Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 25(20)2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-33076247

RESUMEN

In the current study, the surface of superparamagnetic iron oxide (SPION) was coated with dextran (DEX), and conjugated with folic acid (FA), to enhance the targeted delivery and uptake of vinblastine (VBL) in PANC-1 pancreatic cancer cells. Numerous analyses were performed to validate the prepared FA-DEX-VBL-SPION, such as field emission scanning transmission electron microscopy, high-resolution transmission electron microscopy, dynamic light scattering (DLS), Zeta Potential, Fourier transform infrared spectroscopy, and vibrating sample magnetometry (VSM). The delivery system capacity was evaluated by loading and release experiments. Moreover, in vitro biological studies, including a cytotoxicity study, cellular uptake assessment, apoptosis analysis, and real-time PCR, were carried out. The results revealed that the obtained nanocarrier was spherical with a suitable dispersion and without visible aggregation. Its average size, polydispersity, and zeta were 74 ± 13 nm, 0.080, and -45 mV, respectively. This dual functional nanocarrier also exhibited low cytotoxicity and a high apoptosis induction potential for successful VBL co-delivery. Real-time quantitative PCR analysis demonstrated the activation of caspase-3, NF-1, PDL-1, and H-ras inhibition, in PANC-1 cells treated with the FA-VBL-DEX-SPION nanostructure. Close inspection of the obtained data proved that the FA-VBL-DEX-SPION nanostructure possesses a noteworthy chemo-preventive effect on pancreatic cancer cells through the inhibition of cell proliferation and induction of apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Nanopartículas de Magnetita/química , Neoplasias Pancreáticas/tratamiento farmacológico , Vinblastina/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Dextranos/química , Dextranos/farmacología , Ácido Fólico/química , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/patología , Vinblastina/farmacología
2.
Life (Basel) ; 11(1)2021 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-33478036

RESUMEN

BACKGROUND: Advanced nanobiotechnology provides safe and efficient drug delivery systems to deliver chemotherapy that targets cancer cells efficiently. METHODS: A polymeric-magnetic nanocarrier was composed of a dextran (DEX) shell, a superparamagnetic iron oxide (SPION) core and was conjugated with folate (FA) to carry the anticancer drug vincristine (VNC) in Tera-1 testicular tumor cells. The molecular mechanisms by which apoptosis was induced were analyzed using flow cytometry and qPCR, which exhibited anticancer activity of nanoparticles (NPs). RESULTS: This nanocarrier revealed a controlled release of VNC in citrate and phosphate buffer solutions that were maintained at pH 5.5 and pH 7.4, respectively. The Inhibitory concentration (IC50) values were greater than 5 mg/mL and displayed ten times higher cytotoxicity than the comparable free drug concentration. The Caspase-9 and P53 expressions were increased, whereas P21 and AKt1 decreased noticeably in the treated cells. The results point to the possible activation of apoptosis following treatment with NPs loaded with vincristine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA