Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Genes Dev ; 38(3-4): 131-150, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38453481

RESUMEN

Maternal inactivation of genes encoding components of the subcortical maternal complex (SCMC) and its associated member, PADI6, generally results in early embryo lethality. In humans, SCMC gene variants were found in the healthy mothers of children affected by multilocus imprinting disturbances (MLID). However, how the SCMC controls the DNA methylation required to regulate imprinting remains poorly defined. We generated a mouse line carrying a Padi6 missense variant that was identified in a family with Beckwith-Wiedemann syndrome and MLID. If homozygous in female mice, this variant resulted in interruption of embryo development at the two-cell stage. Single-cell multiomic analyses demonstrated defective maturation of Padi6 mutant oocytes and incomplete DNA demethylation, down-regulation of zygotic genome activation (ZGA) genes, up-regulation of maternal decay genes, and developmental delay in two-cell embryos developing from Padi6 mutant oocytes but little effect on genomic imprinting. Western blotting and immunofluorescence analyses showed reduced levels of UHRF1 in oocytes and abnormal localization of DNMT1 and UHRF1 in both oocytes and zygotes. Treatment with 5-azacytidine reverted DNA hypermethylation but did not rescue the developmental arrest of mutant embryos. Taken together, this study demonstrates that PADI6 controls both nuclear and cytoplasmic oocyte processes that are necessary for preimplantation epigenetic reprogramming and ZGA.


Asunto(s)
Oocitos , Cigoto , Animales , Niño , Femenino , Humanos , Ratones , Proteínas Potenciadoras de Unión a CCAAT/genética , Citoplasma/genética , Citoplasma/metabolismo , Metilación de ADN/genética , Desarrollo Embrionario/genética , Impresión Genómica/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Development ; 148(10)2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33999993

RESUMEN

In mammals, the pre-gastrula proximal epiblast gives rise to primordial germ cells (PGCs) or somatic precursors in response to BMP4 and WNT signaling. Entry into the germline requires activation of a naïve-like pluripotency gene regulatory network (GRN). Recent work has shown that suppression of OTX2 expression in the epiblast by BMP4 allows cells to develop a PGC fate in a precise temporal window. However, the mechanisms by which OTX2 suppresses PGC fate are unknown. Here, we show that, in mice, OTX2 prevents epiblast cells from activating the pluripotency GRN by direct repression of Oct4 and Nanog. Loss of this control during PGC differentiation in vitro causes widespread activation of the pluripotency GRN and a deregulated response to LIF, BMP4 and WNT signaling. These abnormalities, in specific cell culture conditions, result in massive germline entry at the expense of somatic mesoderm differentiation. Increased generation of PGCs also occurs in mutant embryos. We propose that the OTX2-mediated repressive control of Oct4 and Nanog is the basis of the mechanism that determines epiblast contribution to germline and somatic lineage.


Asunto(s)
Células Germinativas/citología , Estratos Germinativos/citología , Proteína Homeótica Nanog/antagonistas & inhibidores , Factor 3 de Transcripción de Unión a Octámeros/antagonistas & inhibidores , Factores de Transcripción Otx/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/genética , Factor Inhibidor de Leucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células Madre Pluripotentes/citología , Vía de Señalización Wnt/fisiología
3.
Nature ; 562(7728): 595-599, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30283136

RESUMEN

The successful segregation of germ cells from somatic lineages is vital for sexual reproduction and species survival. In the mouse, primordial germ cells (PGCs), precursors of all germ cells, are induced from the post-implantation epiblast1. Induction requires BMP4 signalling to prospective PGCs2 and the intrinsic action of PGC transcription factors3-6. However, the molecular mechanisms that connect BMP4 to induction of the PGC transcription factors that are responsible for segregating PGCs from somatic lineages are unknown. Here we show that the transcription factor OTX2 is a key regulator of these processes. Downregulation of Otx2 precedes the initiation of the PGC programme both in vitro and in vivo. Deletion of Otx2 in vitro markedly increases the efficiency of PGC-like cell differentiation and prolongs the period of PGC competence. In the absence of Otx2 activity, differentiation of PGC-like cells becomes independent of the otherwise essential cytokine signals, with germline entry initiating even in the absence of the PGC transcription factor BLIMP1. Deletion of Otx2 in vivo increases PGC numbers. These data demonstrate that OTX2 functions repressively upstream of PGC transcription factors, acting as a roadblock to limit entry of epiblast cells to the germline to a small window in space and time, thereby ensuring correct numerical segregation of germline cells from the soma.


Asunto(s)
Células Germinativas/citología , Células Germinativas/metabolismo , Factores de Transcripción Otx/metabolismo , Animales , Recuento de Células , Diferenciación Celular/genética , Linaje de la Célula/genética , Citocinas/metabolismo , Regulación hacia Abajo , Femenino , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Factores de Transcripción Otx/deficiencia , Factores de Transcripción Otx/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo
4.
Development ; 141(2): 377-88, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24335253

RESUMEN

During embryonic development, the rostral neuroectoderm is regionalized into broad areas that are subsequently subdivided into progenitor compartments with specialized identity and fate. These events are controlled by signals emitted by organizing centers and interpreted by target progenitors, which activate superimposing waves of intrinsic factors restricting their identity and fate. The transcription factor Otx2 plays a crucial role in mesencephalic development by positioning the midbrain-hindbrain boundary (MHB) and its organizing activity. Here, we investigated whether Otx2 is cell-autonomously required to control identity and fate of dorsal mesencephalic progenitors. With this aim, we have inactivated Otx2 in the Pax7(+) dorsal mesencephalic domain, previously named m1, without affecting MHB integrity. We found that the Pax7(+) m1 domain can be further subdivided into a dorsal Zic1(+) m1a and a ventral Zic1(-) m1b sub-domain. Loss of Otx2 in the m1a (Pax7(+) Zic1(+)) sub-domain impairs the identity and fate of progenitors, which undergo a full switch into a coordinated cerebellum differentiation program. By contrast, in the m1b sub-domain (Pax7(+) Zic1(-)) Otx2 is prevalently required for post-mitotic transition of mesencephalic GABAergic precursors. Moreover, genetic cell fate, BrdU cell labeling and Otx2 conditional inactivation experiments indicate that in Otx2 mutants all ectopic cerebellar cell types, including external granule cell layer (EGL) precursors, originate from the m1a progenitor sub-domain and that reprogramming of mesencephalic precursors into EGL or cerebellar GABAergic progenitors depends on temporal sensitivity to Otx2 ablation. Together, these findings indicate that Otx2 intrinsically controls different aspects of dorsal mesencephalic neurogenesis. In this context, Otx2 is cell-autonomously required in the m1a sub-domain to suppress cerebellar fate and promote mesencephalic differentiation independently of the MHB organizing activity.


Asunto(s)
Cerebelo/embriología , Cerebelo/metabolismo , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Factores de Transcripción Otx/metabolismo , Animales , Tipificación del Cuerpo , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Femenino , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Mutación , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis , Organizadores Embrionarios/embriología , Organizadores Embrionarios/metabolismo , Factores de Transcripción Otx/deficiencia , Factores de Transcripción Otx/genética , Factor de Transcripción PAX7/metabolismo , Embarazo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Hum Mol Genet ; 23(7): 1742-53, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24234651

RESUMEN

In the human, mutations of OTX2 (Orthodenticle homeobox 2 transcription factor) translate into eye malformations of variable expressivity (even between the two eyes of the same individual) and incomplete penetrance, suggesting the existence of subtle thresholds in OTX2 activity. We have addressed this issue by analyzing retinal structure and function in six mutant mice with graded Otx2 activity: Otx2(+/+), Otx2(+/AA), Otx2(+/GFP), Otx2(AA/AA), Otx2(AA/GFP) and Otx2(GFP/GFP). Null mice (Otx2(GFP/GFP)) fail to develop the head and are embryonic lethal, and compound heterozygous Otx2(AA/GFP) mice show a truncated head and die at birth. All other genotypes develop until adulthood. We analyzed eye structure and visual physiology in the genotypes that develop until adulthood and report that phenotype severity parallels Otx2 activity. Otx2(+/AA) are only mildly affected whereas Otx2(+/GFP) are more affected than Otx2(+/AA) but less than Otx2(AA/AA) mice. Otx2(AA/AA) mice later manifest the most severe defects, with variable expressivity. Electrophysiological and histological analyses of the mouse retina revealed progressive death of bipolar cells and cone photoreceptors that is both Otx2 activity- and age-dependent with the same ranking of phenotypic severity. This study demonstrates the importance of gene dosage in the development of age-dependent pathologies and underscores the fact that small gene dosage differences can cause significant pathological states.


Asunto(s)
Anomalías del Ojo/genética , Factores de Transcripción Otx/genética , Células Bipolares de la Retina/citología , Células Fotorreceptoras Retinianas Conos/citología , Células Horizontales de la Retina/citología , Animales , Diferenciación Celular/genética , Línea Celular , Dosificación de Gen , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Penetrancia , Agudeza Visual/genética
6.
Development ; 140(1): 43-55, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23154415

RESUMEN

Mouse embryonic stem cells (ESCs) represent the naïve ground state of the preimplantation epiblast and epiblast stem cells (EpiSCs) represent the primed state of the postimplantation epiblast. Studies have revealed that the ESC state is maintained by a dynamic mechanism characterized by cell-to-cell spontaneous and reversible differences in sensitivity to self-renewal and susceptibility to differentiation. This metastable condition ensures indefinite self-renewal and, at the same time, predisposes ESCs for differentiation to EpiSCs. Despite considerable advances, the molecular mechanism controlling the ESC state and pluripotency transition from ESCs to EpiSCs have not been fully elucidated. Here we show that Otx2, a transcription factor essential for brain development, plays a crucial role in ESCs and EpiSCs. Otx2 is required to maintain the ESC metastable state by antagonizing ground state pluripotency and promoting commitment to differentiation. Furthermore, Otx2 is required for ESC transition into EpiSCs and, subsequently, to stabilize the EpiSC state by suppressing, in pluripotent cells, the mesendoderm-to-neural fate switch in cooperation with BMP4 and Fgf2. However, according to its central role in neural development and differentiation, Otx2 is crucially required for the specification of ESC-derived neural precursors fated to generate telencephalic and mesencephalic neurons. We propose that Otx2 is a novel intrinsic determinant controlling the functional integrity of ESCs and EpiSCs.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factores de Transcripción Otx/fisiología , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Genes Reporteros , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción Otx/biosíntesis , Factores de Transcripción Otx/deficiencia , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/fisiología
7.
Development ; 140(5): 1055-66, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23364326

RESUMEN

The choroid plexuses (ChPs) are the main regulators of cerebrospinal fluid (CSF) composition and thereby also control the composition of a principal source of signaling molecules that is in direct contact with neural stem cells in the developing brain. The regulators of ChP development mediating the acquisition of a fate that differs from the neighboring neuroepithelial cells are poorly understood. Here, we demonstrate in mice a crucial role for the transcription factor Otx2 in the development and maintenance of ChP cells. Deletion of Otx2 by the Otx2-CreERT2 driver line at E9 resulted in a lack of all ChPs, whereas deletion by the Gdf7-Cre driver line affected predominately the hindbrain ChP, which was reduced in size, primarily owing to an increase in apoptosis upon Otx2 deletion. Strikingly, Otx2 was still required for the maintenance of hindbrain ChP cells at later stages when Otx2 deletion was induced at E15, demonstrating a central role of Otx2 in ChP development and maintenance. Moreover, the predominant defects in the hindbrain ChP mediated by Gdf7-Cre deletion of Otx2 revealed its key role in regulating early CSF composition, which was altered in protein content, including the levels of Wnt4 and the Wnt modulator Tgm2. Accordingly, proliferation and Wnt signaling levels were increased in the distant cerebral cortex, suggesting a role of the hindbrain ChP in regulating CSF composition, including key signaling molecules. Thus, Otx2 acts as a master regulator of ChP development, thereby influencing one of the principal sources of signaling in the developing brain, the CSF.


Asunto(s)
Plexo Coroideo/embriología , Plexo Coroideo/crecimiento & desarrollo , Plexo Coroideo/fisiología , Factores de Transcripción Otx/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Líquido Cefalorraquídeo/química , Líquido Cefalorraquídeo/metabolismo , Plexo Coroideo/metabolismo , Embrión de Mamíferos , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Transgénicos , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Embarazo , Rombencéfalo/embriología , Rombencéfalo/crecimiento & desarrollo , Rombencéfalo/metabolismo , Rombencéfalo/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Transcriptoma/genética
8.
Dev Biol ; 373(1): 176-83, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23117062

RESUMEN

Understanding the molecular basis underlying the neurogenesis of mesencephalic-diencephalic Dopaminergic (mdDA) neurons is a major task fueled by their relevance in controlling locomotor activity and emotion and their involvement in neurodegenerative and psychiatric diseases. Increasing evidence suggests that mdDA neurons of the substantia nigra pars compacta (SNpc) and ventral tegmental area (VTA) represent two main distinct neuronal populations, which, in turn, include specific neuronal subsets. Relevant studies provided important results on mdDA neurogenesis, but, nevertheless, have not yet clarified how the identity of mdDA neuronal subtypes is established and, in particular, whether neurogenic factors may direct progenitors towards the differentiation of specific mdDA neuronal subclasses. The transcription factor Otx2 is required for the neurogenesis of mesencephalic DA (mesDA) neurons and to control neuron subtype identity and sensitivity to the MPTP neurotoxin in the adult VTA. Here we studied whether Otx2 is required in mdDA progenitors for the generation of specific mdDA neuronal subtypes. We found that although expressed in virtually all mdDA progenitors, Otx2 is required selectively for the differentiation of VTA neuronal subtypes expressing Ahd2 and/or Calb but not for those co-expressing Girk2 and glyco-Dat. Moreover, mild over-expression of Otx2 in SNpc progenitors and neurons is sufficient to rescue En1 haploinsufficiency-dependent defects, such as progressive loss and increased MPTP sensitivity of SNpc neurons. Collectively, these data suggest that mdDA progenitors exhibit differential sensitivity to Otx2, which selectively influences the generation of a large and specific subset of VTA neurons. In addition, these data suggest that Otx2 and En1 may share similar properties and control survival and vulnerability to MPTP neurotoxin respectively in VTA and SNpc.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Proteínas de Homeodominio/metabolismo , Neurogénesis/fisiología , Factores de Transcripción Otx/metabolismo , Área Tegmental Ventral/citología , Área Tegmental Ventral/embriología , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/administración & dosificación , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/farmacología , Animales , Recuento de Células , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Inmunohistoquímica , Hibridación in Situ , Ratones
9.
Hum Mol Genet ; 20(23): 4644-54, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21890494

RESUMEN

Cardiomyopathy is a puzzling complication in addition to skeletal muscle pathology for patients with mutations in ß-, γ- or δ-sarcoglycan (SG) genes. Patients with mutations in α-SG rarely have associated cardiomyopathy, or their cardiac pathology is very mild. We hypothesize that a fifth SG, ε-SG, may compensate for α-SG deficiency in the heart. To investigate the function of ε-SG in striated muscle, we generated an Sgce-null mouse and a Sgca-;Sgce-null mouse, which lacks both α- and ε-SGs. While Sgce-null mice showed a wild-type phenotype, with no signs of muscular dystrophy or heart disease, the Sgca-;Sgce-null mouse developed a progressive muscular dystrophy and a more anticipated and severe cardiomyopathy. It shows a complete loss of residual SGs and a strong reduction in both dystrophin and dystroglycan. Our data indicate that ε-SG is important in preventing cardiomyopathy in α-SG deficiency.


Asunto(s)
Distrofina/metabolismo , Miocardio/metabolismo , Sarcoglicanos/deficiencia , Animales , Western Blotting , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Miocardio/patología , Miocardio/ultraestructura , Condicionamiento Físico Animal , Sarcoglicanos/metabolismo
10.
Mol Neurodegener ; 16(1): 35, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34148545

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative movement disorder affecting 1-5% of the general population for which neither effective cure nor early diagnostic tools are available that could tackle the pathology in the early phase. Here we report a multi-stage procedure to identify candidate genes likely involved in the etiopathogenesis of PD. METHODS: The study includes a discovery stage based on the analysis of whole exome data from 26 dominant late onset PD families, a validation analysis performed on 1542 independent PD patients and 706 controls from different cohorts and the assessment of polygenic variants load in the Italian cohort (394 unrelated patients and 203 controls). RESULTS: Family-based approach identified 28 disrupting variants in 26 candidate genes for PD including PARK2, PINK1, DJ-1(PARK7), LRRK2, HTRA2, FBXO7, EIF4G1, DNAJC6, DNAJC13, SNCAIP, AIMP2, CHMP1A, GIPC1, HMOX2, HSPA8, IMMT, KIF21B, KIF24, MAN2C1, RHOT2, SLC25A39, SPTBN1, TMEM175, TOMM22, TVP23A and ZSCAN21. Sixteen of them have not been associated to PD before, were expressed in mesencephalon and were involved in pathways potentially deregulated in PD. Mutation analysis in independent cohorts disclosed a significant excess of highly deleterious variants in cases (p = 0.0001), supporting their role in PD. Moreover, we demonstrated that the co-inheritance of multiple rare variants (≥ 2) in the 26 genes may predict PD occurrence in about 20% of patients, both familial and sporadic cases, with high specificity (> 93%; p = 4.4 × 10- 5). Moreover, our data highlight the fact that the genetic landmarks of late onset PD does not systematically differ between sporadic and familial forms, especially in the case of small nuclear families and underline the importance of rare variants in the genetics of sporadic PD. Furthermore, patients carrying multiple rare variants showed higher risk of manifesting dyskinesia induced by levodopa treatment. CONCLUSIONS: Besides confirming the extreme genetic heterogeneity of PD, these data provide novel insights into the genetic of the disease and may be relevant for its prediction, diagnosis and treatment.


Asunto(s)
Secuenciación del Exoma/métodos , Predisposición Genética a la Enfermedad/genética , Enfermedad de Parkinson/genética , Adulto , Edad de Inicio , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje
11.
Curr Biol ; 17(10): 873-80, 2007 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-17481897

RESUMEN

Neurons that produce dopamine as a neurotransmitter constitute a heterogeneous group involved in the control of various behaviors and physiology. In mammals, dopaminergic neurons are found in distinct clusters mainly located in the ventral midbrain and the caudal forebrain [1]. Although much is known about midbrain dopaminergic neurons, development of diencephalic dopaminergic neurons is poorly understood. Here we demonstrate that Orthopedia (Otp) homeodomain protein is essential for the development of specific subsets of diencephalic dopaminergic neurons. Zebrafish embryos lacking Otp activity are devoid of dopaminergic neurons in the hypothalamus and the posterior tuberculum. Similarly, Otp-/- mouse [2, 3] embryos lack diencephalic dopaminergic neurons of the A11 group, which constitutes the diencephalospinal dopaminergic system. In both systems, Otp is expressed in the affected dopaminergic neurons as well as in potential precursor populations, and it might contribute to dopaminergic cell specification and differentiation. In fish, overexpression of Otp can induce ectopic tyrosine hydroxylase and dopamine transporter expression, indicating that Otp can specify aspects of dopaminergic identity. Thus, Otp is one of the few known transcription factors that can determine aspects of the dopaminergic phenotype and the first known factor to control the development of the diencephalospinal dopaminergic system.


Asunto(s)
Diencéfalo/embriología , Proteínas de Homeodominio/fisiología , Neuronas/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Pez Cebra/embriología , Animales , Diferenciación Celular , Diencéfalo/citología , Dopamina/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Neuronas/citología , Neuronas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Am J Pathol ; 175(6): 2609-17, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19893048

RESUMEN

The roles in brain development. Previous studies have shown the association between OTX2 and OTX1 with anaplastic and desmoplastic medulloblastomas, respectively. Here, we investigated OTX1 and OTX2 expression in Non-Hodgkin Lymphoma (NHL) and multiple myeloma. A combination of semiquantitative RT-PCR, Western blot, and immunohistochemical analyses was used to measure OTX1 and OTX2 levels in normal lymphoid tissues and in 184 tumor specimens representative of various forms of NHL and multiple myeloma. OTX1 expression was activated in 94% of diffuse large B-cell lymphomas, in all Burkitt lymphomas, and in 90% of high-grade follicular lymphomas. OTX1 was undetectable in precursor-B lymphoblastic lymphoma, chronic lymphocytic leukemia, and in most marginal zone and mantle cell lymphomas and multiple myeloma. OTX2 was undetectable in all analyzed malignancies. Analysis of OTX1 expression in normal lymphoid tissues identified a subset of resting germinal center (GC) B cells lacking PAX5 and BCL6 and expressing cytoplasmic IgG and syndecan. About 50% of OTX1(+) GC B cells co-expressed CD10 and CD20. This study identifies OTX1 as a molecular marker for high-grade GC-derived NHL and suggests an involvement of this transcription factor in B-cell lymphomagenesis. Furthermore, OTX1 expression in a subset of normal GC B cells carrying plasma cell markers suggests its possible contribution to terminal B-cell differentiation.


Asunto(s)
Subgrupos de Linfocitos B/metabolismo , Linfocitos B/metabolismo , Biomarcadores de Tumor/análisis , Centro Germinal/metabolismo , Linfoma no Hodgkin/metabolismo , Factores de Transcripción Otx/biosíntesis , Western Blotting , Humanos , Inmunohistoquímica , Mieloma Múltiple/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
13.
Adv Exp Med Biol ; 651: 36-46, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19731548

RESUMEN

The mesencephalic dopaminergic (mesDA) neurons play a relevant role in the control of movement, behaviour and cognition. Indeed loss and/or abnormal development of mesDA neurons is responsible for Parkinson's disease as well as for addictive and psychiatric disorders. A wealth of information has been provided on gene functions involved in the molecular mechanism controlling identity, fate and survival of mesDA neurons. Collectively, these studies are contributing to a growing knowledge of the genetic networks required for proper mesDA development, thus disclosing new perspectives for therapeutic approaches of mesDA disorders. Here we will focus on the control exerted by Otx genes in early decisions regulating the differentiation of progenitors located in the ventral midbrain. In this context, the regulatory network involving Otx functional interactions with signalling molecules and transcription factors required to promote or prevent the development of mesDA neurons will be analyzed in detail.


Asunto(s)
Dopamina/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Factores de Transcripción Otx/metabolismo , Células Madre/metabolismo , Animales , Tipificación del Cuerpo/genética , Linaje de la Célula/genética , Movimiento Celular/genética , Humanos , Mesencéfalo/citología , Neurogénesis/genética , Factores de Transcripción Otx/genética , Células Madre/citología
14.
Curr Opin Genet Dev ; 12(4): 409-15, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12100885

RESUMEN

Otx1 and Otx2, the murine homologs of the Drosophila orthodenticle gene, play a remarkable role in specification and regionalization of forebrain and midbrain. Recently, genetic approaches have indicated that OTD, OTX1 and OTX2 have retained reciprocal functional equivalence in evolution, whereas their regulatory control has been remarkably modified. This suggests that during the evolution of the vertebrate brain, regulatory changes modulating the transcriptional and translational control of pre-existing gene functions might have favored the establishment of new morphogenetic pathways.


Asunto(s)
Proteínas de Homeodominio/genética , Animales , Evolución Biológica , Encéfalo/embriología , Proteínas de Homeodominio/fisiología , Ratones , Familia de Multigenes , Factores de Transcripción Otx
15.
Nat Neurosci ; 6(5): 453-60, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12652306

RESUMEN

Organizing centers emit signaling molecules that specify different neuronal cell types at precise positions along the anterior-posterior (A-P) and dorsal-ventral (D-V) axes of neural tube during development. Here we report that reduction in Otx proteins near the alar-basal plate boundary (ABB) of murine midbrain resulted in a dorsal shift of Shh expression, and reduction in Otx proteins at the midbrain-hindbrain boundary (MHB) resulted in an anterior expansion of the Fgf8 domain. Our data thus indicate that an Otx dose-dependent repressive effect coordinates proper positioning of Shh and Fgf8 expression. Furthermore, this control is effective for conferring proper cell identity in the floor-plate region of midbrain and does not require an Otx2-specific property. We propose that this mechanism may provide both A-P and D-V positional information to neuronal precursors located within the midbrain.


Asunto(s)
Tipificación del Cuerpo , Proteínas de Homeodominio/biosíntesis , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Transactivadores/biosíntesis , Factores de Transcripción/biosíntesis , Animales , Tipificación del Cuerpo/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Otx , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Transactivadores/genética , Factores de Transcripción/genética
16.
Cell Rep ; 23(12): 3635-3646, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29925004

RESUMEN

Placental growth factor (PlGF) is a proangiogenic member of the vascular endothelial growth factor (VEGF) family playing a central role in pathological angiogenesis. PlGF-DE is a PlGF variant unable to bind vascular endothelial growth factor receptor 1 (VEGFR-1) but still able to generate heterodimer with VEGF-A. We have generated PlGF-DE knockin mice that are vital and fertile and show unaltered expression of Plgf, Vegf-a, Vegfr-1, and Vegfr-2 compared with wild-type mice. Interestingly, these mutants showed additional and remarkable angiogenesis impairment in tumor growth, hindlimb ischemia, and choroidal neovascularization compared with both PlGF knockout and wild-type mice. These findings provided insights on VEGF-A/PlGF heterodimer function, which was able to rescue neovascularization and vascular leakage in PlGF-DE knockin mice. Collectively, these data show that PlGF-DE knockin mouse could be considered the full functional knockout of PlGF, suggesting a reassessment of the phenotypes of knockout mice for the genes whose products are able to generate heterodimeric proteins.


Asunto(s)
Técnicas de Sustitución del Gen , Factor de Crecimiento Placentario/metabolismo , Multimerización de Proteína , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
17.
J Neurosci ; 26(22): 5955-64, 2006 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-16738237

RESUMEN

GABAergic and glutamatergic neurons modulate inhibitory and excitatory networks in the CNS, and their impairment may cause neurological and psychiatric disorders. Thus, understanding the molecular mechanisms that control neurotransmitter phenotype and identity of excitatory and inhibitory progenitors has considerable relevance. Here we investigated the consequence of Otx2 (orthodenticle homolog) ablation in glutamatergic progenitors of the dorsal thalamus (referred to as thalamus). We report that Otx2 is cell-autonomously required in these progenitors to repress GABAergic differentiation. Our data indicate that Otx2 may prevent GABAergic fate switch by repressing the basic helix-loop-helix gene Mash1 (mammalian achaete-schute homolog) in progenitors expressing Ngn2 (neurogenin homolog). The lack of Otx2 also resulted in the activation of Pax3 (paired box gene), Pax7, and Lim1 (Lin-11/Isl-1/Mec-3), three genes normally coexpressed with Mash1 and GABAergic markers in the pretectum, thus suggesting that thalamic progenitors lacking Otx2 exhibit marker similarities with those of the pretectum. Furthermore, Otx2 ablation gave rise to a marked increase in proliferating activity of thalamic progenitors and the formation of hyperplastic cell masses. Thus, this study provides evidence for a novel and crucial role of Otx2 in the molecular mechanism by which identity and fate of glutamatergic precursors are established in the thalamus. Our data also support the concept that proper assignment of identity and fate of neuronal precursors occurs through the suppression of alternative differentiation programs.


Asunto(s)
Diferenciación Celular/fisiología , Ácido Glutámico/fisiología , Factores de Transcripción Otx/deficiencia , Factores de Transcripción Otx/genética , Tálamo/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Antagonistas del GABA , Hibridación in Situ , Ratones , Neuronas/fisiología , Tálamo/citología
18.
Stem Cell Reports ; 9(5): 1642-1659, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29056334

RESUMEN

Embryonic stem cells (ESCs) cultured in leukemia inhibitory factor (LIF) plus fetal bovine serum (FBS) exhibit heterogeneity in the expression of naive and primed transcription factors. This heterogeneity reflects the dynamic condition of ESCs and their versatility to promptly respond to signaling effectors promoting naive or primed pluripotency. Here, we report that ESCs lacking Nanog or overexpressing Otx2 exhibit an early primed identity in LIF + FBS and fail to convert into 2i-induced naive state. Conversely, Otx2-null ESCs possess naive identity features in LIF + FBS similar to Nanog-overexpressing ESCs and convert poorly into FGF-induced early primed state. When both Nanog and Otx2 are inactivated, ESCs cultured in LIF + FBS exhibit primed identity and weakened ability to convert into naive state. These data suggest that, through mutual antagonism, NANOG and OTX2 specify the heterogeneous identity of ESCs cultured in LIF + FBS and individually predispose them for optimal response to naive or primed inducing factors.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias de Ratones/citología , Proteína Homeótica Nanog/genética , Factores de Transcripción Otx/genética , Animales , Línea Celular , Medio de Cultivo Libre de Suero/farmacología , Factor Inhibidor de Leucemia/farmacología , Ratones , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Proteína Homeótica Nanog/metabolismo , Factores de Transcripción Otx/metabolismo
19.
Cell Rep ; 15(12): 2651-64, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27292645

RESUMEN

Mouse embryonic stem cells (ESCs) and the inner cell mass (ICM)-derived epiblast exhibit naive pluripotency. ESC-derived epiblast stem cells (EpiSCs) and the postimplantation epiblast exhibit primed pluripotency. Although core pluripotency factors are well-characterized, additional regulators, including Otx2, recently have been shown to function during the transition from naive to primed pluripotency. Here we uncover a role for Otx2 in the control of the naive pluripotent state. We analyzed Otx2-binding activity in ESCs and EpiSCs and identified Nanog, Oct4, and Sox2 as direct targets. To unravel the Otx2 transcriptional network, we targeted the strongest Otx2-binding site in the Nanog promoter, finding that this site modulates the size of specific ESC-subtype compartments in cultured cells and promotes Nanog expression in vivo, predisposing ICM differentiation to epiblast. Otx2-mediated Nanog regulation thus contributes to the integrity of the ESC state and cell lineage specification in preimplantation development.


Asunto(s)
Blastocisto/citología , Células Madre Embrionarias/citología , Estratos Germinativos/citología , Proteína Homeótica Nanog/genética , Factores de Transcripción Otx/metabolismo , Regiones Promotoras Genéticas/genética , Animales , Sitios de Unión , Blastocisto/efectos de los fármacos , Blastocisto/metabolismo , Compartimento Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimera/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Células Madre Embrionarias/metabolismo , Endodermo/citología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/metabolismo , Factor Inhibidor de Leucemia/farmacología , Mesodermo/citología , Ratones , Mutación/genética , Proteína Homeótica Nanog/metabolismo , Factores de Transcripción Otx/genética , Unión Proteica/efectos de los fármacos
20.
Nat Commun ; 7: 12589, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27586544

RESUMEN

Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/ß-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo.


Asunto(s)
Desarrollo Embrionario/fisiología , Células Madre Embrionarias/fisiología , Factor de Crecimiento Epidérmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Células Madre Pluripotentes/fisiología , beta Catenina/metabolismo , Animales , Reprogramación Celular/genética , Factor de Crecimiento Epidérmico/genética , Estratos Germinativos/citología , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Proteína Nodal/metabolismo , Proteína Smad2/metabolismo , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA