Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropathol Commun ; 11(1): 81, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173747

RESUMEN

In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.


Asunto(s)
Malformaciones Arteriovenosas , Traumatismos por Explosión , Ratas , Masculino , Animales , Remodelación Vascular , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/patología , Encéfalo/patología , Inflamación/patología , Malformaciones Arteriovenosas/complicaciones , Malformaciones Arteriovenosas/patología , Modelos Animales de Enfermedad
2.
Acta Neuropathol Commun ; 9(1): 167, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654480

RESUMEN

Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.


Asunto(s)
Astrocitos/patología , Traumatismos por Explosión/patología , Barrera Hematoencefálica/patología , Lesiones Traumáticas del Encéfalo/patología , Enfermedades Neuroinflamatorias/patología , Animales , Traumatismos por Explosión/complicaciones , Lesiones Traumáticas del Encéfalo/etiología , Células Endoteliales/patología , Enfermedades Neuroinflamatorias/etiología , Pericitos/patología , Ratas , Ratas Long-Evans , Remodelación Vascular/fisiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-32856003

RESUMEN

Patient-specific computational modeling is increasingly used to assist with visualization, planning, and execution of medical treatments. This trend is placing more reliance on medical imaging to provide accurate representations of anatomical structures. Digital image analysis is used to extract anatomical data for use in clinical assessment/planning. However, the presence of image artifacts, whether due to interactions between the physical object and the scanning modality or the scanning process, can degrade image accuracy. The process of extracting anatomical structures from the medical images introduces additional sources of variability, e.g., when thresholding or when eroding along apparent edges of biological structures. An estimate of the uncertainty associated with extracting anatomical data from medical images would therefore assist with assessing the reliability of patient-specific treatment plans. To this end, two image datasets were developed and analyzed using standard image analysis procedures. The first dataset was developed by performing a "virtual voxelization" of a CAD model of a sphere, representing the idealized scenario of no error in the image acquisition and reconstruction algorithms (i.e., a perfect scan). The second dataset was acquired by scanning three spherical balls using a laboratory-grade CT scanner. For the idealized sphere, the error in sphere diameter was less than or equal to 2% if 5 or more voxels were present across the diameter. The measurement error degraded to approximately 4% for a similar degree of voxelization of the physical phantom. The adaptation of established thresholding procedures to improve segmentation accuracy was also investigated.

4.
Acta Neuropathol Commun ; 7(1): 6, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626447

RESUMEN

Much concern exists over the role of blast-induced traumatic brain injury (TBI) in the chronic cognitive and mental health problems that develop in veterans and active duty military personnel. The brain vasculature is particularly sensitive to blast injury. The aim of this study was to characterize the evolving molecular and histologic alterations in the neurovascular unit induced by three repetitive low-energy blast exposures (3 × 74.5 kPa) in a rat model mimicking human mild TBI or subclinical blast exposure. High-resolution two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of purified brain vascular fractions from blast-exposed animals 6 weeks post-exposure showed decreased levels of vascular-associated glial fibrillary acidic protein (GFAP) and several neuronal intermediate filament proteins (α-internexin and the low, middle, and high molecular weight neurofilament subunits). Loss of these proteins suggested that blast exposure disrupts gliovascular and neurovascular interactions. Electron microscopy confirmed blast-induced effects on perivascular astrocytes including swelling and degeneration of astrocytic endfeet in the brain cortical vasculature. Because the astrocyte is a major sensor of neuronal activity and regulator of cerebral blood flow, structural disruption of gliovascular integrity within the neurovascular unit should impair cerebral autoregulation. Disrupted neurovascular connections to pial and parenchymal blood vessels might also affect brain circulation. Blast exposures also induced structural and functional alterations in the arterial smooth muscle layer. Interestingly, by 8 months after blast exposure, GFAP and neuronal intermediate filament expression had recovered to control levels in isolated brain vascular fractions. However, despite this recovery, a widespread vascular pathology was still apparent at 10 months after blast exposure histologically and on micro-computed tomography scanning. Thus, low-level blast exposure disrupts gliovascular and neurovascular connections while inducing a chronic vascular pathology.


Asunto(s)
Astrocitos/patología , Conmoción Encefálica/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Neuronas/patología , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Conmoción Encefálica/metabolismo , Modelos Animales de Enfermedad , Masculino , Neuronas/metabolismo , Ratas Long-Evans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA