Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 641
Filter
1.
Cell ; 176(1-2): 198-212.e15, 2019 01 10.
Article in English | MEDLINE | ID: mdl-30503211

ABSTRACT

Understanding transcription factor navigation through the nucleus remains critical for developing targeted therapeutics. The GLI1 transcription factor must maintain maximal Hedgehog pathway output in basal cell carcinomas (BCCs), and we have previously shown that resistant BCCs increase GLI1 deacetylation through atypical protein kinase Cι/λ (aPKC) and HDAC1. Here we identify a lamina-associated polypeptide 2 (LAP2) isoform-dependent nuclear chaperoning system that regulates GLI1 movement between the nuclear lamina and nucleoplasm to achieve maximal activation. LAP2ß forms a two-site interaction with the GLI1 zinc-finger domain and acetylation site, stabilizing an acetylation-dependent reserve on the inner nuclear membrane (INM). By contrast, the nucleoplasmic LAP2α competes with LAP2ß for GLI1 while scaffolding HDAC1 to deacetylate the secondary binding site. aPKC functions to promote GLI1 association with LAP2α, promoting egress off the INM. GLI1 intranuclear trafficking by LAP2 isoforms represents a powerful signal amplifier in BCCs with implications for zinc finger-based signal transduction and therapeutics.


Subject(s)
DNA-Binding Proteins/metabolism , Membrane Proteins/metabolism , Zinc Finger Protein GLI1/metabolism , 3T3 Cells , Animals , Carcinoma, Basal Cell/metabolism , Cell Line , Chromatin , DNA-Binding Proteins/physiology , HEK293 Cells , Hedgehog Proteins/metabolism , Hedgehog Proteins/physiology , Histone Deacetylase 1/metabolism , Humans , Membrane Proteins/physiology , Mice , Molecular Chaperones/metabolism , Nuclear Lamina/metabolism , Nuclear Proteins/metabolism , Protein Isoforms/metabolism , Signal Transduction , Trans-Activators/metabolism , Transcription Factors/metabolism , Zinc Finger Protein GLI1/physiology , Zinc Fingers
2.
Cell ; 168(1-2): 264-279.e15, 2017 01 12.
Article in English | MEDLINE | ID: mdl-28086093

ABSTRACT

The life cycle of a primary cilium begins in quiescence and ends prior to mitosis. In quiescent cells, the primary cilium insulates itself from contiguous dynamic membrane processes on the cell surface to function as a stable signaling apparatus. Here, we demonstrate that basal restriction of ciliary structure dynamics is established by the cilia-enriched phosphoinositide 5-phosphatase, Inpp5e. Growth induction displaces ciliary Inpp5e and accumulates phosphatidylinositol 4,5-bisphosphate in distal cilia. This change triggers otherwise-forbidden actin polymerization in primary cilia, which excises cilia tips in a process we call cilia decapitation. While cilia disassembly is traditionally thought to occur solely through resorption, we show that an acute loss of IFT-B through cilia decapitation precedes resorption. Finally, we propose that cilia decapitation induces mitogenic signaling and constitutes a molecular link between the cilia life cycle and cell-division cycle. This newly defined ciliary mechanism may find significance in cell proliferation control during normal development and cancer.


Subject(s)
Cell Cycle , Cilia/metabolism , Actins/metabolism , Animals , Kidney/cytology , Kidney/metabolism , Mice , NIH 3T3 Cells , Phosphatidylinositol 4,5-Diphosphate , Phosphoric Monoester Hydrolases/metabolism , Zinc Finger Protein GLI1/metabolism
3.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38639105

ABSTRACT

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Subject(s)
Hypertension, Pulmonary , Vascular Remodeling , Zinc Finger Protein GLI1 , Animals , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Mice , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/physiopathology , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Mice, Inbred C57BL , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Mice, Transgenic , Male , Humans , Hypoxia/metabolism , Hypoxia/physiopathology
4.
Dev Biol ; 515: 92-101, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39029571

ABSTRACT

Congenital lung malformations are fatal at birth in their severe forms. Prevention and early intervention of these birth defects require a comprehensive understanding of the molecular mechanisms of lung development. We find that the loss of inturned (Intu), a cilia and planar polarity effector gene, severely disrupts growth and branching morphogenesis of the mouse embryonic lungs. Consistent with our previous results indicating an important role for Intu in ciliogenesis and hedgehog (Hh) signaling, we find greatly reduced number of primary cilia in both the epithelial and mesenchymal tissues of the lungs. We also find significantly reduced expression of Gli1 and Ptch1, direct targets of Hh signaling, suggesting disruption of cilia-dependent Hh signaling in Intu mutant lungs. An agonist of the Hh pathway activator, smoothened, increases Hh target gene expression and tubulogenesis in explanted wild type, but not Intu mutant, lungs, suggesting impaired Hh signaling response underlying lung morphogenetic defects in Intu mutants. Furthermore, removing both Gli2 and Intu completely abolishes branching morphogenesis of the lung, strongly supporting a mechanism by which Intu regulates lung growth and patterning through cilia-dependent Hh signaling. Moreover, a transcriptomics analysis identifies around 200 differentially expressed genes (DEGs) in Intu mutant lungs, including known Hh target genes Gli1, Ptch1/2 and Hhip. Genes involved in muscle differentiation and function are highly enriched among the DEGs, consistent with an important role of Hh signaling in airway smooth muscle differentiation. In addition, we find that the difference in gene expression between the left and right lungs diminishes in Intu mutants, suggesting an important role of Intu in asymmetrical growth and patterning of the mouse lungs.


Subject(s)
Cilia , Gene Expression Regulation, Developmental , Hedgehog Proteins , Lung , Signal Transduction , Animals , Mice , Body Patterning/genetics , Cilia/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Lung/embryology , Lung/metabolism , Morphogenesis/genetics , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein Gli2/metabolism , Zinc Finger Protein Gli2/genetics
5.
Hepatology ; 79(1): 61-78, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-36683360

ABSTRACT

BACKGROUND AND AIMS: Deregulation of adenosine-to-inosine editing by adenosine deaminase acting on RNA 1 (ADAR1) leads to tumor-specific transcriptome diversity with prognostic values for HCC. However, ADAR1 editase-dependent mechanisms governing liver cancer stem cell (LCSC) generation and maintenance have remained elusive. APPROACH AND RESULTS: RNA-seq profiling identified ADAR1-responsive recoding editing events in HCC and showed editing frequency of GLI1 , rather than transcript abundance was clinically relevant. Functional differences in LCSC self-renewal and tumor aggressiveness between wild-type (GLI1 wt ) and edited GLI1 (GLI1 edit ) were elucidated. We showed that overediting of GLI1 induced an arginine-to-glycine (R701G) substitution, augmenting tumor-initiating potential and exhibiting a more aggressive phenotype. GLI1 R701G harbored weak affinity to SUFU, which in turn, promoted its cytoplasmic-to-nuclear translocation to support LCSC self-renewal by increased pluripotency gene expression. Moreover, editing predisposed to stabilize GLI1 by abrogating ß-TrCP-GLI1 interaction. Integrative analysis of single-cell transcriptome further revealed hyperactivated mitophagy in ADAR1-enriched LCSCs. GLI1 editing promoted a metabolic switch to oxidative phosphorylation to control stress and stem-like state through PINK1-Parkin-mediated mitophagy in HCC, thereby conferring exclusive metastatic and sorafenib-resistant capacities. CONCLUSIONS: Our findings demonstrate a novel role of ADAR1 as an active regulator for LCSCs properties through editing GLI1 in the highly heterogeneous HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/pathology , Zinc Finger Protein GLI1/metabolism , RNA-Binding Proteins/metabolism , Mitophagy , Neoplastic Stem Cells/metabolism
6.
Blood ; 142(23): 1945-1959, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37595276

ABSTRACT

Understanding the genetic alterations, disrupted signaling pathways, and hijacked mechanisms in oncogene-transformed hematologic cells is critical for the development of effective and durable treatment strategies against liquid tumors. In this review, we focus on the specific involvement of the Hedgehog (HH)/GLI pathway in the manifestation and initiation of various cancer features in hematologic malignancies, including multiple myeloma, T- and B-cell lymphomas, and lymphoid and myeloid leukemias. By reviewing canonical and noncanonical, Smoothened-independent HH/GLI signaling and summarizing preclinical in vitro and in vivo studies in hematologic malignancies, we elucidate common molecular mechanisms by which HH/GLI signaling controls key oncogenic processes and cancer hallmarks such as cell proliferation, cancer stem cell fate, genomic instability, microenvironment remodeling, and cell survival. We also summarize current clinical trials with HH inhibitors and discuss successes and challenges, as well as opportunities for future combined therapeutic approaches. By providing a bird's eye view of the role of HH/GLI signaling in liquid tumors, we suggest that a comprehensive understanding of the general oncogenic effects of HH/GLI signaling on the formation of cancer hallmarks is essential to identify critical vulnerabilities within tumor cells and their supporting remodeled microenvironment, paving the way for the development of novel and efficient personalized combination therapies for hematologic malignancies.


Subject(s)
Hematologic Neoplasms , Signal Transduction , Humans , Hedgehog Proteins/metabolism , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/metabolism , Tumor Microenvironment , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
7.
Biochemistry ; 63(12): 1534-1542, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38804064

ABSTRACT

Zinc Finger MYND (Myeloid, Nervy, and DEAF-1) type containing 8 (ZMYND8) is a crucial epigenetic regulator that plays a multifaceted role in governing a spectrum of vital cellular processes, encompassing proliferation, apoptosis, migration, tumor suppression, and differentiation. It has emerged as a key player in neuronal differentiation by orchestrating the expression of neuronal lineage-committed genes. The present study uncovers the role of ZMYND8 in regulating the Sonic Hedgehog (SHH) signaling axis, which is crucial for neuronal differentiation. Genetic deletion of ZMYND8 leads to a significant reduction in SHH pathway genes, GLI1, and PTCH1 expression during all-trans-retinoic acid (ATRA)-induced differentiation. ZMYND8 and RNA pol II S5P are found to co-occupy the GLI1 and PTCH1 gene promoters, positively impacting their gene transcription upon ATRA treatment. Interestingly, ZMYND8 is found to counteract the inhibitory effects of Cyclopamine that block the upstream SHH pathway protein SMO, resulting in enhanced neurite formation in neuroblastoma cells following their treatment with ATRA. These results indicate that ZMYND8 is an epigenetic regulator of the SHH signaling pathway and has tremendous therapeutic potential in ATRA-mediated differentiation of neuroblastoma.


Subject(s)
Cell Differentiation , Hedgehog Proteins , Neuroblastoma , Signal Transduction , Tretinoin , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Humans , Cell Differentiation/drug effects , Tretinoin/pharmacology , Signal Transduction/drug effects , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neuroblastoma/genetics , Cell Line, Tumor , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Gene Expression Regulation, Neoplastic/drug effects , Mice , Animals , Tumor Suppressor Proteins
8.
Dev Biol ; 504: 128-136, 2023 12.
Article in English | MEDLINE | ID: mdl-37805104

ABSTRACT

Transcriptional responses to the Hedgehog (HH) signaling pathway are primarily modulated by GLI repression in the mouse limb. Previous studies suggested a role for the BAF chromatin remodeling complex in mediating GLI repression. Consistent with this possibility, the core BAF complex protein SMARCC1 is present at most active limb enhancers including the majority of GLI enhancers. However, in contrast to GLI repression which reduces chromatin accessibility, SMARCC1 maintains chromatin accessibility at most enhancers, including those bound by GLI. Moreover, SMARCC1 binding at GLI-regulated enhancers occurs independently of GLI3. Consistent with previous studies, some individual GLI target genes are mis-regulated in Smarcc1 conditional knockouts, though most GLI target genes are unaffected. Moreover, SMARCC1 is not necessary for mediating constitutive GLI repression in HH mutant limb buds. We conclude that SMARCC1 does not mediate GLI3 repression, which we propose utilizes alternative chromatin remodeling complexes.


Subject(s)
Chromatin , Limb Buds , Animals , Mice , Chromatin/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Limb Buds/metabolism , Nerve Tissue Proteins/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein Gli3/genetics , Zinc Finger Protein Gli3/metabolism
9.
J Biol Chem ; 299(9): 105155, 2023 09.
Article in English | MEDLINE | ID: mdl-37572850

ABSTRACT

Bivalent epigenomic regulatory domains containing both activating histone 3 lysine 4 (H3K4me3) and repressive lysine 27 (H3K27me3) trimethylation are associated with key developmental genes. These bivalent domains repress transcription in the absence of differentiation signals but maintain regulatory genes in a poised state to allow for timely activation. Previous studies demonstrated that enhancer of zeste homolog 2 (Ezh2), a histone 3 lysine 27 (H3K27) methyltransferase, suppresses osteogenic differentiation and that inhibition of Ezh2 enhances commitment of osteoblast progenitors in vitro and bone formation in vivo. Here, we examined the mechanistic effects of Tazemetostat (EPZ6438), an Food and Drug Administration approved Ezh2 inhibitor for epithelioid sarcoma treatment, because this drug could potentially be repurposed to stimulate osteogenesis for clinical indications. We find that Tazemetostat reduces H3K27me3 marks in bivalent domains in enhancers required for bone formation and stimulates maturation of MC3T3 preosteoblasts. Furthermore, Tazemetostat activates bivalent genes associated with the Wingless/integrated (WNT), adenylyl cyclase (cAMP), and Hedgehog (Hh) signaling pathways based on transcriptomic (RNA-seq) and epigenomic (chromatin immunoprecipitation [ChIP]-seq) data. Functional analyses using selective pathway inhibitors and silencing RNAs demonstrate that the WNT and Hh pathways modulate osteogenic differentiation after Ezh2 inhibition. Strikingly, we show that loss of the Hh-responsive transcriptional regulator Gli1, but not Gli2, synergizes with Tazemetostat to accelerate osteoblast differentiation. These studies establish epigenetic cooperativity of Ezh2, Hh-Gli1 signaling, and bivalent regulatory genes in suppressing osteogenesis. Our findings may have important translational ramifications for anabolic applications requiring bone mass accrual and/or reversal of bone loss.


Subject(s)
Enhancer of Zeste Homolog 2 Protein , Osteoblasts , Signal Transduction , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Histones/metabolism , Lysine/metabolism , Osteoblasts/metabolism , Osteogenesis , Zinc Finger Protein GLI1/metabolism , Signal Transduction/drug effects
10.
Cancer Sci ; 115(7): 2301-2317, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38676428

ABSTRACT

GLI1, a key transcription factor of the Hedgehog (Hh) signaling pathway, plays an important role in the development of cancer. However, the function and mechanisms by which GLI1 regulates gene transcription are not fully understood in gastric cancer (GC). Here, we found that GLI1 induced the proliferation and metastasis of GC cells, accompanied by transcriptional upregulation of INHBA. This increased INHBA expression exerted a promoting activity on Smads signaling and then transcriptionally activated GLI1 expression. Notably, our results demonstrate that disrupting the interaction between GLI1 and INHBA could inhibit GC tumorigenesis in vivo. More intriguingly, we confirmed the N6-methyladenosine (m6A) activation mechanism of the Helicobacter pylori/FTO/YTHDF2/GLI1 pathway in GC cells. In conclusion, our study confirmed that the GLI1/INHBA positive feedback loop influences GC progression and revealed the mechanism by which H. pylori upregulates GLI1 expression through m6A modification. This positive GLI1/INHBA feedback loop suggests a novel noncanonical mechanism of GLI1 activity in GC and provides potential therapeutic targets for GC treatment.


Subject(s)
Cell Proliferation , Disease Progression , Feedback, Physiological , Gene Expression Regulation, Neoplastic , Helicobacter pylori , Stomach Neoplasms , Zinc Finger Protein GLI1 , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Humans , Animals , Cell Line, Tumor , Mice , Signal Transduction , Helicobacter Infections/metabolism , Helicobacter Infections/complications , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Up-Regulation , Male , Carcinogenesis/genetics
11.
Development ; 148(4)2021 02 15.
Article in English | MEDLINE | ID: mdl-33589509

ABSTRACT

Ciliopathies represent a growing class of diseases caused by defects in microtubule-based organelles called primary cilia. Approximately 30% of ciliopathies are characterized by craniofacial phenotypes such as craniosynostosis, cleft lip/palate and micrognathia. Patients with ciliopathic micrognathia experience a particular set of difficulties, including impaired feeding and breathing, and have extremely limited treatment options. To understand the cellular and molecular basis for ciliopathic micrognathia, we used the talpid2 (ta2 ), a bona fide avian model for the human ciliopathy oral-facial-digital syndrome subtype 14. Histological analyses revealed that the onset of ciliopathic micrognathia in ta2 embryos occurred at the earliest stages of mandibular development. Neural crest-derived skeletal progenitor cells were particularly sensitive to a ciliopathic insult, undergoing unchecked passage through the cell cycle and subsequent increased proliferation. Furthermore, whereas neural crest-derived skeletal differentiation was initiated, osteoblast maturation failed to progress to completion. Additional molecular analyses revealed that an imbalance in the ratio of bone deposition and resorption also contributed to ciliopathic micrognathia in ta2 embryos. Thus, our results suggest that ciliopathic micrognathia is a consequence of multiple aberrant cellular processes necessary for skeletal development, and provide potential avenues for future therapeutic treatments.


Subject(s)
Bone Remodeling , Ciliopathies/etiology , Micrognathism/etiology , Organogenesis , Phenotype , Animals , Bone Remodeling/genetics , Bone Resorption , Cell Cycle/genetics , Ciliopathies/diagnosis , Craniofacial Abnormalities/genetics , Disease Susceptibility , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Genetic Association Studies , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Micrognathism/diagnosis , Organogenesis/genetics , Osteoblasts/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
12.
Development ; 148(19)2021 10 01.
Article in English | MEDLINE | ID: mdl-34427305

ABSTRACT

Stromal androgen-receptor (AR) action is essential for prostate development, morphogenesis and regeneration. However, mechanisms underlying how stromal AR maintains the cell niche in support of pubertal prostatic epithelial growth are unknown. Here, using advanced mouse genetic tools, we demonstrate that selective deletion of stromal AR expression in prepubescent Shh-responsive Gli1-expressing cells significantly impedes pubertal prostate epithelial growth and development. Single-cell transcriptomic analyses showed that AR loss in these prepubescent Gli1-expressing cells dysregulates androgen signaling-initiated stromal-epithelial paracrine interactions, leading to growth retardation of pubertal prostate epithelia and significant development defects. Specifically, AR loss elevates Shh-signaling activation in both prostatic stromal and adjacent epithelial cells, directly inhibiting prostatic epithelial growth. Single-cell trajectory analyses further identified aberrant differentiation fates of prostatic epithelial cells directly altered by stromal AR deletion. In vivo recombination of AR-deficient stromal Gli1-lineage cells with wild-type prostatic epithelial cells failed to develop normal prostatic epithelia. These data demonstrate previously unidentified mechanisms underlying how stromal AR-signaling facilitates Shh-mediated cell niches in pubertal prostatic epithelial growth and development.


Subject(s)
Androgens/metabolism , Hedgehog Proteins/metabolism , Prostate/growth & development , Stem Cell Niche , Animals , Cell Differentiation , Cell Lineage , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/metabolism , Hedgehog Proteins/genetics , Male , Mice , Prostate/cytology , Prostate/metabolism , RNA-Seq , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Signal Transduction , Single-Cell Analysis , Transcriptome , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism
13.
Microb Pathog ; 192: 106723, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823465

ABSTRACT

The Hedgehog (Hh) signaling pathway is involved in T cell differentiation and development and plays a major regulatory part in different stages of T cell development. A previous study by us suggested that prenatal exposure to staphylococcal enterotoxin B (SEB) changed the percentages of T cell subpopulation in the offspring thymus. However, it is unclear whether prenatal SEB exposure impacts the Hh signaling pathway in thymic T cells. In the present study, pregnant rats at gestational day 16 were intravenously injected once with 15 µg SEB, and the thymi of both neonatal and adult offspring rats were aseptically acquired to scrutinize the effects of SEB on the Hh signaling pathway. It firstly found that prenatal SEB exposure clearly caused the increased expression of Shh and Dhh ligands of the Hh signaling pathway in thymus tissue of both neonatal and adult offspring rats, but significantly decreased the expression levels of membrane receptors of Ptch1 and Smo, transcription factor Gli1, as well as target genes of CyclinD1, C-myc, and N-myc in Hh signaling pathway of thymic T cells. These data suggest that prenatal SEB exposure inhibits the Hh signaling pathway in thymic T lymphocytes of the neonatal offspring, and this effect can be maintained in adult offspring via the imprinting effect.


Subject(s)
Enterotoxins , Hedgehog Proteins , Signal Transduction , T-Lymphocytes , Thymus Gland , Animals , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Female , Pregnancy , Rats , Thymus Gland/metabolism , Thymus Gland/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Patched-1 Receptor/metabolism , Patched-1 Receptor/genetics , Smoothened Receptor/metabolism , Smoothened Receptor/genetics , Prenatal Exposure Delayed Effects/immunology , Cell Differentiation/drug effects , Rats, Sprague-Dawley , Male
14.
Hematol Oncol ; 42(5): e3305, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39205619

ABSTRACT

Mantle cell lymphoma (MCL) is a rare and aggressive form of non-Hodgkin lymphoma. Challenges in its treatment include relapse, drug resistance, and a short survival period. The Hedgehog/GLI1 (Hh/GLI1) and Wnt/ß-catenin pathways are crucial in cancer cell proliferation, survival, and drug resistance, making them significant targets for anticancer research. This study aimed to assess the effectiveness of combining inhibitors for both pathways against MCL and investigate the underlying molecular mechanisms. The co-expression of key proteins from the Hh/GLI1 and Wnt/ß-catenin pathways was observed in MCL. Targeting the Hh/GLI1 pathway with the GLI1 inhibitor GANT61 and the Wnt/ß-catenin pathway with the CBP/ß-catenin transcription inhibitor ICG-001, dual-target therapy was demonstrated to synergistically suppressed the activity of MCL cells. This approach promoted MCL cell apoptosis, induced G0/G1 phase blockade, decreased the percentage of S-phase cells, and enhanced the sensitivity of MCL cells to the drugs adriamycin and ibrutinib. Both GANT61 and ICG-001 downregulated GLI1 and ß-catenin while upregulating GSK-3ß expression. The interaction between Hh/GLI1 and Wnt/ß-catenin pathways was mediated by GANT61-dependent Hh/GLI1 inhibition. Moreover, GLI1 knockdown combined with ICG-001 synergistically induced apoptosis and increased drug sensitivity of MCL cells to doxorubicin and ibrutinib. GANT61 attenuated the overexpression of ß-catenin and decreased the inhibition of GSK-3ß in MCL cells. Overall, the combined targeting of both the Hh/GLI1 and Wnt/ß-catenin pathways was more effective in suppressing proliferation, inducing G0/G1 cycle retardation, promoting apoptosis, and increasing drug sensitivity of MCL cells than mono treatments. These findings emphasize the potential of combinatorial therapy for treating MCL patients.


Subject(s)
Hedgehog Proteins , Lymphoma, Mantle-Cell , Wnt Signaling Pathway , Zinc Finger Protein GLI1 , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/metabolism , Lymphoma, Mantle-Cell/pathology , Humans , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/antagonists & inhibitors , Zinc Finger Protein GLI1/genetics , Hedgehog Proteins/metabolism , Wnt Signaling Pathway/drug effects , Cell Line, Tumor , Pyridines/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Proliferation/drug effects , beta Catenin/metabolism , Pyrimidines , Pyrimidinones
15.
Neurochem Res ; 49(6): 1556-1576, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38160216

ABSTRACT

Multiple sclerosis (MS) is a pathological condition characterized by the demyelination of nerve fibers, primarily attributed to the destruction of oligodendrocytes and subsequent motor neuron impairment. Ethidium bromide (EB) is a neurotoxic compound that induces neuronal degeneration, resulting in demyelination and symptoms resembling those observed in experimental animal models of multiple sclerosis (MS). The neurotoxic effects induced by EB in multiple sclerosis (MS) are distinguished by the death of oligodendrocytes, degradation of myelin basic protein (MBP), and deterioration of axons. Neurological complications related to MS have been linked to alterations in the signaling pathway known as smo-shh. Purmorphine (PUR) is a semi-synthetic compound that exhibits potent Smo-shh agonistic activity. It possesses various pharmacological properties, including antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory effects. Hence, the current investigation was conducted to assess the neuroprotective efficacy of PUR (at doses of 5 and 10 mg/kg, administered intraperitoneally) both individually and in conjunction with Fingolimod (FING) (at a dose of 0.5 mg/kg, administered intraperitoneally) in the experimental model of MS induced by EB. The administration of EB was conducted via the intracerebropeduncle route (ICP) over a period of seven days in the brain of rats. The Wistar rats were allocated into six groups using randomization, each consisting of eight rats (n = 8 per group). The experimental groups in this study were categorized as follows: (I) Sham Control, (II) Vehicle Control, (III) PUR per se, (IV) EB, (V) EB + PUR5, (VI) EB + PUR10, (VII) EB + FING 0.5, and (VIII) EB + PUR10 + FING 0.5. On the final day of the experimental timeline, all animal subjects were euthanized, and subsequent neurochemical estimations were conducted on cerebrospinal fluid, blood plasma, and brain tissue samples. In addition, we conducted neurofilament (NFL) analysis and histopathological examination. We utilized the luxol myelin stain to understand better the degeneration associated with MS and its associated neurological complications. The findings of our study indicate that the activation of SMO-Shh by PUR has a mitigating effect on neurobehavioral impairments induced by EB, as well as a restorative effect on cellular and neurotransmitter abnormalities in an experimental model of MS.


Subject(s)
Hedgehog Proteins , Morpholines , Multiple Sclerosis , Neurogenesis , Purines , Animals , Male , Rats , Behavior, Animal/drug effects , Disease Models, Animal , Ethidium , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Hedgehog Proteins/drug effects , Hedgehog Proteins/metabolism , Multiple Sclerosis/chemically induced , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Neurogenesis/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Wistar , Smoothened Receptor/drug effects , Smoothened Receptor/metabolism , Zinc Finger Protein GLI1/metabolism , Morpholines/pharmacology , Purines/pharmacology
16.
Mol Biol Rep ; 51(1): 740, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38874802

ABSTRACT

BACKGROUND: Sonic Hedgehog (SHH) is a fundamental signaling pathway that controls tissue reconstruction, stem cell biology, and differentiation and has a role in gut tissue homeostasis and development. Dysregulation of SHH leads to the development of HCC. METHODS, AND RESULTS: The present study was conducted to compare the effects of mesenchymal stem cells (MSCs) and curcumin on SHH molecular targets in an experimental model of HCC in rats. One hundred rats were divided equally into the following groups: control group, HCC group, HCC group received MSCs, HCC group received curcumin, and HCC group received MSCs and curcumin. Histopathological examinations were performed, and gene expression of SHH signaling target genes (SHH, PTCH1, SMOH, and GLI1) was assessed by real-time PCR in rat liver tissue. Results showed that SHH target genes were significantly upregulated in HCC-untreated rat groups and in MSC-treated groups, with no significant difference between them. Administration of curcumin with or without combined administration of MSCs led to a significant down-regulation of SHH target genes, with no significant differences between both groups. As regards the histopathological examination of liver tissues, both curcumin and MSCs, either through separate use or their combined use, led to a significant restoration of normal liver pathology. CONCLUSIONS: In conclusion, SHH signaling is upregulated in the HCC experimental model. MSCs do not inhibit the upregulated SHH target genes in HCC. Curcumin use with or without MSCs administration led to a significant down-regulation of SHH signaling in HCC and a significant restoration of normal liver pathology.


Subject(s)
Carcinoma, Hepatocellular , Curcumin , Hedgehog Proteins , Liver Neoplasms , Mesenchymal Stem Cells , Signal Transduction , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Animals , Curcumin/pharmacology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Signal Transduction/drug effects , Rats , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Mesenchymal Stem Cell Transplantation/methods , Male , Disease Models, Animal , Patched-1 Receptor/genetics , Patched-1 Receptor/metabolism , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/genetics , Gene Expression Regulation, Neoplastic/drug effects , Liver/metabolism , Liver/pathology , Liver/drug effects
17.
Nature ; 558(7710): 449-453, 2018 06.
Article in English | MEDLINE | ID: mdl-29875413

ABSTRACT

Wnt-ß-catenin signalling plays a pivotal role in the homeostasis of the intestinal epithelium by promoting stem cell renewal1,2. In the small intestine, epithelial Paneth cells secrete Wnt ligands and thus adopt the function of the stem cell niche to maintain epithelial homeostasis3,4. It is unclear which cells comprise the stem cell niche in the colon. Here we show that subepithelial mesenchymal GLI1-expressing cells form this essential niche. Blocking Wnt secretion from GLI1-expressing cells prevents colonic stem cell renewal in mice: the stem cells are lost and, as a consequence, the integrity of the colonic epithelium is corrupted, leading to death. GLI1-expressing cells also play an important role in the maintenance of the small intestine, where they serve as a reserve Wnt source that becomes critical when Wnt secretion from epithelial cells is prevented. Our data suggest a mechanism by which the stem cell niche is adjusted to meet the needs of the intestine via adaptive changes in the number of mesenchymal GLI1-expressing cells.


Subject(s)
Colon/cytology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Stem Cell Niche/physiology , Stem Cells/metabolism , Wnt Proteins/metabolism , Zinc Finger Protein GLI1/metabolism , Animals , Cell Self Renewal , Female , Intestine, Small/cytology , Intestine, Small/metabolism , Male , Mice , Stem Cells/cytology , Wnt Signaling Pathway
18.
Biochem J ; 480(3): 225-241, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36734208

ABSTRACT

Carcinoma-associated fibroblasts (CAFs) play an important role in the progression of multiple malignancies. Secretion of cytokines and growth factors underlies the pro-tumoral effect of CAFs. Although this paracrine function has been extensively documented, the molecular mechanisms controlling the expression of these factors remain elusive. In this study, we provide evidence of a novel CAF transcriptional axis regulating the expression of SDF1, a major driver of cancer cell migration, involving the transcription factor GLI1 and histone acetyltransferase p300. We demonstrate that conditioned media from CAFs overexpressing GLI1 induce the migration of pancreatic cancer cells, and this effect is impaired by an SDF1-neutralizing antibody. Using a combination of co-immunoprecipitation, proximity ligation assay and chromatin immunoprecipitation assay, we further demonstrate that GLI1 and p300 physically interact in CAFs to co-occupy and drive SDF1 promoter activity. Mapping experiments highlight the requirement of GLI1 N-terminal for the interaction with p300. Importantly, knockdowns of both GLI1 and p300 reduce SDF1 expression. Further analysis shows that knockdown of GLI1 decreases SDF1 promoter activity, p300 recruitment, and levels of its associated histone marks (H4ac, H3K27ac, and H3K14ac). Finally, we show that the integrity of two GLI binding sites in the SDF1 promoter is required for p300 recruitment. Our findings define a new role for the p300-GLI1 complex in the regulation of SDF1, providing new mechanistic insight into the molecular events controlling pancreatic cancer cells migration.


Subject(s)
Cancer-Associated Fibroblasts , Pancreatic Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Cell Movement , Chromatin Immunoprecipitation , Pancreatic Neoplasms/pathology , Signal Transduction , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Chemokine CXCL12/metabolism , Pancreatic Neoplasms
19.
Lasers Surg Med ; 56(3): 239-248, 2024 03.
Article in English | MEDLINE | ID: mdl-38311811

ABSTRACT

BACKGROUND: Systemically delivered hedgehog inhibitors including vismodegib and sonidegib are widely used to treat basal cell carcinomas (BCCs). Ablative fractional laser (AFL)-assisted topical delivery of vismodegib has been demonstrated in preclinical studies. The aim of this explorative clinical study was to evaluate intratumoral vismodegib concentrations and effect on hedgehog pathway gene expression following AFL-assisted topical vismodegib delivery to BCCs. METHODS: In an open-label clinical trial, 16 nodular BCCs (in n = 9 patients) received one application of CO2 -AFL (40 mJ/microbeam, 10% density) followed by topical vismodegib emulsion. After 3-4 days, vismodegib concentrations in tumor biopsies (n = 15) and plasma were analyzed and compared with samples from patients receiving oral treatment (n = 3). GLI1, GLI2, PTCH1, and PTCH2 expression was determined by quantitative polymerase chain reaction (n = 7) and GLI1 additionally by in situ hybridization (n = 3). RESULTS: Following AFL-assisted topical administration, vismodegib was detected in 14/15 BCCs and reached a median concentration of 6.2 µmol/L, which compared to concentrations in BCC tissue from patients receiving oral vismodegib (9.5 µmol/L, n = 3, p = 0.8588). Topical vismodegib reduced intratumoral GLI1 expression by 51%, GLI2 by 55%, PTCH1 and PTCH2 each by 73% (p ≤ 0.0304) regardless of vismodegib concentrations (p ≥ 0.3164). In situ hybridization demonstrated that GLI1 expression was restricted to tumor tissue and downregulated in response to vismodegib exposure. CONCLUSION: A single AFL-assisted topical application of vismodegib resulted in clinically relevant intratumoral drug concentrations and significant reductions in hedgehog pathway gene expressions.


Subject(s)
Anilides , Antineoplastic Agents , Carcinoma, Basal Cell , Lasers, Gas , Pyridines , Skin Neoplasms , Humans , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/therapeutic use , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Zinc Finger Protein GLI1/therapeutic use , Carcinoma, Basal Cell/drug therapy , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Antineoplastic Agents/adverse effects , Gene Expression
20.
J Assist Reprod Genet ; 41(8): 2117-2128, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38771390

ABSTRACT

AIMS: Current evidence suggests that there is no completely effective method for endometriosis (EMS) without trauma due to diverse adverse effects. Reliable evidence illustrates that inhibiting ferroptosis is a potential strategy for EMS. We sufficiently verified that the expression of endogenous protein PDZ and LIM domain 3 (PDLIM3) was significantly increased in EMS. METHODS: PDLIM3 knockdown reduced primary ectopic endometrial stromal cells' (EESCs) viability and migration, and elevated ferroptosis signaling indicators including Fe2+, malondialdehyde (MDA), and reactive oxygen species (ROS) in EESCs. RESULTS: Mechanistic studies revealed that inhibition of PDLIM3 accelerated glioma-associated oncogene-1 (Gli1) degradation and further deactivated Hedgehog signaling. Gli1 inhibitor, GANT61, abrogated the impact of PDLIM3 deletion on EESC growth, migration, and ferroptosis. In vivo experiments suggested that PDLIM3 reduction repressed the growth of endometrial lesions. Likewise, repression of PDLIM3 promoted ferroptosis and attenuated Hedgehog signaling in endometrial lesions. CONCLUSIONS: Collectively, silencing of PDLIM3 facilitates ferroptosis in EMS by inducing Gli1 degradation and blocking Hedgehog signaling. It may provide an alternative strategy for developing therapeutic agents of EMS in the future.


Subject(s)
Endometriosis , Ferroptosis , Hedgehog Proteins , LIM Domain Proteins , Signal Transduction , Zinc Finger Protein GLI1 , Female , Endometriosis/genetics , Endometriosis/pathology , Endometriosis/metabolism , Humans , Ferroptosis/genetics , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Signal Transduction/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , LIM Domain Proteins/genetics , LIM Domain Proteins/metabolism , Animals , Reactive Oxygen Species/metabolism , Mice , Endometrium/pathology , Endometrium/metabolism , Disease Progression , Stromal Cells/pathology , Stromal Cells/metabolism , Cell Movement/genetics , Adult , Cell Proliferation/genetics , Pyridines , Pyrimidines
SELECTION OF CITATIONS
SEARCH DETAIL