Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Exp Zool B Mol Dev Evol ; 342(2): 85-100, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38369890

RESUMEN

TRPS1 serves as the causative gene for tricho-rhino phalangeal syndrome, known for its craniofacial and skeletal abnormalities. The Trps1 gene encodes a protein that represses Wnt signaling through strong interactions with Wnt signaling inhibitors. The identification of genomic cis-acting regulatory sequences governing Trps1 expression is crucial for understanding its role in embryogenesis. Nevertheless, to date, no investigations have been conducted concerning these aspects of Trps1. To identify deeply conserved noncoding elements (CNEs) within the Trps1 locus, we employed a comparative genomics approach, utilizing slowly evolving fish such as coelacanth and spotted gar. These analyses resulted in the identification of eight CNEs in the intronic region of the Trps1 gene. Functional characterization of these CNEs in zebrafish revealed their regulatory potential in various tissues, including pectoral fins, heart, and pharyngeal arches. RNA in-situ hybridization experiments revealed concordance between the reporter expression pattern induced by the identified set of CNEs and the spatial expression pattern of the trps1 gene in zebrafish. Comparative in vivo data from zebrafish and mice for CNE7/hs919 revealed conserved functions of these enhancers. Each of these eight CNEs was further investigated in cell line-based reporter assays, revealing their repressive potential. Taken together, in vivo and in vitro assays suggest a context-dependent dual functionality for the identified set of Trps1-associated CNE enhancers. This functionally characterized set of CNE-enhancers will contribute to a more comprehensive understanding of the developmental roles of Trps1 and can aid in the identification of noncoding DNA variants associated with human diseases.


Asunto(s)
Dedos/anomalías , Enfermedades del Cabello , Síndrome de Langer-Giedion , Nariz/anomalías , Secuencias Reguladoras de Ácidos Nucleicos , Pez Cebra , Animales , Ratones , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Genoma , Secuencia de Bases , Expresión Génica , Mamíferos/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
2.
Dev Growth Differ ; 66(1): 75-88, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37925606

RESUMEN

Abnormal expression of the transcriptional regulator and hedgehog (Hh) signaling pathway effector Gli3 is known to trigger congenital disease, most frequently affecting the central nervous system (CNS) and the limbs. Accurate delineation of the genomic cis-regulatory landscape controlling Gli3 transcription during embryonic development is critical for the interpretation of noncoding variants associated with congenital defects. Here, we employed a comparative genomic analysis on fish species with a slow rate of molecular evolution to identify seven previously unknown conserved noncoding elements (CNEs) in Gli3 intronic intervals (CNE15-21). Transgenic assays in zebrafish revealed that most of these elements drive activities in Gli3 expressing tissues, predominantly the fins, CNS, and the heart. Intersection of these CNEs with human disease associated SNPs identified CNE15 as a putative mammalian craniofacial enhancer, with conserved activity in vertebrates and potentially affected by mutation associated with human craniofacial morphology. Finally, comparative functional dissection of an appendage-specific CNE conserved in slowly evolving fish (elephant shark), but not in teleost (CNE14/hs1586) indicates co-option of limb specificity from other tissues prior to the divergence of amniotes and lobe-finned fish. These results uncover a novel subset of intronic Gli3 enhancers that arose in the common ancestor of gnathostomes and whose sequence components were likely gradually modified in other species during the process of evolutionary diversification.


Asunto(s)
Elementos de Facilitación Genéticos , Pez Cebra , Animales , Humanos , Pez Cebra/genética , Pez Cebra/metabolismo , Elementos de Facilitación Genéticos/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Animales Modificados Genéticamente , Mamíferos , Evolución Molecular , Secuencia Conservada/genética
3.
Virol J ; 21(1): 55, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38449001

RESUMEN

Over the course of the COVID-19 pandemic, several SARS-CoV-2 variants have emerged that may exhibit different etiological effects such as enhanced transmissibility and infectivity. However, genetic variations that reduce virulence and deteriorate viral fitness have not yet been thoroughly investigated. The present study sought to evaluate the effects of viral genetic makeup on COVID-19 epidemiology in Pakistan, where the infectivity and mortality rate was comparatively lower than other countries during the first pandemic wave. For this purpose, we focused on the comparative analyses of 7096 amino-acid long polyprotein pp1ab. Comparative sequence analysis of 203 SARS-CoV-2 genomes, sampled from Pakistan during the first wave of the pandemic revealed 179 amino acid substitutions in pp1ab. Within this set, 38 substitutions were identified within the Nsp3 region of the pp1ab polyprotein. Structural and biophysical analysis of proteins revealed that amino acid variations within Nsp3's macrodomains induced conformational changes and modified protein-ligand interactions, consequently diminishing the virulence and fitness of SARS-CoV-2. Additionally, the epistatic effects resulting from evolutionary substitutions in SARS-CoV-2 proteins may have unnoticed implications for reducing disease burden. In light of these findings, further characterization of such deleterious SARS-CoV-2 mutations will not only aid in identifying potential therapeutic targets but will also provide a roadmap for maintaining vigilance against the genetic variability of diverse SARS-CoV-2 strains circulating globally. Furthermore, these insights empower us to more effectively manage and respond to potential viral-based pandemic outbreaks of a similar nature in the future.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pakistán/epidemiología , Pandemias , Virulencia/genética , Aminoácidos , Poliproteínas , Variación Genética
4.
Dev Dyn ; 250(5): 669-683, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33381902

RESUMEN

BACKGROUND: The zinc finger-containing transcription factor Gli2, is a key mediator of Hedgehog (Hh) signaling and participates in embryonic patterning of various organs including the central nervous system (CNS) and limbs. Abnormal expression of Gli2 can impede the transcription of Hh target genes through disruption of proper balance between Gli2 and Gli3 functions. Therefore, delineation of enhancers that are required for complementary roles of Glis would allow the interrogation of those pathogenic variants that cause gene dysregulation, and a corresponding abnormal phenotype. Previously, we reported tissue-specific enhancers for Gli family including Gli2 through direct tetrapod-teleost comparisons. RESULTS: Here, we employed the sequence alignments of slowly evolving spotted gar and elephant shark and have identified six novel conserved noncoding elements in human GLI2 containing locus. Zebrafish-based transgenic assays revealed that combined action of these autonomous CNEs reflects many aspects of Gli2 specific endogenous transcriptional activity, including CNS and pectoral fins. CONCLUSION: Taken together with our previous findings, this study suggests that Hh-signaling controlled deployment of Gli2 activity in embryonic patterning arose in the common ancestor of gnathostomes. These GLI2 specific cis-regulatory modules will help to identify DNA variants that probably reside outside of coding intervals and are associated with congenital anomalies.


Asunto(s)
Evolución Biológica , Peces/crecimiento & desarrollo , Peces/genética , Proteína Gli2 con Dedos de Zinc/genética , Animales , Humanos
5.
Dev Genes Evol ; 231(1-2): 21-32, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33655411

RESUMEN

The zinc finger-containing transcription factor Gli3 is a key mediator of Hedgehog (Hh) signaling pathway. In vertebrates, Gli3 has widespread expression pattern during early embryonic development. Along the anteroposterior axes of the central nervous system (CNS), dorsoventral neural pattern elaboration is achieved through Hh mediated spatio-temporal deployment of Gli3 transcripts. Previously, we and others uncovered a set of enhancers that mediate many of the known aspects of Gli3 expression during neurogenesis. However, the potential role of Gli3 associated enhancers in trait evolution has not yet received any significant attention. Here, we investigate the evolutionary patterns of Gli3 associated CNS-specific enhancers that have been reported so far. A subset of these enhancers has undergone an accelerated rate of molecular evolution in the human lineage in comparison to other primates/mammals. These fast-evolving enhancers have acquired human-specific changes in transcription factor binding sites (TFBSs). These human-unique changes within subset of Gli3 associated CNS-specific enhancers were further validated as single nucleotide polymorphisms through 1000 Genome Project Phase 3 data. This work not only infers the molecular evolutionary patterns of Gli3 associated enhancers but also provides clues for putative genetic basis of the population-specificity of gene expression regulation.


Asunto(s)
Sistema Nervioso Central/metabolismo , Elementos de Facilitación Genéticos , Proteínas del Tejido Nervioso/genética , Selección Genética , Proteína Gli3 con Dedos de Zinc/genética , Sistema Nervioso Central/crecimiento & desarrollo , Evolución Molecular , Humanos , Neurogénesis
6.
Genes Immun ; 21(6-8): 409-419, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33273723

RESUMEN

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading fast worldwide. There is a pressing need to understand how the virus counteracts host innate immune responses. Deleterious clinical manifestations of coronaviruses have been associated with virus-induced direct dysregulation of innate immune responses occurring via viral macrodomains located within nonstructural protein-3 (Nsp3). However, no substantial information is available concerning the relationship of macrodomains to the unusually high pathogenicity of SARS-CoV-2. Here, we show that structural evolution of macrodomains may impart a critical role to the unique pathogenicity of SARS-CoV-2. Using sequence, structural, and phylogenetic analysis, we identify a specific set of historical substitutions that recapitulate the evolution of the macrodomains that counteract host immune response. These evolutionary substitutions may alter and reposition the secondary structural elements to create new intra-protein contacts and, thereby, may enhance the ability of SARS-CoV-2 to inhibit host immunity. Further, we find that the unusual virulence of this virus is potentially the consequence of Darwinian selection-driven epistasis in protein evolution. Our findings warrant further characterization of macrodomain-specific evolutionary substitutions in in vitro and in vivo models to determine their inhibitory effects on the host immune system.


Asunto(s)
COVID-19 , Proteasas Similares a la Papaína de Coronavirus , Evolución Molecular , Evasión Inmune , Filogenia , SARS-CoV-2 , COVID-19/genética , COVID-19/inmunología , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/inmunología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/inmunología
7.
BMC Evol Biol ; 20(1): 130, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028204

RESUMEN

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder. PD associated human UCHL1 (Ubiquitin C-terminal hydrolase L1) gene belongs to the family of deubiquitinases and is known to be highly expressed in neurons (1-2% in soluble form). Several functions of UCHL1 have been proposed including ubiquitin hydrolyze activity, ubiquitin ligase activity and stabilization of the mono-ubiquitin. Mutations in human UCHL1 gene have been associated with PD and other neurodegenerative disorders. The present study aims to decipher the sequence evolutionary pattern and structural dynamics of UCHL1. Furthermore, structural and interactional analysis of UCHL1 was performed to help elucidate the pathogenesis of PD. RESULTS: The phylogenetic tree topology suggests that the UCHL1 gene had originated in early gnathostome evolutionary history. Evolutionary rate analysis of orthologous sequences reveals strong purifying selection on UCHL1. Comparative structural analysis of UCHL1 pinpoints an important protein segment spanning amino acid residues 32 to 39 within secretion site with crucial implications in evolution and PD pathogenesis through a well known phenomenon called intragenic epistasis. Identified critical protein segment appears to play an indispensable role in protein stability, proper protein conformation as well as harboring critical interaction sites. CONCLUSIONS: Conclusively, the critical protein segment of UCHL1 identified in the present study not only demonstrates the relevant role of intraprotein conformational epistasis in the pathophysiology of PD but also offers a novel therapeutic target for the disease.


Asunto(s)
Epistasis Genética , Evolución Molecular , Enfermedad de Parkinson , Ubiquitina Tiolesterasa/genética , Humanos , Enfermedad de Parkinson/genética , Filogenia , Ubiquitina/metabolismo
8.
BMC Evol Biol ; 19(1): 72, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30849938

RESUMEN

BACKGROUND: Frizzled family members belong to G-protein coupled receptors and encode proteins accountable for cell signal transduction, cell proliferation and cell death. Members of Frizzled receptor family are considered to have critical roles in causing various forms of cancer, cardiac hypertrophy, familial exudative vitreoretinopathy (FEVR) and schizophrenia. RESULTS: This study investigates the evolutionary and structural aspects of Frizzled receptors, with particular focus on FEVR associated FZD4 gene. The phylogenetic tree topology suggests the diversification of Frizzled receptors at the root of metazoans history. Moreover, comparative structural data reveals that FEVR associated missense mutations in FZD4 effect the common protein region (amino acids 495-537) through a well-known phenomenon called epistasis. This critical protein region is present at the carboxyl-terminal domain and encompasses the K-T/S-XXX-W, a PDZ binding motif and S/T-X-V PDZ recognition motif. CONCLUSION: Taken together these results demonstrate that during the course of evolution, FZD4 has acquired new functions or epistasis via complex patter of gene duplications, sequence divergence and conformational remodeling. In particular, amino acids 495-537 at the C-terminus region of FZD4 protein might be crucial in its normal function and/or pathophysiology. This critical region of FZD4 protein may offer opportunities for the development of novel therapeutics approaches for human retinal vascular disease.


Asunto(s)
Evolución Molecular , Enfermedades Hereditarias del Ojo/genética , Receptores Frizzled/química , Receptores Frizzled/genética , Enfermedades de la Retina/genética , Vitreorretinopatías Exudativas Familiares , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Mutación Missense/genética , Filogenia , Dominios Proteicos
9.
BMC Evol Biol ; 19(1): 128, 2019 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-31221090

RESUMEN

BACKGROUND: The hypothesis that vertebrates have experienced two ancient, whole genome duplications (WGDs) is of central interest to evolutionary biology and has been implicated in evolution of developmental complexity. Three-way and Four-way paralogy regions in human and other vertebrate genomes are considered as vital evidence to support this hypothesis. Alternatively, it has been proposed that such paralogy regions are created by small-scale duplications that occurred at different intervals over the evolution of life. RESULTS: To address this debate, the present study investigates the evolutionary history of multigene families with at least three-fold representation on human chromosomes 1, 2, 8 and 20. Phylogenetic analysis and the tree topology comparisons classified the members of 36 multigene families into four distinct co-duplicated groups. Gene families falling within the same co-duplicated group might have duplicated together, whereas genes belong to different co-duplicated groups might have distinct evolutionary origins. CONCLUSION: Taken together with previous investigations, the current study yielded no proof in favor of WGDs hypothesis. Rather, it appears that the vertebrate genome evolved as a result of small-scale duplication events, that cover the entire span of the animals' history.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Familia de Multigenes , Vertebrados/genética , Animales , Cromosomas Humanos , Genoma Humano , Humanos , Invertebrados/clasificación , Invertebrados/genética , Filogenia , Vertebrados/clasificación
10.
Mol Phylogenet Evol ; 110: 1-6, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28249742

RESUMEN

The vertebrate genome contains several closely spaced sets of paralogous genes from distinct gene families on typically two, three or four different chromosomes (paralogons). These four fold paralogy regions have been considered as historical remnants of whole genome duplication events (WGDs/2R hypothesis). To examine the 2R hypothesis, a robust phylogenetic analysis of 40 multigene families with triplicated or quadruplicated distribution on human MHC bearing chromosomes (1/6/9/19) was conducted. Topology comparison approach categorized the members of 40 families into six distinct co-duplicated groups. Genes belonging to a particular co-duplicated group are duplicated concurrently, whereas genes of two different co-duplicated groups do not share their evolutionary history and have not duplicated in harmony. Our results based on this large scale phylogenetic data set contradict the polyploidization model and are indicative of small-scale duplications and rearrangement events that cover the entire span of animal history.


Asunto(s)
Evolución Molecular , Antígenos de Histocompatibilidad/genética , Homología de Secuencia de Ácido Nucleico , Animales , Mapeo Cromosómico , Duplicación de Gen , Humanos , Familia de Multigenes , Filogenia , Factores de Tiempo , Vertebrados/genética
11.
Genomics ; 108(3-4): 143-150, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27580967

RESUMEN

To elucidate important cellular and molecular interactions that regulate patterning and skeletal development, vertebrate limbs served as a model organ. A growing body of evidence from detailed studies on a subset of limb regulators like the HOXD cluster or SHH, reveals the importance of enhancers in limb related developmental and disease processes. Exploiting the recent genome-wide availability of functionally confirmed enhancer dataset, this study establishes regulatory interactions for dozens of human limb developmental genes. From these data, it appears that the long-range regulatory interactions are fairly common during limb development. This observation highlights the significance of chromosomal breaks/translocations in human limb deformities. Transcriptional factor (TF) analysis predicts that the differentiation of early nascent limb-bud into future territories entail distinct TF interaction networks. Conclusively, an important motivation for annotating the human limb specific regulatory networks is to pave way for the systematic exploration of their role in disease and evolution.


Asunto(s)
Elementos de Facilitación Genéticos , Extremidades/embriología , Regulación del Desarrollo de la Expresión Génica , Genoma Humano , Animales , Evolución Molecular , Redes Reguladoras de Genes , Humanos , Organogénesis/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Mol Phylogenet Evol ; 94(Pt A): 95-100, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26327327

RESUMEN

Evolution of organismal complexity and origin of novelties during vertebrate history has been widely explored in context of both regulation of gene expression and gene duplication events. Ohno (1970) for the first time put forward the idea of two rounds whole genome duplication events as the most plausible explanation for evolutionarizing the vertebrate lineage (2R hypothesis). To test the validity of 2R hypothesis, a robust phylogenomic analysis of multigene families with triplicated or quadruplicated representation on human FGFR bearing chromosomes (4/5/8/10) was performed. Topology comparison approach categorized members of 80 families into five distinct co-duplicated groups. Genes belonging to one co-duplicated group are duplicated concurrently, whereas genes of two different co-duplicated groups do not share their duplication history and have not duplicated in congruency. Our findings contradict the 2R model and are indicative of small-scale duplications and rearrangements that cover the entire span of animal's history.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genoma Humano/genética , Filogenia , Duplicaciones Segmentarias en el Genoma , Animales , Cromosomas Humanos/genética , Duplicación de Gen/genética , Humanos , Modelos Genéticos , Familia de Multigenes/genética , Receptores de Factores de Crecimiento de Fibroblastos/genética , Reproducibilidad de los Resultados , Vertebrados/genética
13.
Dev Dyn ; 244(5): 681-92, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25715918

RESUMEN

BACKGROUND: GLI2, a zinc finger transcription factor, mediates Sonic hedgehog signaling, a critical pathway in vertebrate embryogenesis. GLI2 has been implicated in diverse set of embryonic developmental processes, including patterning of central nervous system and limbs. In humans, mutations in GLI2 are associated with several developmental defects, including holoprosencephaly and polydactyly. RESULTS: Here, we demonstrate in transient transgenic zebrafish assays, the potential of a subset of tetrapod-teleost conserved non-coding elements (CNEs) residing within human GLI2 intronic intervals to induce reporter gene expression at known regions of endogenous GLI2 transcription. The regulatory activities of these elements are observed in several embryonic domains, including neural tube and pectoral fin. Moreover, our data reveal an overlapping expression profile of duplicated copies of an enhancer during zebrafish evolution. CONCLUSIONS: Our data suggest that during vertebrate history GLI2 acquired a high level of complexity in the genetic mechanisms regulating its expression during spatiotemporal patterning of the central nervous system (CNS) and limbs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/biosíntesis , Esbozos de los Miembros/embriología , Tubo Neural/embriología , Proteínas Nucleares/biosíntesis , Factores de Transcripción/biosíntesis , Proteínas de Pez Cebra/biosíntesis , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Esbozos de los Miembros/citología , Tubo Neural/citología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Transcripción Genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteína Gli2 con Dedos de Zinc
14.
Dev Genes Evol ; 225(6): 353-7, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26481129

RESUMEN

HOX genes encode transcriptional factors that play a pivotal role in specifying regional identity in nearly every bilateral animal. The birth of HOX gene cluster and its subsequent evolution, either in regulation or function, underlie the evolution of many bilaterian features and hence to the evolutionary radiation of this group. Despite of this importance, evolution of HOX cluster in vertebrates remains largely obscure because the phylogenetic history of these genes is poorly resolved. This has led to the controversy about whether four HOX clusters in human originated through two rounds (2R) of whole-genome duplications or instead evolved by small-scale events early in vertebrate evolution. Recently, the large-scale phylogenetic analysis of triplicate and quadruplicate paralogous regions residing on human HOX-bearing chromosomes provided an unprecedented insight into events that shaped vertebrate genome early in their history. Based on these data and comparative genomic analysis of fruit fly, red floor beetle, and human, this study infers the genic content of minimal HOX locus in the Urbilaterian and reconstructs its duplication history. It appears that four HOX clusters of humans are not remnants of polyploidy events in vertebrate ancestry. Rather, current evidence suggests that one-to-four transition in HOX cluster number occurred by three-step sequential process involving regional duplication events. Therefore, it is concluded that the evolutionary origin of vertebrate novelties, including the complexity of their body, is the consequence of small-scale genetic changes at widely different times over their history.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Variación Genética , Genoma Humano/genética , Proteínas de Homeodominio/genética , Familia de Multigenes/genética , Animales , Proteínas de Homeodominio/clasificación , Humanos , Modelos Genéticos , Filogenia
15.
Dev Growth Differ ; 57(8): 570-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26464005

RESUMEN

The zinc-finger transcription factor GLI3 acts as a primary transducer of Sonic hedgehog (Shh) signaling in a context-dependent combinatorial fashion. GLI3 participates in the patterning and growth of many organs, including the central nervous system (CNS) and limbs. Previously, we reported a subset of human intronic cis-regulators controlling many known aspects of endogenous Gli3 expression in mouse and zebrafish. Here we demonstrate in a transgenic zebrafish assay the potential of two novel tetrapod-teleost conserved non-coding elements (CNEs) docking within GLI3 intronic intervals (intron 3 and 4) to induce reporter gene expression at known sites of endogenous Gli3 transcription in embryonic domains such as the central nervous system (CNS) and limbs. Interestingly, the cell culture based assays reveal harmony with the context dependent dual nature of intra-GLI3 conserved elements. Furthermore, a transgenic zebrafish assay of previously reported limb-specific GLI3 transcriptional enhancers (previously tested in mice and chicken limb buds) induced reporter gene expression in zebrafish blood precursor cells and notochord instead of fin. These results demonstrate that the appendage-specific activity of a subset of GLI3-associated enhancers might be a tetrapod innovation. Taken together with our recent data, these results suggest that during the course of vertebrate evolution Gli3 expression control acquired a complex cis-regulatory landscape for spatiotemporal patterning of CNS and limbs. Comparative data from fish and mice suggest that the functional aspects of a subset of these cis-regulators have diverged significantly between these two lineages.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Elementos de Facilitación Genéticos/genética , Elementos de Facilitación Genéticos/fisiología , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Pez Cebra/genética , Proteína Gli3 con Dedos de Zinc
16.
Mol Phylogenet Evol ; 81: 49-60, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25245952

RESUMEN

BACKGROUND: Understanding the genetic mechanisms underlying the organismal complexity and origin of novelties during vertebrate history is one of the central goals of evolutionary biology. Ohno (1970) was the first to postulate that whole genome duplications (WGD) have played a vital role in the evolution of new gene functions: permitting an increase in morphological, physiological and anatomical complexity during early vertebrate history. RESULTS: Here, we analyze the evolutionary history of human FGFR-bearing paralogon (human autosome 4/5/8/10) by the phylogenetic analysis of multigene families with triplicate and quadruplicate distribution on these chromosomes. Our results categorized the histories of 21 families into discrete co-duplicated groups. Genes of a particular co-duplicated group exhibit identical evolutionary history and have duplicated in concert with each other, whereas genes belonging to different groups have dissimilar histories and have not duplicated concurrently. CONCLUSION: Taken together with our previously published data, we submit that there is sufficient empirical evidence to disprove the 1R/2R hypothesis and to support the general prediction that vertebrate genome evolved by relatively small-scale, regional duplication events that spread across the history of life.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Familia de Multigenes , Filogenia , Animales , Evolución Biológica , Cromosomas , Cromosomas Humanos Par 10 , Cromosomas Humanos Par 4 , Cromosomas Humanos Par 5 , Cromosomas Humanos Par 8 , Genoma Humano , Humanos , Análisis de Secuencia de ADN
17.
Mol Phylogenet Evol ; 78: 1-13, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24821622

RESUMEN

BACKGROUND: The vertebrate genome often contains closely spaced set of paralogous genes from distinct gene families on typically two, three or four different chromosomes (paralogons). This type of genome architecture is widely considered to be remnants of whole genome duplication events (WGD/2R). RESULTS: Taking advantage of the well-annotated and high-quality human genomic sequence map as well as the ever-increasing accessibility of large-scale genomic sequence data from a diverse range of animal species, we investigated the evolutionary history of potential quadruplicated regions residing on human HOX-cluster bearing chromosomes (chromosomes 2/7/12/17). For this purpose a detailed phylogenetic analysis was performed for those multigene families, including members of at least three of the four HOX-bearing chromosomes. Topology comparison approach categorized the members of 63 families into distinct co-duplicated groups. Distinct gene families belonging to a particular co-duplicated group, exhibit similar evolutionary history and hence have duplicated concurrently, whereas genes of two different co-duplicated groups do not share their history and have not duplicated in concert with each other. CONCLUSIONS: These results based on large-scale phylogenetic dataset yielded no evidence in favor of polyploidization events; instead it appears that triplicated and quadruplicated genomic segments on the human HOX-bearing chromosomes arose by small-scale duplication events that occurred at widely different time points in animal evolution.


Asunto(s)
Evolución Molecular , Genes Homeobox , Genoma Humano , Familia de Multigenes , Animales , Mapeo Cromosómico , Cromosomas Humanos , Genómica , Humanos , Filogenia , Duplicaciones Segmentarias en el Genoma , Vertebrados/genética
18.
FEBS Lett ; 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39367524

RESUMEN

Enhancers are non-coding cis-regulatory elements crucial for transcriptional regulation. Mutations in enhancers can disrupt gene regulation, leading to disease phenotypes. Identifying enhancers and their tissue-specific activity is challenging due to their lack of stereotyped sequences. This study presents a sequence-based computational model that uses combinatorial transcription factor (TF) genomic occupancy to predict tissue-specific enhancers. Trained on diverse datasets, including ENCODE and Vista enhancer browser data, the model predicted 25 000 forebrain-specific cis-regulatory modules (CRMs) in the human genome. Validation using biochemical features, disease-associated SNPs, and in vivo zebrafish analysis confirmed its effectiveness. This model aids in predicting enhancers lacking well-characterized chromatin features, complementing experimental approaches in tissue-specific enhancer discovery.

19.
BMC Genomics ; 14: 122, 2013 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-23432897

RESUMEN

BACKGROUND: Human genome is enriched with thousands of conserved non-coding elements (CNEs). Recently, a medium throughput strategy was employed to analyze the ability of human CNEs to drive tissue specific expression during mouse embryogenesis. These data led to the establishment of publicly available genome wide catalog of functionally defined human enhancers. Scattering of enhancers over larger regions in vertebrate genomes seriously impede attempts to pinpoint their precise target genes. Such associations are prerequisite to explore the significance of this in vivo characterized catalog of human enhancers in development, disease and evolution. RESULTS: This study is an attempt to systematically identify the target gene-bodies for functionally defined human CNE-enhancers. For the purpose we adopted the orthology/paralogy mapping approach and compared the CNE induced reporter expression with reported endogenous expression pattern of neighboring genes. This procedure pinpointed specific target gene-bodies for the total of 192 human CNE-enhancers. This enables us to gauge the maximum genomic search space for enhancer hunting: 4 Mb of genomic sequence around the gene of interest (2 Mb on either side). Furthermore, we used human-rodent comparison for a set of 159 orthologous enhancer pairs to infer that the central nervous system (CNS) specific gene expression is closely associated with the cooperative interaction among at least eight distinct transcription factors: SOX5, HFH, SOX17, HNF3ß, c-FOS, Tal1beta-E47S, MEF and FREAC. CONCLUSIONS: In conclusion, the systematic wiring of cis-acting sites and their target gene bodies is an important step to unravel the role of in vivo characterized catalog of human enhancers in development, physiology and medicine.


Asunto(s)
Secuencia Conservada/genética , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Animales , Peces/genética , Genoma Humano , Humanos , Ratones , Especificidad de Órganos/genética , Vertebrados/genética
20.
Mol Phylogenet Evol ; 66(3): 737-47, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23142696

RESUMEN

BACKGROUND: Susumu Ohno's idea that modern vertebrates are degenerate polyploids (concept referred as 2R hypothesis) has been the subject of intense debate for past four decades. It was proposed that intra-genomic synteny regions (paralogons) in human genome are remains of ancient polyploidization events that occurred early in the vertebrate history. The quadruplicated paralogon centered on human HOX clusters is taken as evidence that human HOX-bearing chromosomes were structured by two rounds of whole genome duplication (WGD) events. RESULTS: Evolutionary history of human HOX-bearing chromosomes (chromosomes 2/7/12/17) was evaluated by the phylogenetic analysis of multigene families with triplicated or quadruplicated distribution on these chromosomes. Topology comparison approach categorized the members of 44 families into four distinct co-duplicated groups. Distinct gene families belonging to a particular co-duplicated group, exhibit similar evolutionary history and hence have duplicated simultaneously, whereas genes of two distinct co-duplicated groups do not share their evolutionary history and have not duplicated in concert with each other. CONCLUSION: The recovery of co-duplicated groups suggests that "ancient segmental duplications and rearrangements" is the most rational model of evolutionary events that have generated the triplicated and quadruplicated paralogy regions seen on the human HOX-bearing chromosomes.


Asunto(s)
Cromosomas Humanos/genética , Evolución Molecular , Genes Homeobox/genética , Genoma/genética , Modelos Genéticos , Familia de Multigenes/genética , Filogenia , Vertebrados/genética , Animales , Mapeo Cromosómico , Biología Computacional , Humanos , Funciones de Verosimilitud , Poliploidía , Alineación de Secuencia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA