manners in binding to m6A modification. Additionally, the results of qPCR experiment indicated that the expression patterns of a few YTH domain-containing genes, especially OmDF1b, OmDF3a and OmDF3b, were significantly different in liver tissue of rainbow trout under four different temperatures (7 °C, 11 °C, 15 °C, and 19 °C). The expression levels of OmDF1a, OmDF1b and OmDC1a were obviously repressed in spleen tissue of rainbow trout at 24 h after Yersinia ruckeri infection, while increased expression was detected in OmDF3b. This study provides a systemic overview of YTH domain-containing genes in rainbow trout and reveals their biological roles in responses to temperature stress and bacterial infection.


Subject(s)
Fish Diseases , Oncorhynchus mykiss , Yersinia Infections , Animals , Fish Diseases/genetics , Fish Diseases/microbiology , Oncorhynchus mykiss/genetics , Oncorhynchus mykiss/microbiology , Phylogeny , Temperature , Yersinia Infections/genetics , Yersinia Infections/veterinary , Yersinia Infections/microbiology , Yersinia ruckeri
12.
Article in Japanese | MEDLINE | ID: mdl-38229457

ABSTRACT

Yersinia enterocolitica is a causative agent of food poisoning and has been isolated from pork and stream water, causing Yersinia enterocolitica in humans. The bacterium is divided into multiple serotypes and biotypes, among which serotypes O3 and O8 and biotypes 1B, 3, and 4 are frequently isolated in Japan. Biotype 3 can be classified as [VP+, Suc+], [VP-, Suc+], [VP-, Suc-] based on the biochemical properties. Among them, [O3, 3, VP-, Suc-] has been reported to be identified as Yersinia kristensenii in a simple identification kit. An increasing number of facilities in the field of microbiological testing are currently using mass spectrometers to identify species of microorganisms. However, there are many facilities where mass spectrometers have not yet been installed and microbial identification and susceptibility testing devices are used to identify bacterial species. No reports have described how the [O3, 3, VP-, Suc-] type, which is identified as Y. kristensenii in the simple identification kit, is identified by the microbial identification and susceptibility testing devices. In this study, 15 strains of Y. enterocolitica, which were previously isolated, serotyped, and biotyped from fecal culture tests at our hospital, were analyzed to see how these strains were identified in RAISUS S4, Microscan WalkAway, VITEK2 Blue, and BD Phoenix. [O3, 3, VP-, Suc-] was identified as Y. kristensenii in RAISUS S4, Microscan WalkAway, and VITEK2 Blue and as Y. enterocolitica in BD Phoenix. [O3, 3, VP-, Suc+], [O3, 4] and [O8, 1B] were identified as Y. enterocolitica. Therefore, when a sample was identified as Y. kristensenii by RAISUS S4, Microscan WalkAway, or VITEK2 Blue, the possibility that it was actually [O3, 3, VP-, Suc-] could not be ruled out. The possibility of Y. enterocolitica should be informed to attending physicians.


Subject(s)
Yersinia Infections , Yersinia enterocolitica , Humans , Serogroup , Yersinia Infections/microbiology , Japan
13.
Microb Pathog ; 173(Pt A): 105877, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36371064

ABSTRACT

Yersinia enterocolitica (Y. enterocolitica) is a gastrointestinal pathogen that is distributed worldwide, involved in systemic, extraintestinal and invasive infections in immunocompromised patients. Establishment of antibiotic resistance in the pathogen has produced a need for new antibacterial agents. The purpose of this study was to elucidate antibacterial mechanism of protocatechualdehyde (PCA) extracted from the roots of Salvia miltiorrhiza towards Y. enterocolitica, and to investigate effects of PCA on key virulence factors associated with human infection. Present results indicated that PCA exerted its antibacterial activity against Y. enterocolitica mainly by the rapid rise of intracellular reactive oxygen species, leading to change in permeability and integrity of cell membrane, and ultimately decline of membrane potential and intracellular ATP. Furthermore, scanning electron microscopic analysis revealed that Y. enterocolitica presented gradually shrinkage in length and partial wrinkles upon PCA treatment. PCA also effectively decreased motility, biofilm formation, quorum sensing in a dose-dependent manner without affecting bacterial growth. Further, at SICs, PCA substantially suppressed the adhesion and invasion of Y. enterocolitica to HT-29 cells and the downregulation of essential virulence factor-encoding genes unveiled impaired virulence. Overall, the findings revealed the potential of PCA as an alternative antibacterial agent to combat Y. enterocolitica contamination and infections.


Subject(s)
Yersinia Infections , Yersinia enterocolitica , Humans , Yersinia enterocolitica/genetics , Yersinia Infections/microbiology , Virulence Factors/genetics , Anti-Bacterial Agents/pharmacology
14.
J Appl Microbiol ; 132(4): 3201-3216, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35032344

ABSTRACT

AIMS: Given the pivotal role played by the gut microbiota in regulating the host immune system, great interest has arisen in the possibility of controlling fish health by modulating the gut microbiota. Hence, there is a need to better understand of the host-microbiota interactions after disease responses to optimize the use of probiotics to strengthen disease resilience and recovery. METHODS AND RESULTS: We tested the effects of a probiotic feed additive in rainbow trout and challenged the fish with the causative agent for enteric red mouth disease, Yersinia ruckeri. We evaluated the survival, host immune gene expression and the gut microbiota composition. Results revealed that provision of probiotics and exposure to Y. ruckeri induced immune gene expression in the host, which were associated with changes in the gut microbiota. Subsequently, infection with Y. ruckeri had very little effect on microbiota composition when probiotics were applied, indicating that probiotics increased stabilisation of the microbiota. Our analysis revealed potential biomarkers for monitoring infection status and fish health. Finally, we used modelling approaches to decipher interactions between gut bacteria and the host immune gene responses, indicating removal of endogenous bacteria elicited by non-specific immune responses. CONCLUSIONS: We discuss the relevance of these results emphasizing the importance of host-microbiota interactions, including the protective potential of the gut microbiota in disease responses. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results highlight the functional consequences of probiotic-induced changes in the gut microbiota post infection and the resulting host immune response.


Subject(s)
Fish Diseases , Gastrointestinal Microbiome , Oncorhynchus mykiss , Probiotics , Yersinia Infections , Animals , Fish Diseases/microbiology , Immunity , Oncorhynchus mykiss/microbiology , Yersinia Infections/microbiology , Yersinia Infections/veterinary , Yersinia ruckeri
15.
Z Rheumatol ; 81(8): 692-698, 2022 Oct.
Article in German | MEDLINE | ID: mdl-36006472

ABSTRACT

The introduction of the term reactive arthritis (ReA) for the joint inflammation observed after infection with Yersinia enterocolitica, in which "a causative pathogen cannot be isolated from the synovial fluid", and the association with the HLA-B27 were the historical milestones for a new classification and assignment to the spondylarthritides (SpA). The division into postinfectious and reactive arthritis proposed in 1976 was put into perspective in the 1990s because of investigations with the newly available molecular biological method of the polymerase chain reaction. Microbial products could be identified from joint samples of patients with ReA. Therefore, it was proposed to abandon the distinction between the two groups of diseases and to prefer the term ReA for both. This created a terminological and nosological issue. On the one hand, there are generally accepted classification and diagnostic criteria for the classical HLA-B27-associated ReA that are assigned to SpA. On the other hand, an increasing number of bacterial pathogens, viruses, amoebas, helminths as well as antiviral and antibacterial vaccinations are described as triggers of arthritis, which have been published under the term ReA. Since the beginning of the SARS-CoV­2 pandemic, cases of acute post-COVID-19 arthritis have been described, which were also classified as ReA because of comparable clinical features.


Subject(s)
Arthritis, Reactive , COVID-19 , Yersinia Infections , Anti-Bacterial Agents/therapeutic use , Antiviral Agents/therapeutic use , Arthritis, Reactive/microbiology , HLA-B27 Antigen , Humans , SARS-CoV-2 , Yersinia Infections/microbiology
16.
Infect Immun ; 89(12): e0043021, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34543120

ABSTRACT

Despite the maintenance of YopP/J alleles throughout the human-pathogenic Yersinia lineage, the benefit of YopP/J-induced phagocyte death for Yersinia pathogenesis in animals is not obvious. To determine how the sequence divergence of YopP/J has impacted Yersinia virulence, we examined protein polymorphisms in this type III secreted effector protein across 17 Yersinia species and tested the consequences of polymorphism in a murine model of subacute systemic yersiniosis. Our evolutionary analysis revealed that codon 177 has been subjected to positive selection; the Yersinia enterocolitica residue had been altered from a leucine to a phenylalanine in nearly all Yersinia pseudotuberculosis and Yersinia pestis strains examined. Despite this change being minor, as both leucine and phenylalanine have hydrophobic side chains, reversion of YopJF177 to the ancestral YopJL177 variant yielded a Y. pseudotuberculosis strain with enhanced cytotoxicity toward macrophages, consistent with previous findings. Surprisingly, expression of YopJF177L in the mildly attenuated ksgA- background rendered the strain completely avirulent in mice. Consistent with this hypothesis that YopJ activity relates indirectly to Yersinia pathogenesis in vivo, ksgA- strains lacking functional YopJ failed to kill macrophages but actually regained virulence in animals. Also, treatment with the antiapoptosis drug suramin prevented YopJ-mediated macrophage cytotoxicity and enhanced Y. pseudotuberculosis virulence in vivo. Our results demonstrate that Yersinia-induced cell death is detrimental for bacterial pathogenesis in this animal model of illness and indicate that positive selection has driven YopJ/P and Yersinia evolution toward diminished cytotoxicity and increased virulence, respectively.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Host-Pathogen Interactions , Yersinia Infections/microbiology , Yersinia/physiology , Animals , Bacterial Proteins/metabolism , Disease Susceptibility , Humans , Mutation , Virulence/genetics , Virulence Factors , Yersinia/pathogenicity
17.
Fish Shellfish Immunol ; 110: 55-66, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33383177

ABSTRACT

In this 21-day study, we examined the effects of the aqueous methanolic extract of thin-skinned plum (Prunus domestica) on growth, immune response and resistance to a pathogenic bacterium, Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss). Fish were fed with diets containing thin-skinned plum extract doses as 0 (Control) 0.1 (PD01), 0.5 (PD05) and 1% (PD1) ad libitum twice in a day. At the end of the study, growth was affected positively but not significantly. Feed conversion ratio (FCR) was decreased in the PD01 group (P < 0.05). There were elevated respiratory burst and potential bacterial killing activities on the 7th day in the PD1 fish group. No differences were observed in lysozyme activity (P > 0.05). An increased myeloperoxidase activity was recorded on the 14th day of study. Expression of interleukin and COX-2 genes was elevated on the 7th day of study in the kidney and intestine of treated fish. Histological results indicated no marked changes in organs (gill, kidney, liver and spleen) of PD treated fish groups. Challenge results of fish in all plum extract-treated groups showed an increased survival rate against Y. ruckeri (P < 0.05). This study indicated that the thin-skinned plum aqueous methanolic extract could improve innate immunity, survival against Y. ruckeri and decrease the FCR level.


Subject(s)
Adjuvants, Immunologic/pharmacology , Disease Resistance , Fish Diseases/prevention & control , Oncorhynchus mykiss/immunology , Plant Extracts/pharmacology , Yersinia ruckeri/drug effects , Animals , Fish Diseases/microbiology , Oncorhynchus mykiss/growth & development , Prunus domestica/chemistry , Yersinia Infections/microbiology , Yersinia Infections/prevention & control , Yersinia Infections/veterinary
18.
Biotechnol Lett ; 43(9): 1845-1867, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34165641

ABSTRACT

OBJECTIVE: Mouse infection models are frequently used to study the host-pathogen interaction studies. However, due to several constraints, there is an urgent need for a simple, rapid, easy to handle, inexpensive, and ethically acceptable in vivo model system for studying the virulence of enteropathogens. Thus, the present study was performed to develop the larvae of Helicoverpa armigera as a rapid-inexpensive in vivo model system to evaluate the effect of Yersinia enterocolitica strain 8081 on its midgut via a label-free proteomic approach. RESULTS: Helicoverpa armigera larvae fed with Yersinia enterocolitica strain 8081 manifested significant reduction in body weight and damage in midgut. On performing label-free proteomic study, secretory systems, putative hemolysin, and two-component system emerged as the main pathogenic proteins. Further, proteome comparison between control and Yersinia added diet-fed (YADF) insects revealed altered cytoskeletal proteins in response to increased melanization (via a prophenoloxidase cascade) and free radical generation. In concurrence, FTIR-spectroscopy, and histopathological and biochemical analysis confirmed gut damage in YADF insects. Finally, the proteome data suggests that the mechanism of infection and the host response in Y. enterocolitica-H. armigera system mimics Yersinia-mammalian gut interactions. CONCLUSIONS: All data from current study collectively suggest that H. armigera larva can be considered as a potential in vivo model system for studying the enteropathogenic infection by Y. enterocolitica strain 8081.


Subject(s)
Lepidoptera/microbiology , Protein Interaction Maps , Yersinia Infections/metabolism , Yersinia enterocolitica/pathogenicity , Animals , Body Weight , Disease Models, Animal , Hemolysin Proteins/metabolism , Insect Proteins/metabolism , Larva/microbiology , Proteomics , Spectroscopy, Fourier Transform Infrared , Yersinia Infections/microbiology
19.
Food Microbiol ; 94: 103660, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33279085

ABSTRACT

Yersinia enterocolitica bio-serotype 4/O:3 was previously identified in a pork production chain in Brazil and the obtained isolates presented high identity by pulsed-field gel electrophoresis (PFGE, XbaI). For the current study, an additional 147 porcine samples (tonsils = 100, palate = 30, head meat = 17) were collected from the same pork production chain 2-years later and 14 (9.5%) tested positive for Y. enterocolitica. Isolates (n = 24, 1 to 2 per positive sample) were bio-serotype 4/O:3 and harbored virulence genes ail, inv, wbbU, virF, myfA, ystA, ymoA, hreP and sat, and the multidrug resistance related genes emrD, marC and yfhD. PFGE (XbaI) demonstrated no differences among isolates (100% similarity) and were identical to some Y. enterocolitica isolates (n = 13) obtained previously from the same pork chain. A second PFGE analysis (NotI) confirmed the high degree of similarity among isolates obtained over time, demonstrating the persistence of an apparent clonal Y. enterocolitica bio-serotype 4/O:3 in this particular pork production chain in Brazil.


Subject(s)
Pork Meat/microbiology , Swine Diseases/microbiology , Yersinia Infections/veterinary , Yersinia enterocolitica/isolation & purification , Animals , Brazil , Electrophoresis, Gel, Pulsed-Field , Food Contamination/analysis , Phylogeny , Serotyping , Swine , Yersinia Infections/microbiology , Yersinia enterocolitica/classification , Yersinia enterocolitica/genetics
20.
J Fish Dis ; 44(12): 2013-2020, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34432896

ABSTRACT

Effective monitoring for subclinical infections is a cornerstone of proactive disease management in aquaculture. Salmonid fish that survive enteric redmouth disease (ERM) can carry Yersinia ruckeri as a latent infection for several months, potentially facilitating cryptic spread between facilities that exchange fish. In this study, fingerling rainbow trout (Oncorhynchus mykiss) were infected by immersion and sampled for up to 14 weeks post-infection. Yersinia ruckeri was cultured from the posterior kidney of more than 89% of fish up to 4 weeks post-infection, but from 2% or fewer of fish sampled at later time points. In contrast, qPCR-based detection of the Y. ruckeri 16s rRNA gene in intestine and spleen extracts revealed a much higher rate of infection: at 14 weeks post-infection Y. ruckeri was detected in nearly 50% of spleens and 15% of intestines. The difference between spleen and intestine is likely due at least in part to technical limitations of qPCR on intestinal DNA extracts; accordingly, we propose that qPCR of spleen DNA ought to be considered the preferred standard for detection of carriers of Y. ruckeri.


Subject(s)
Fish Diseases/microbiology , Yersinia Infections/microbiology , Yersinia ruckeri/isolation & purification , Animals , Aquaculture , Fish Diseases/diagnosis , Oncorhynchus mykiss , RNA, Ribosomal, 16S , Real-Time Polymerase Chain Reaction/methods , Real-Time Polymerase Chain Reaction/veterinary , Spleen/microbiology , Yersinia Infections/diagnosis , Yersinia ruckeri/genetics
SELECTION OF CITATIONS
SEARCH DETAIL