Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 105(6): 5493-5505, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35346479

RESUMEN

Although high-concentrate diet feeding can temporarily increase milk production, it can cause a series of metabolic diseases, such as subacute ruminal acidosis (SARA) and milk fat depression. The main purpose of this experiment was to study the effects of a high-concentrate diet on the inflammatory response, oxidative stress, and milk fat synthesis in the mammary gland of dairy cows. Twelve Holstein cows equipped with rumen fistulas were randomly divided into 2 groups, each with 6 cows, fed a low-concentrate diet (LC) and a high-concentrate diet (HC). On d 20 and 21 of the experiment, rumen fluid was collected to measure pH, and milk samples were collected for milk component analysis and lipopolysaccharide (LPS) concentration testing. On d 21, mammary vein blood was collected to detect the LPS concentration. At the end of the 21-d experimental period, mammary gland tissue was collected, and the expression of inflammatory response-, oxidative stress-, and milk fat synthesis-related genes and proteins in the mammary gland was analyzed by real-time quantitative PCR and western blot. The pH of rumen fluid in the HC group was significantly lower than that in the LC group, and the pH of 2 time points in the HC group was lower than 5.6, indicating that a high-concentrate diet induced SARA. The LPS concentration of the peripheral blood in HC group increased significantly compared with that in the LC group. For the inflammatory response, the proinflammatory cytokines (IL-6 and IL-1α) and innate immune factors (lingual antimicrobial peptide and tracheal antimicrobial peptide) in the mammary gland of the HC group were significantly increased, and the TLR4-NF-κB signaling pathway was activated. For oxidative stress, after HC diet feeding, the content of malondialdehyde in mammary vein blood and mammary gland tissue increased, the content of glutathione in mammary vein blood decreased, the activity of superoxide dismutase and the total antioxidant capacity in mammary gland tissue and mammary vein blood decreased, and the expression of antioxidant enzymes and antioxidant transcription factor nuclear factor, erythroid 2 like 2 (NFE2L2) in mammary gland decreased. For milk fat metabolism, HC diet feeding reduced the milk fat content in milk samples and the triacylglycerol content in the mammary gland and inhibited the expression of de novo synthase (ACACA and FASN), long-chain fatty acid converting enzymes (ACSL1 and SCD), fatty acid transporters (CD36, FATP, FABP3, and LPL), triacylglycerol synthase (AGPAT6, DGAT1, and LPIN1), lipid droplet releasing enzyme (PLIN1), and transcription factors sterol regulatory element binding protein (SREBP1) and peroxisome proliferator activated receptor gamma (PPARG). In summary, a HC diet can induce SARA with increased concentration of LPS in the peripheral vein, stimulate inflammatory reactions and oxidative stress, and inhibit milk fat synthesis in the mammary gland of dairy cows.


Asunto(s)
Acidosis , Rumen , Acidosis/veterinaria , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Bovinos , Dieta/veterinaria , Ácidos Grasos/metabolismo , Femenino , Lactancia/fisiología , Lipopolisacáridos/farmacología , Leche/química , Estrés Oxidativo , Rumen/metabolismo , Triglicéridos/metabolismo
2.
J Dairy Sci ; 100(1): 666-678, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27865500

RESUMEN

The aims of this study were to measure oxidative stress parameters and to investigate the molecular mechanism triggered by grain-induced subacute ruminal acidosis in mid-lactation cows. Twelve Holstein-Friesian cows with an average weight of 455±28kg were divided into 2 groups and subjected to 2 diets over 18wk: either a low-grain (forage-to-concentrate ratio=6:4) or a high-grain (forage-to-concentrate ratio=4:6) diet based on dry matter. Being fed a long-term high-grain diet resulted in a significant decrease in rumen pH and a significant increase in ruminal lipopolysaccharide (LPS) at 4 h postfeeding in the morning. The increase was also observed in LPS concentrations in the portal vein, hepatic vein, and jugular vein blood plasma as well as reduced milk yield in a high-grain diet. Cows fed a high-grain diet had lower levels of catalase and glutathione peroxidase (GPx) activity and total antioxidant capacity than cows fed a low-grain diet; however, super oxide dismutase (SOD) activity and malondialdehyde (MDA) levels were higher in both the liver and the plasma of high-grain than in low-grain cows. Positive correlations were observed between plasma LPS versus hepatic MDA, plasma MDA, and hepatic SOD activity, whereas hepatic GPx and plasma GPx were negatively correlated with plasma LPS. The relative mRNA abundances of GPX1 and CAT were significantly lower in the liver of cows fed a high-grain diet than those fed a low-grain diet, whereas SOD1 was significantly higher in cows fed a high-grain diet than cows fed a low-grain diet. The expression levels of Nrf2, NQO1, MT1E, UGT1A1, MGST3, and MT1A were downregulated, whereas NF-kB was upregulated, in cows fed a high-grain diet. Furthermore, nuclear factor E2-related factor 2 (Nrf2) total protein and mRNA levels were significantly lower than in low-grains. Our results demonstrate the relationship between the translocated LPS and the suppression of cellular antioxidant defense capacity, which lead to increased oxidative stress and suggests that the Nrf2-dependent antioxidant response may be affected by higher levels of LPS translocated to the bloodstream.


Asunto(s)
Estrés Oxidativo , Rumen/metabolismo , Animales , Bovinos , Dieta/veterinaria , Femenino , Tracto Gastrointestinal/metabolismo , Concentración de Iones de Hidrógeno , Lactancia , Hígado/metabolismo , Leche/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA