Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Chem ; 13(1): 91, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31384838

RESUMEN

BACKGROUND: Sulfonamide derivatives are of great attention due to their wide spectrum of biological activities. Sulfonamides conjugated with acetamide fragments exhibit antimicrobial and anticancer activities. The inhibition dihydrofolate reductase (DHFR) is considered as one of the most prominent mechanism though which sulfonamide derivatives exhibits antimicrobial and antitumor activities. RESULTS: In this study, a new series of 2-(arylamino)acetamides and N-arylacetamides containing sulfonamide moieties were designed, synthesized, characterized and assessed for their antimicrobial activity and screened for cytotoxic activity against human lung carcinoma (A-549) and human breast carcinoma (MCF-7) cell lines. A molecular docking study was performed to identify the mode of action of the synthesized compounds and their good binding interactions were observed with the active sites of dihydrofolate reductase (DHFR). CONCLUSION: Most of the synthesized compounds showed significant activity against A-549 and MCF-7 when compared to 5-Fluorouracil (5-FU), which was used as a reference drug. Some of these synthesized compounds are active as antibacterial and antifungal agents.

2.
Heliyon ; 5(6): e01982, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31304415

RESUMEN

In this study, a new series of 2,7-dichloro-4-(2-substituted-amino acetyl)fluorene derivatives were synthesized, characterized and evaluated for their antimicrobial activity and screened for cytotoxic activity against human lung carcinoma (A-549) and human breast carcinoma (MCF-7) cell lines. Most of the synthesized compounds displayed significant activity against A-549 and MCF-7 cell lines when compared to 5-fluorouracil (5-FU), which was used as a reference drug. In addition, some of these reported novel compounds exhibited promising antibacterial and antifungal properties. A molecular docking study was performed to identify the mechanism of action of the synthesized compounds, which suggested binding interactions with the active sites of dihydrofolate reductase (DHFR).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA