Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; 17(7): e2005582, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33502115

RESUMEN

The biomarker detection in human body fluids is crucial as biomarkers are important in diagnosing diseases. Conventional invasive techniques for biomarker detection are associated with infection, tissue damage, and discomfort. Non-invasive devices are an attractive alternative. Here, metal oxide (oxygen-deficient zinc oxide, ZnO) based conductometric sensors with two-terminal electrodes for rapid detection of biomarkers in real-time, are presented. This platform can be engineered for non-invasive, sensitive, and on-demand selective detection of biomarkers based on surface functionalization. The three novelties in this biosensing technique include an on-demand target selection device platform, short (<10 min) incubation times, and real-time monitoring of the biomarker of interest by electrical (resistance change) measurements. Cardiac inflammatory biomarkers interleukin 6 (IL-6) and C-reactive protein (CRP) are used as the model antigens. The devices can detect 100× lower concentration of IL-6 than healthy levels in human saliva and sweat and 1000× and ≈50× lower CRP concentrations than healthy levels in human saliva and sweat, respectively. The devices show high selectivity for IL-6 and CRP antigens when tested with a mixture of biomarkers. This sensor platform can be extended to selective measurements for viruses or DNA screening, which enables a new category of compact and rapid point-of-care medical devices.


Asunto(s)
Técnicas Biosensibles , Conductometría , Biomarcadores , Electrodos , Humanos , Sudor
2.
Small ; 15(22): e1900966, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31018039

RESUMEN

The translation of biological synapses onto a hardware platform is an important step toward the realization of brain-inspired electronics. However, to mimic biological synapses, devices till-date continue to rely on the need for simultaneously altering the polarity of an applied electric field or the output of these devices is photonic instead of an electrical synapse. As the next big step toward practical realization of optogenetics inspired circuits that exhibit fidelity and flexibility of biological synapses, optically-stimulated synaptic devices without a need to apply polarity-altering electric field are needed. Utilizing a unique photoresponse in black phosphorus (BP), here reported is an all-optical pathway to emulate excitatory and inhibitory action potentials by exploiting oxidation-related defects. These optical synapses are capable of imitating key neural functions such as psychological learning and forgetting, spatiotemporally correlated dynamic logic and Hebbian spike-time dependent plasticity. These functionalities are also demonstrated on a flexible platform suitable for wearable electronics. Such low-power consuming devices are highly attractive for deployment in neuromorphic architectures. The manifestation of cognition and spatiotemporal processing solely through optical stimuli provides an incredibly simple and powerful platform to emulate sophisticated neural functionalities such as associative sensory data processing and decision making.


Asunto(s)
Fósforo/química , Sinapsis/metabolismo , Luz , Microscopía Electrónica de Transmisión , Plasticidad Neuronal/efectos de la radiación , Espectroscopía de Fotoelectrones , Sinapsis/química
3.
Nano Lett ; 18(12): 7478-7484, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30441900

RESUMEN

Scattering-free transport in vacuum tubes has always been superior to solid-state transistors. It is the advanced fabrication with mass production capability at low cost which drove solid-state nanoelectronics. Here, we combine the best of vacuum tubes with advanced nanofabrication technology. We present nanoscale, metal-based, field emission air channel transistors. Comparative analysis of tungsten-, gold-, and platinum-based devices is presented. Devices are fabricated with electron beam lithography, achieving channel lengths less than 35 nm. With this small channel length, vacuum-like carrier transport is possible in air under room temperature and pressure. Source and drain electrodes have planar, symmetric, and sharp geometry. Because of this, devices operate in bidirection with voltages <2 V and current values in few tens of nanoamperes range. The experimental data shows that influential operation mechanism is Fowler-Nordheim tunnelling in tungsten and gold devices, while Schottky emission in platinum device. The presented work enables a technology where metal-based switchable nanoelectronics can be created on any dielectric surface with low energy requirements.

4.
Nanotechnology ; 27(50): 505210, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27861164

RESUMEN

Donor doping of perovskite oxides has emerged as an attractive technique to create high performance and low energy non-volatile analog memories. Here, we examine the origins of improved switching performance and stable multi-state resistive switching in Nb-doped oxygen-deficient amorphous SrTiO3 (Nb:a-STO x ) metal-insulator-metal (MIM) devices. We probe the impact of substitutional dopants (i.e., Nb) in modulating the electronic structure and subsequent switching performance. Temperature stability and bias/time dependence of the switching behavior are used to ascertain the role of substitutional dopants and highlight their utility to modulate volatile and non-volatile behavior in a-STO x devices for adaptive and neuromorphic applications. We utilized a combination of transmission electron microscopy, photoluminescence emission properties, interfacial compositional evaluation, and activation energy measurements to investigate the microstructure of the nanofilamentary network responsible for switching. These results provide important insights into understanding mechanisms that govern the performance of donor-doped perovskite oxide-based memristive devices.

5.
ACS Nano ; 17(9): 8083-8097, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37093765

RESUMEN

Few-layer black phosphorus (FLBP), a technologically important 2D material, faces a major hurdle to consumer applications: spontaneous degradation under ambient conditions. Blocking the direct exposure of FLBP to the environment has remained the key strategy to enhance its stability, but this can also limit its utility. In this paper, a more ambitious approach to handling FLBP is reported where not only is FLBP oxidation blocked, but it is also repaired postoxidation. Our approach, inspired by nature, employs the antioxidant molecule ß-carotene that protects plants against photooxidative damages to act as a protecting and repairing agent for FLBP. The mechanistic role of ß-carotene is established by a suite of spectro-microscopy techniques, in combination with computational studies and biochemical assays. Transconductance studies on FLBP-based field effect transistor (FET) devices further affirm the protective and reparative effects of ß-carotene. The outcomes indicate the potential for deploying a plethora of natural antioxidant molecules to enhance the stability of other environmentally sensitive inorganic nanomaterials and expedite their translation for technological and consumer applications.


Asunto(s)
Antioxidantes , beta Caroteno , beta Caroteno/química , Antioxidantes/farmacología , Fósforo/química , Oxidación-Reducción
6.
J Mater Chem B ; 10(37): 7527-7539, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35024716

RESUMEN

In the fight against drug-resistant pathogenic bacterial and fungal cells, low-dimensional materials are emerging as a promising alternative treatment method. Specifically, few-layer black phosphorus (BP) has demonstrated its effectiveness against a wide range of pathogenic bacterial and fungal cells with studies suggesting low cytotoxicity towards healthy mammalian cells. However, the antimicrobial mechanism of action of BP is not well understood. Before new applications for this material can be realised, further in-depth investigations are required. In this work, the biochemical interaction between BP and a series of microbial cells is investigated using a variety of microscopy and spectroscopy techniques to provide a greater understanding of the antimicrobial mechanism. Synchrotron macro-attenuated total reflection-Fourier transform infrared (ATR-FTIR) micro-spectroscopy is used to elucidate the chemical changes occurring outside and within the cell of interest after exposure to BP nanoflakes. The ATR-FTIR data, coupled with high-resolution microscopy, reveals major physical and bio-chemical changes to the phospholipids and amide I and II proteins, as well as minor chemical changes to the structural polysaccharides and nucleic acids when compared to untreated cells. These changes can be attributed to the physical interaction of the BP nanoflakes with the cell membranes, combined with the oxidative stress induced by the degradation of the BP nanoflakes. This study provides insight into the biochemical interaction of BP nanoflakes with microbial cells, allowing for a better understanding of the antimicrobial mechanism of action that will be important for the next generation of applications such as implant coatings, wound dressings, or medical surfaces.


Asunto(s)
Antiinfecciosos , Ácidos Nucleicos , Amidas , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Análisis de Fourier , Mamíferos , Fósforo , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Sincrotrones
7.
Adv Mater ; 33(10): e2004207, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33205523

RESUMEN

Imprinting vision as memory is a core attribute of human cognitive learning. Fundamental to artificial intelligence systems are bioinspired neuromorphic vision components for the visible and invisible segments of the electromagnetic spectrum. Realization of a single imaging unit with a combination of in-built memory and signal processing capability is imperative to deploy efficient brain-like vision systems. However, the lack of a platform that can be fully controlled by light without the need to apply alternating polarity electric signals has hampered this technological advance. Here, a neuromorphic imaging element based on a fully light-modulated 2D semiconductor in a simple reconfigurable phototransistor structure is presented. This standalone device exhibits inherent characteristics that enable neuromorphic image pre-processing and recognition. Fundamentally, the unique photoresponse induced by oxidation-related defects in 2D black phosphorus (BP) is exploited to achieve visual memory, wavelength-selective multibit programming, and erasing functions, which allow in-pixel image pre-processing. Furthermore, all-optically driven neuromorphic computation is demonstrated by machine learning to classify numbers and recognize images with an accuracy of over 90%. The devices provide a promising approach toward neurorobotics, human-machine interaction technologies, and scalable bionic systems with visual data storage/buffering and processing.

8.
ACS Appl Mater Interfaces ; 13(15): 17340-17352, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33844492

RESUMEN

Antimicrobial resistance has rendered many conventional therapeutic measures, such as antibiotics, ineffective. This makes the treatment of infections from pathogenic micro-organisms a major growing health, social, and economic challenge. Recently, nanomaterials, including two-dimensional (2D) materials, have attracted scientific interest as potential antimicrobial agents. Many of these studies, however, rely on the input of activation energy and lack real-world utility. In this work, we present the broad-spectrum antimicrobial activity of few-layered black phosphorus (BP) at nanogram concentrations. This property arises from the unique ability of layered BP to produce reactive oxygen species, which we harness to create this unique functionality. BP is shown to be highly antimicrobial toward susceptible and resistant bacteria and fungal species. To establish cytotoxicity with mammalian cells, we showed that both L929 mouse and BJ-5TA human fibroblasts were metabolically unaffected by the presence of BP. Finally, we demonstrate the practical utility of this approach, whereby medically relevant surfaces are imparted with antimicrobial properties via functionalization with few-layer BP. Given the self-degrading properties of BP, this study demonstrates a viable and practical pathway for the deployment of novel low-dimensional materials as antimicrobial agents without compromising the composition or nature of the coated substrate.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Fósforo/química , Animales , Relación Dosis-Respuesta a Droga , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Fúngica/efectos de los fármacos , Humanos , Ratones
9.
ACS Appl Mater Interfaces ; 12(6): 7326-7333, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31976656

RESUMEN

Multifunctional electronic memories capable of demonstrating both analog and digital switching on-demand are extremely attractive for miniaturization of electronics without significant drain on energy consumption. Simultaneously translating functionality onto mechanically conformable platforms will further enhance their suitability. Here, we demonstrate the ability to engineer multifunctionality in strontium titanate (STO)-based resistive random-access memories (ReRAM) on a flexible polyimide platform. By utilizing different bottom electrodes of various work functions while the top electrode is fixed, differential work functions are induced in STO, to induce bipolar or complementary switching behaviors whenever required. This work-function difference-induced bifunctional switching on the flexible platform reveals a streamlined route for achieving flexible artificial neural networks, high density integration, and logic operation using a single ReRAM.

10.
Adv Mater ; 32(45): e2004247, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32960475

RESUMEN

Atomically thin materials face an ongoing challenge of scalability, hampering practical deployment despite their fascinating properties. Tin monosulfide (SnS), a low-cost, naturally abundant layered material with a tunable bandgap, displays properties of superior carrier mobility and large absorption coefficient at atomic thicknesses, making it attractive for electronics and optoelectronics. However, the lack of successful synthesis techniques to prepare large-area and stoichiometric atomically thin SnS layers (mainly due to the strong interlayer interactions) has prevented exploration of these properties for versatile applications. Here, SnS layers are printed with thicknesses varying from a single unit cell (0.8 nm) to multiple stacked unit cells (≈1.8 nm) synthesized from metallic liquid tin, with lateral dimensions on the millimeter scale. It is reveal that these large-area SnS layers exhibit a broadband spectral response ranging from deep-ultraviolet (UV) to near-infrared (NIR) wavelengths (i.e., 280-850 nm) with fast photodetection capabilities. For single-unit-cell-thick layered SnS, the photodetectors show upto three orders of magnitude higher responsivity (927 A W-1 ) than commercial photodetectors at a room-temperature operating wavelength of 660 nm. This study opens a new pathway to synthesize reproduceable nanosheets of large lateral sizes for broadband, high-performance photodetectors. It also provides important technological implications for scalable applications in integrated optoelectronic circuits, sensing, and biomedical imaging.

11.
World J Diabetes ; 10(7): 396-402, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31363386

RESUMEN

BACKGROUND: Women with gestational diabetes mellitus have an increased risk of developing gestational hypertension, which can increase fetal and neonatal morbidity and mortality. In the past decade, single nucleotide polymorphisms in several genes have been identified as risk factors for development of gestational hypertension. The epidermal growth factor receptor activates tyrosine kinase mediated blood vessels contractility; and inflammatory cascades. Abnormalities in these mechanism are known to contribute towards hypertension. It is thus plausible that polymorphisms in the epidermal growth factor receptor gene would be associated with the development of hypertension in women with gestational diabetes. AIM: To determine whether the epidermal growth factor receptor rs17337023 SNP is associated with the occurrence of hypertension in gestational diabetic women. METHODS: This pilot case-control study was conducted at two tertiary care hospitals in Karachi, from January 2017-August 2018. Two hundred and two women at 28 week of gestation with gestational diabetes were recruited and classified into normotensive (n = 80) and hypertensive (n = 122) groups. Their blood samples were genotyped for epidermal growth factor receptor polymorphism rs17337023 using tetra-ARMS polymerase chain reaction. Descriptive analysis was applied on baseline data. Polymorphism data was analyzed for genotype and allele frequency determination using chi-squared statistics. In all cases, a P value of < 0.05 was considered significant. RESULTS: Subjects were age-matched and thus no difference was observed in relation to age of the study subjects (P >0.05). Body fat percentage was significantly higher in hypertensive females as compared to normotensive subjects (35.138 ± 4.29 Case vs 25.01 ± 8.28 Control; P < 0.05). Similarly, systolic and diastolic blood pressures among groups were significantly higher in hypertensive group than the normotensive group (P < 0.05). Overall epidermal growth factor receptor rs17337023 polymorphism genotype frequency was similar in both groups, with the heterozygous AT genotype (56 in Case vs 48 in Control; P = 0. 079) showing predominance in both groups. Furthermore, the odds ratio for A allele was 1.282 (P = 0.219) and for T allele was 0.780 (P = 0.221) in this study. CONCLUSION: This pilot study indicates that polymorphisms in rs17337023 may not be involved in the pathophysiology of gestational hypertension in gestational diabetes via inflammatory cascade mechanism. Further large-scale studies should explore polymorphism in epidermal growth factor receptor and other genes in this regard.

12.
Sci Rep ; 9(1): 15404, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31659247

RESUMEN

Memristors have demonstrated immense potential as building blocks in future adaptive neuromorphic architectures. Recently, there has been focus on emulating specific synaptic functions of the mammalian nervous system by either tailoring the functional oxides or engineering the external programming hardware. However, high device-to-device variability in memristors induced by the electroforming process and complicated programming hardware are among the key challenges that hinder achieving biomimetic neuromorphic networks. Here, a simple hybrid complementary metal oxide semiconductor (CMOS)-memristor approach is reported to implement different synaptic learning rules by utilizing a CMOS-compatible memristor based on oxygen-deficient SrTiO3-x (STOx). The potential of such hybrid CMOS-memristor approach is demonstrated by successfully imitating time-dependent (pair and triplet spike-time-dependent-plasticity) and rate-dependent (Bienenstosk-Cooper-Munro) synaptic learning rules. Experimental results are benchmarked against in-vitro measurements from hippocampal and visual cortices with good agreement. The scalability of synaptic devices and their programming through a CMOS drive circuitry elaborates the potential of such an approach in realizing adaptive neuromorphic computation and networks.

13.
Nanoscale ; 11(7): 3154-3163, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30488064

RESUMEN

Doping semiconductor nanocrystals is a powerful tool to impart new and beneficial optical and electrical properties to the host nanocrystals. Doping has been used to improve the performances of nanocrystal-based devices in applications as diverse as optics, magnetism, electronics, catalysis and sensing. In this work we present a low temperature colloidal synthesis of zinc sulfide (ZnS) nanocrystals doped with indium. Through optimization of the reaction parameters and the doping level, quantum confined (∼2 nm in size) crystalline colloids with highly tunable optical properties are achieved. Using a suite of characterization techniques including X-ray diffraction, high-resolution transmission electron microscopy, optical spectroscopies (absorption, emission, and Raman), compositional analyses and first principles simulations, we investigate the structural, morphological and optical properties of the synthesized nanocrystals. Indium dopants are found to heavily influence the band gap of ZnS. This strategy in addition to traditional methods of size control enables the synthesis of nanocrystals with finely tunable band gaps between ∼3.8 eV-4.3 eV. These doped ZnS nanocrystals are fabricated into selective UV thin-film absorbers and discriminatory proof-of-concept UVA-UVB/C photodetectors.

14.
Nanoscale ; 10(42): 19711-19719, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30141809

RESUMEN

Non-volatile resistive memory devices are theorized to be the most promising pathway towards analog memory and neuromorphic computing. Two-dimensional MoO3 is a versatile planar transition metal oxide, whose properties can be readily tuned, making it anywhere from a wide bandgap semiconductor to a semi-metal. Successful integration of such a planar metal oxide into resistive memory can enable adaptive and low power memory applications. Here, we investigate the non-volatile and reversible resistive switching behaviour of oxygen deficient MoOx in a cross-point metal/insulator/metal (MIM) architecture. Layered MoOx films are synthesised using chemical vapour deposition (CVD) and reveal excellent resistive switching performance with relatively low electroforming and operating voltages. Switching ratios of ∼103 and stable data retention of >104 s are achieved. As such, this work demonstrates the viability of MoOx as a resistive memory element and paves the way for future two-dimensional resistive memory technologies.

15.
Data Brief ; 21: 18-24, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30310835

RESUMEN

The data included in this article provides additional supplementary information on our recent publication describing "Inducing tunable switching behavior in a single memristor" [1]. Analyses of micro/nano-structural and compositional changes induced in a resistive oxide memory during resistive switching are carried out. Chromium doped strontium titanate based resistance change memories are fabricated in a capacitor-like metal-insulator-metal structure and subjected to different biasing conditions to set memory states. Transmission electron microscope based cross-sectional analyses of the memory devices in different memory states are collected and presented.

16.
ACS Appl Mater Interfaces ; 10(29): 24327-24331, 2018 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-29963861

RESUMEN

Under ambient conditions and in H2O and O2 environments, reactive oxygen species (ROS) cause immediate degradation of the mobility of few-layer black phosphorus (FLBP). Here, we show that FLBP degradation can be prevented by maintaining the temperature in the range ∼125-300 °C during ROS exposure. FLBP devices maintained at elevated temperature show no deterioration of electrical conductance, in contrast to the immediate degradation of pristine FLBP held at room temperature. Our results constitute the first demonstration of stable FLBP in the presence of ROS without requiring encapsulation or a protective coating. The stabilization method will enable applications based on the surface properties of intrinsic FLBP.

17.
Nanoscale ; 10(33): 15615-15623, 2018 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-30090912

RESUMEN

Atomically thin, semiconducting transition and post transition metal oxides are emerging as a promising category of materials for high-performance oxide optoelectronic applications. However, the wafer-scale synthesis of crystalline atomically thin samples has been a challenge, particularly for oxides that do not present layered crystal structures. Herein we use a facile, scalable method to synthesise ultrathin bismuth oxide nanosheets using a liquid metal facilitated synthesis approach. Monolayers of α-Bi2O3 featuring sub-nanometre thickness, high crystallinity and large lateral dimensions could be isolated from the liquid bismuth surface. The nanosheets were found to be n-type semiconductors with a direct band gap of ∼3.5 eV and were suited for developing ultra violet (UV) photodetectors. The developed devices featured a high responsivity of ∼400 AW-1 when illuminated with 365 nm UV light and fast response times of ∼70 µs. The developed methods and obtained nanosheets can likely be developed further towards the synthesis of other bismuth based atomically thin chalcogenides that hold promise for electronic, optical and catalytic applications.

18.
Sci Rep ; 7(1): 17899, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29263388

RESUMEN

Vanadium has 11 oxide phases, with the binary VO2 presenting stimuli-dependent phase transitions that manifest as switchable electronic and optical features. An elevated temperature induces an insulator-to-metal transition (IMT) as the crystal reorients from a monoclinic state (insulator) to a tetragonal arrangement (metallic). This transition is accompanied by a simultaneous change in optical properties making VO2 a versatile optoelectronic material. However, its deployment in scalable devices suffers because of the requirement of specialised substrates to retain the functionality of the material. Sensitivity to oxygen concentration and larger-scale VO2 synthesis have also been standing issues in VO2 fabrication. Here, we address these major challenges in harnessing the functionality in VO2 by demonstrating an approach that enables crystalline, switchable VO2 on any substrate. Glass, silicon, and quartz are used as model platforms to show the effectiveness of the process. Temperature-dependent electrical and optical characterisation is used demonstrating three to four orders of magnitude in resistive switching, >60% chromic discrimination at infrared wavelengths, and terahertz property extraction. This capability will significantly broaden the horizon of applications that have been envisioned but remained unrealised due to the lack of ability to realise VO2 on any substrate, thereby exploiting its untapped potential.

19.
Nanoscale ; 9(38): 14690-14702, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28944813

RESUMEN

Transparent non-volatile memory devices are desirable for realizing visually-clear integrated systems for information storage. Optical transparency provides advantages in applications such as smart glass electronic devices and wearable electronics. However, achieving high transparency limits the choice of active layers as well as the electrodes; thereby, constraining device processing and performance. Here, we demonstrate bilayer transparent memory cells using room temperature deposited amorphous strontium titanate as the functional material and indium tin oxide electrodes. The entire device is fabricated on glass, making the system highly transparent (>85%) in the visible spectrum. The devices exhibit switching ratios of over two orders of magnitude with measured retention of 105 s and endurance 104 cycles. Through the cross-sectional microstructural analyses it is shown that the asymmetric interfaces and distribution of oxygen vacancies in the bilayer oxide stack are responsible for defining the bipolar resistive switching behaviors. A photoluminescence mapping technique is employed to map the evolution of oxygen vacancies and pinpoint the location of the conductive filament. A transient response to optical excitation (using UV and blue light) is demonstrated in the high resistance state which indicates their potential as multifunctional memories for future transparent electronics.

20.
ACS Nano ; 11(11): 10974-10983, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29045121

RESUMEN

Atomically thin semiconductors are one of the fastest growing categories in materials science due to their promise to enable high-performance electronic and optical devices. Furthermore, a host of intriguing phenomena have been reported to occur when a semiconductor is confined within two dimensions. However, the synthesis of large area atomically thin materials remains as a significant technological challenge. Here we report a method that allows harvesting monolayer of semiconducting stannous oxide nanosheets (SnO) from the interfacial oxide layer of liquid tin. The method takes advantage of van der Waals forces occurring between the interfacial oxide layer and a suitable substrate that is brought into contact with the molten metal. Due to the liquid state of the metallic precursor, the surface oxide sheet can be delaminated with ease and on a large scale. The SnO monolayer is determined to feature p-type semiconducting behavior with a bandgap of ∼4.2 eV. Field effect transistors based on monolayer SnO are demonstrated. The synthetic technique is facile, scalable and holds promise for creating atomically thin semiconductors at wafer scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA