Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Cell ; 153(7): 1510-25, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23791179

RESUMEN

The molecular mechanisms underlying the axon arborization of mammalian neurons are poorly understood but are critical for the establishment of functional neural circuits. We identified a pathway defined by two kinases, LKB1 and NUAK1, required for cortical axon branching in vivo. Conditional deletion of LKB1 after axon specification or knockdown of NUAK1 drastically reduced axon branching in vivo, whereas their overexpression was sufficient to increase axon branching. The LKB1-NUAK1 pathway controls mitochondria immobilization in axons. Using manipulation of Syntaphilin, a protein necessary and sufficient to arrest mitochondrial transport specifically in the axon, we demonstrate that the LKB1-NUAK1 kinase pathway regulates axon branching by promoting mitochondria immobilization. Finally, we show that LKB1 and NUAK1 are necessary and sufficient to immobilize mitochondria specifically at nascent presynaptic sites. Our results unravel a link between presynaptic mitochondrial capture and axon branching.


Asunto(s)
Axones/metabolismo , Mitocondrias/metabolismo , Neuronas/citología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por AMP , Animales , Movimiento Celular , Células Cultivadas , Femenino , Eliminación de Gen , Técnicas de Silenciamiento del Gen , Masculino , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
2.
Cell ; 134(3): 508-20, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18692473

RESUMEN

Neural circuits are shaped by experience in early postnatal life. Distinct GABAergic connections within visual cortex determine the timing of the critical period for rewiring ocular dominance to establish visual acuity. We find that maturation of the parvalbumin (PV)-cell network that controls plasticity onset is regulated by a selective re-expression of the embryonic Otx2 homeoprotein. Visual experience promoted the accumulation of non-cell-autonomous Otx2 in PV-cells, and cortical infusion of exogenous Otx2 accelerated both PV-cell development and critical period timing. Conversely, conditional removal of Otx2 from non-PV cells or from the visual pathway abolished plasticity. Thus, the experience-dependent transfer of a homeoprotein may establish the physiological milieu for postnatal plasticity of a neural circuit.


Asunto(s)
Plasticidad Neuronal , Factores de Transcripción Otx/metabolismo , Corteza Visual/fisiología , Animales , Humanos , Interneuronas/fisiología , Ratones , Factores de Transcripción Otx/genética , Parvalbúminas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Privación Sensorial , Vías Visuales
3.
J Bacteriol ; 204(1): e0042021, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34694904

RESUMEN

Escherichia coli survives under acid stress conditions by the glutamic acid-dependent acid resistance (GAD) system, which enzymatically decreases intracellular protons. We found a linkage between GAD and flagellar systems in E. coli. The hdeD gene, one of the GAD cluster genes, encodes an uncharacterized membrane protein. A reporter assay showed that the hdeD promoter was induced in a GadE-dependent manner when grown in the M9 glycerol medium. Transcriptome analysis revealed that most of the transcripts were from genes involved in flagellum synthesis, and cell motility increased not only in the hdeD-deficient mutant but also in the gadE-deficient mutant. Defects in both the hdeD and gadE increased the intracellular level of FliA, an alternative sigma factor for flagellum synthesis, activated by the master regulator FlhDC. The promoter activity of the lrhA gene, which encodes repressor for the flhDC operon, was found to decrease in both the hdeD- and gadE-deficient mutants. Transmission electron microscopy showed that the number of flagellar filaments on the hdeD-, gadE-, and lrhA-deficient cells increased, and all three mutants showed higher motility than the parent strain. Thus, HdeD in the GAD system activates the lrhA promoter, resulting in a decrease in flagellar filaments in E. coli cells. We speculated that the synthesis of HdeD, stimulated in E. coli exposed to acid stress, could control the flagellum biosynthesis by sensing slight changes in pH at the cytoplasmic membrane. This could help in saving energy through termination of flagellum biosynthesis and improve bacterial survival efficiency within the animal digestive system. IMPORTANCE E. coli cells encounter various environments from the mouth down to the intestines within the host animals. The pH of gastric juice is lower than 2.0, and the bacterial must quickly respond and adapt to the following environmental changes before reaching the intestines. The quick response plays a role in cellular survival in the population, whereas adaptation may contribute to species survival. The GAD and flagellar systems are important for response to low pH in E. coli. Here, we identified the novel inner membrane regulator HdeD, encoding in the GAD cluster, to repress the synthesis of flagella. These insights provide a deeper understanding of how the bacteria enter the animal digestive system, survive, and form colonies in the intestines.


Asunto(s)
Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Factores de Transcripción/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Genoma Bacteriano , Proteínas de la Membrana/genética , Mutación , Factores de Transcripción/genética , Transcriptoma
4.
Curr Top Microbiol Immunol ; 427: 161-172, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31183607

RESUMEN

The flagellum is a motile organ, and the needle complex is a type III secretion apparatus for pathogenesis. There are more similarities than differences between the two structures at the molecular level. Here I focus on the hook and the needle and discuss their length control mechanism. The hook is a substructure of the flagellum and the needle is a part of the needle complex. Both structures are tubular structures that have a central channel for protein secretion. Their lengths are controlled by an intriguing mechanism involving a ruler protein and a switchable gate of the protein secretion system. A model for length control is proposed.


Asunto(s)
Sistemas de Secreción Tipo III/metabolismo , Proteínas Bacterianas , Flagelos , Transporte de Proteínas
5.
EMBO Rep ; 20(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30898768

RESUMEN

Many archaea swim by means of archaella. While the archaellum is similar in function to its bacterial counterpart, its structure, composition, and evolution are fundamentally different. Archaella are related to archaeal and bacterial type IV pili. Despite recent advances, our understanding of molecular processes governing archaellum assembly and stability is still incomplete. Here, we determine the structures of Methanococcus archaella by X-ray crystallography and cryo-EM The crystal structure of Methanocaldococcus jannaschii FlaB1 is the first and only crystal structure of any archaellin to date at a resolution of 1.5 Å, which is put into biological context by a cryo-EM reconstruction from Methanococcus maripaludis archaella at 4 Å resolution created with helical single-particle analysis. Our results indicate that the archaellum is predominantly composed of FlaB1. We identify N-linked glycosylation by cryo-EM and mass spectrometry. The crystal structure reveals a highly conserved metal-binding site, which is validated by mass spectrometry and electron energy-loss spectroscopy. We show in vitro that the metal-binding site, which appears to be a widespread property of archaellin, is required for filament integrity.


Asunto(s)
Proteínas Arqueales/metabolismo , Sitios de Unión/fisiología , Metales/metabolismo , Methanococcus/metabolismo , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X , Citoesqueleto/metabolismo , Glicosilación , Espectrometría de Masas/métodos , Orgánulos/metabolismo , Dominios Proteicos/fisiología
6.
Curr Microbiol ; 78(4): 1267-1276, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33638001

RESUMEN

The bacterium Staphylococcus aureus, which colonizes healthy human skin, may cause diseases, such as atopic dermatitis (AD). Treatment for such AD cases involves antibiotic use; however, alternate treatments are preferred owing to the development of antimicrobial resistance. This study aimed to characterize the novel bacteriophage SaGU1 as a potential agent for phage therapy to treat S. aureus infections. SaGU1 that infects S. aureus strains previously isolated from the skin of patients with AD was screened from sewage samples in Gifu, Japan. Its genome was sequenced and analyzed using bioinformatics tools, and the morphology, lytic activity, stability, and host range of the phage were determined. The SaGU1 genome was 140,909 bp with an average GC content of 30.2%. The viral chromosome contained 225 putative protein-coding genes and four tRNA genes, carrying neither toxic nor antibiotic resistance genes. Electron microscopy analysis revealed that SaGU1 belongs to the Myoviridae family. Stability tests showed that SaGU1 was heat-stable under physiological and acidic conditions. Host range testing revealed that SaGU1 can infect a broad range of S. aureus clinical isolates present on the skin of AD patients, whereas it did not kill strains of Staphylococcus epidermidis, which are symbiotic resident bacteria on human skin. Hence, our data suggest that SaGU1 is a potential candidate for developing a phage therapy to treat AD caused by pathogenic S. aureus.


Asunto(s)
Dermatitis Atópica , Staphylococcus aureus , Genoma Viral , Humanos , Japón , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética
7.
Proc Natl Acad Sci U S A ; 114(23): E4621-E4630, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28536193

RESUMEN

Podocytes form the outer part of the glomerular filter, where they have to withstand enormous transcapillary filtration forces driving glomerular filtration. Detachment of podocytes from the glomerular basement membrane precedes most glomerular diseases. However, little is known about the regulation of podocyte adhesion in vivo. Thus, we systematically screened for podocyte-specific focal adhesome (FA) components, using genetic reporter models in combination with iTRAQ-based mass spectrometry. This approach led to the identification of FERM domain protein EPB41L5 as a highly enriched podocyte-specific FA component in vivo. Genetic deletion of Epb41l5 resulted in severe proteinuria, detachment of podocytes, and development of focal segmental glomerulosclerosis. Remarkably, by binding and recruiting the RhoGEF ARGHEF18 to the leading edge, EPB41L5 directly controls actomyosin contractility and subsequent maturation of focal adhesions, cell spreading, and migration. Furthermore, EPB41L5 controls matrix-dependent outside-in signaling by regulating the focal adhesome composition. Thus, by linking extracellular matrix sensing and signaling, focal adhesion maturation, and actomyosin activation EPB41L5 ensures the mechanical stability required for podocytes at the kidney filtration barrier. Finally, a diminution of EPB41L5-dependent signaling programs appears to be a common theme of podocyte disease, and therefore offers unexpected interventional therapeutic strategies to prevent podocyte loss and kidney disease progression.


Asunto(s)
Actomiosina/metabolismo , Proteínas del Citoesqueleto/metabolismo , Adhesiones Focales/metabolismo , Proteínas de la Membrana/metabolismo , Podocitos/metabolismo , Animales , Proteínas del Citoesqueleto/deficiencia , Proteínas del Citoesqueleto/genética , Femenino , Adhesiones Focales/patología , Técnicas de Inactivación de Genes , Glomeruloesclerosis Focal y Segmentaria/etiología , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Glomeruloesclerosis Focal y Segmentaria/patología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Síndrome Nefrótico/etiología , Síndrome Nefrótico/metabolismo , Síndrome Nefrótico/patología , Podocitos/patología , Embarazo , Proteómica , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Transducción de Señal
8.
Genesis ; 57(2): e23277, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30597711

RESUMEN

Live imaging is one of the most powerful technologies for studying the behaviors of cells and molecules in living embryos. Previously, we established a series of reporter mouse lines in which specific organelles are labeled with various fluorescent proteins. In this study, we examined the localizations of fluorescent signals during preimplantation development of these mouse lines, as well as a newly established one, by time-lapse imaging. Each organelle was specifically marked with fluorescent fusion proteins; fluorescent signals were clearly visible during the whole period of time-lapse observation, and the expression of the reporters did not affect embryonic development. We found that some organelles dramatically change their sub-cellular distributions during preimplantation stages. In addition, by crossing mouse lines carrying reporters of two distinct colors, we could simultaneously visualize two types of organelles. These results confirm that our reporter mouse lines can be valuable genetic tools for live imaging of embryonic development.


Asunto(s)
Blastocisto/citología , Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Mitocondrias/metabolismo , Animales , Transporte Biológico , Blastocisto/metabolismo , División Celular , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Microscopía Fluorescente/métodos , Uniones Estrechas/metabolismo
9.
J Bacteriol ; 201(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31036727

RESUMEN

The rare actinomycete Actinoplanes missouriensis produces terminal sporangia containing a few hundred flagellated spores. After release from the sporangia, the spores swim rapidly in aquatic environments as zoospores. The zoospores stop swimming and begin to germinate in niches for vegetative growth. Here, we report the characterization and functional analysis of zoospore type IV pili in A. missouriensis The pilus gene (pil) cluster, consisting of three apparently σFliA-dependent transcriptional units, is activated during sporangium formation similarly to the flagellar gene cluster, indicating that the zoospore has not only flagella but also pili. With a new method in which zoospores were fixed with glutaraldehyde to prevent pilus retraction, zoospore pili were observed relatively easily using transmission electron microscopy, showing 6 ± 3 pili per zoospore (n = 37 piliated zoospores) and a length of 0.62 ± 0.35 µm (n = 206), via observation of fliC-deleted, nonflagellated zoospores. No pili were observed in the zoospores of a prepilin-encoding pilA deletion (ΔpilA) mutant. In addition, the deletion of pilT, which encodes an ATPase predicted to be involved in pilus retraction, substantially reduced the frequency of pilus retraction. Several adhesion experiments using wild-type and ΔpilA zoospores indicated that the zoospore pili are required for the sufficient adhesion of zoospores to hydrophobic solid surfaces. Many zoospore-forming rare actinomycetes conserve the pil cluster, which indicates that the zoospore pili yield an evolutionary benefit in the adhesion of zoospores to hydrophobic materials as footholds for germination in their mycelial growth.IMPORTANCE Bacterial zoospores are interesting cells in that their physiological state changes dynamically: they are dormant in sporangia, show temporary mobility after awakening, and finally stop swimming to germinate in niches for vegetative growth. However, the cellular biology of a zoospore remains largely unknown. This study describes unprecedented zoospore type IV pili in the rare actinomycete Actinoplanes missouriensis Similar to the case for the usual bacterial type IV pili, zoospore pili appeared to be retractable. Our findings that the zoospore pili have a functional role in the adhesion of zoospores to hydrophobic solid surfaces and that the zoospores use both pili and flagella properly according to their different purposes provide an important insight into the cellular biology of the zoospore.


Asunto(s)
Actinoplanes/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/metabolismo , Esporas Bacterianas/fisiología , Actinoplanes/fisiología , Proteínas Fimbrias/genética , Fimbrias Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Esporas Bacterianas/genética
10.
Dev Biol ; 429(1): 20-30, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28712875

RESUMEN

The behavior of visceral endoderm cells was examined as the anterior visceral endoderm (AVE) formed from the distal visceral endoderm (DVE) using the mouse lines R26-H2B-EGFP and R26-PHA7-EGFP to visualize cell nuclei and adherens junction, respectively. The analysis using R26-H2B-EGFP demonstrated global cell rearrangement that was not specific to the DVE cells in the monolayer embryonic visceral endoderm sheet; each population of the endoderm cells moved collectively in a swirling movement as a whole. Most of the AVE cells at E6.5 were not E5.5 DVE cells but were E5.5 cells that were located caudally behind them, as previously reported (Hoshino et al., 2015; Takaoka et al., 2011). In the rearrangement, the posterior embryonic visceral endoderm cells did not move, as extraembryonic visceral endoderm cells did not, and they constituted a distinct population during the process of anterior-posterior axis formation. The analysis using R26-PHA7-EGFP suggested that constriction of the apical surfaces of the cells in prospective anterior portion of the DVE initiated the global cellular movement of the embryonic visceral endoderm to drive AVE formation.


Asunto(s)
Tipificación del Cuerpo , Embrión de Mamíferos/citología , Endodermo/citología , Vísceras/embriología , Animales , Ciclo Celular , Núcleo Celular/metabolismo , Rastreo Celular , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Imagen de Lapso de Tiempo
11.
Mol Microbiol ; 105(4): 572-588, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28557186

RESUMEN

The bacterial flagellar export switching machinery consists of a ruler protein, FliK, and an export switch protein, FlhB and switches substrate specificity of the flagellar type III export apparatus upon completion of hook assembly. An interaction between the C-terminal domain of FliK (FliKC ) and the C-terminal cytoplasmic domain of FlhB (FlhBC ) is postulated to be responsible for this switch. FliKC has a compactly folded domain termed FliKT3S4 (residues 268-352) and an intrinsically disordered region composed of the last 53 residues, FliKCT (residues 353-405). Residues 301-350 of FliKT3S4 and the last five residues of FliKCT are critical for the switching function of FliK. FliKCT is postulated to regulate the interaction of FliKT3S4 with FlhBC , but it remains unknown how. Here we report the role of FliKCT in the export switching mechanism. Systematic deletion analyses of FliKCT revealed that residues of 351-370 are responsible for efficient switching of substrate specificity of the export apparatus. Suppressor mutant analyses showed that FliKCT coordinates FliKT3S4 action with the switching. Site-directed photo-cross-linking experiments showed that Val-302 and Ile-304 in the hydrophobic core of FliKT3S4 bind to FlhBC . We propose that FliKCT may induce conformational rearrangements of FliKT3S4 to bind to FlhBC .


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Especificidad por Sustrato/genética , Secuencia de Aminoácidos , Transporte Biológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Flagelos/microbiología , Proteínas de la Membrana/metabolismo , Dominios Proteicos , Estructura Terciaria de Proteína , Especificidad por Sustrato/fisiología
12.
Microbiology (Reading) ; 164(5): 740-750, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29595414

RESUMEN

Campylobacter jejuni cells have bipolar flagella. Both flagella have similar lengths of about one helical turn, or 3.53±0.52 µm. The flagellar filament is composed of two homologous flagellins: FlaA and FlaB. Mutant strains that express either FlaA or FlaB alone produce filaments that are shorter than those of the wild-type. It is reported that the flaG gene could affect filament length in some species of bacteria, but its function remains unknown. We introduced a flaG-deletion mutation into the C. jejuni wild-type strain and flaA- or flaB-deletion mutant strains, and observed their flagella by microscopy. The ΔflaG mutant cells produced long filaments of two helical turns in the wild-type background. The ΔflaAG double mutant cells produced very short FlaB filaments. On the other hand, ΔflaBG double mutant cells produced long FlaA filaments and their morphology was not helical but straight. Furthermore, FlaG was secreted, and a pulldown assay showed that sigma factor 28 was co-precipitated with purified polyhistidine-tagged FlaG. We conclude that FlaG controls flagella length by negatively regulating FlaA filament assembly and discuss the role of FlaA and FlaB flagellins in C. jejuni flagella formation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/fisiología , Flagelos/genética , Flagelos/metabolismo , Proteínas Bacterianas/genética , Campylobacter jejuni/citología , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Flagelos/ultraestructura , Flagelina/genética , Flagelina/metabolismo , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Locomoción , Microscopía Electrónica de Transmisión , Unión Proteica , Factor sigma/metabolismo
13.
Dev Biol ; 415(1): 122-142, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27174471

RESUMEN

The processes of development leading up to gastrulation have been markedly altered during the evolution of amniotes, and it is uncertain how the mechanisms of axis formation are conserved and diverged between mouse and chick embryos. To assess the conservation and divergence of these mechanisms, this study examined gene expression patterns during the axis formation process in Chinese soft-shell turtle and Madagascar ground gecko preovipositional embryos. The data suggest that NODAL signaling, similarly to avian embryos but in contrast to eutherian embryos, does not have a role in epiblast and hypoblast development in reptilian embryos. The posterior marginal epiblast (PME) is the initial molecular landmark of axis formation in reptilian embryos prior to primitive plate development. Ontogenetically, PME may be the precursor of the primitive plate, and phylogenetically, Koller's sickle and posterior marginal zone in avian development may have been derived from the PME. Most of the genes expressed in the mouse anterior visceral endoderm (AVE genes), especially signaling antagonist genes, are not expressed in the hypoblast of turtle and gecko embryos, though they are expressed in the avian hypoblast. This study proposes that AVE gene expression in the hypoblast and the visceral endoderm could have been independently established in avian and eutherian lineages, similar to the primitive streak that has been independently acquired in these lineages.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Lagartos/embriología , Tortugas/embriología , Animales , Blastodermo/fisiología , Tipificación del Cuerpo/genética , Endodermo/metabolismo , Gastrulación/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/fisiología , Lagartos/genética , Lagartos/metabolismo , Proteína Nodal/fisiología , Filogenia , Línea Primitiva/metabolismo , Especificidad de la Especie , Factores de Transcripción/fisiología , Tortugas/genética , Tortugas/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(32): 11804-9, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25062693

RESUMEN

Bacterial type IV secretion systems are evolutionarily related to conjugation systems and play a pivotal role in infection by delivering numerous virulence factors into host cells. Using transmission electron microscopy, we report the native molecular structure of the core complex of the Dot/Icm type IV secretion system encoded by Legionella pneumophila, an intracellular human pathogen. The biochemically isolated core complex, composed of at least five proteins--DotC, DotD, DotF, DotG, and DotH--has a ring-shaped structure. Intriguingly, morphologically distinct premature complexes are formed in the absence of DotG or DotF. Our data suggest that DotG forms a central channel spanning inner and outer membranes. DotF, a component dispensable for type IV secretion, plays a role in efficient embedment of DotG into the functional core complex. These results highlight a common scheme for the biogenesis of transport machinery.


Asunto(s)
Sistemas de Secreción Bacterianos/fisiología , Legionella pneumophila/patogenicidad , Legionella pneumophila/ultraestructura , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Proteínas Bacterianas/ultraestructura , Sistemas de Secreción Bacterianos/genética , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Genes Bacterianos , Interacciones Huésped-Patógeno , Humanos , Legionella pneumophila/fisiología , Microscopía Electrónica de Transmisión , Modelos Biológicos , Modelos Moleculares , Complejos Multiproteicos/genética , Complejos Multiproteicos/fisiología , Complejos Multiproteicos/ultraestructura , Multimerización de Proteína , Virulencia/genética , Virulencia/fisiología
15.
Dev Dyn ; 245(12): 1176-1188, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27666927

RESUMEN

BACKGROUND: Previous comparative studies suggest that the requirement for Nodal in epiblast and hypoblast development is unique to mammalians. Expression of anterior visceral endoderm (AVE) genes in the visceral endoderm and of their orthologs in the hypoblast may be unique to mammalians and avians, and is absent in the reptilian hypoblast. Axis formation in reptiles is signaled by the formation of the posterior marginal epiblast (PME), which expresses a series of primitive streak genes. To assess the phylogenetic origin of Nodal and AVE gene expression and axis formation in amniotes, we examined marker gene expression in gray short-tailed opossum, a metatherian. RESULTS: Nodal was expressed in neither epiblast nor hypoblast of opossum embryos. No AVE genes were expressed in the opossum hypoblast. Attainment of polarity in the embryonic disk was signaled by Nodal, Wnt3a, Fgf8, and Bra expression in the PME at 8.5 days post-coitus. CONCLUSIONS: Nodal expression in epiblast or hypoblast may be unique to eutherians. AVE gene expression in visceral endoderm and hypoblast may have been independently acquired in eutherian and avian lineages. PME formation appears to be the event that signals axis formation in reptilian and metatherian embryos, and thus may be an ancestral characteristic of basal amniotes. Developmental Dynamics 245:1176-1188, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Monodelphis/embriología , Monodelphis/metabolismo , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica , Monodelphis/clasificación , Proteína Nodal/genética , Proteína Nodal/metabolismo , Filogenia
16.
Dev Dyn ; 245(1): 67-86, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26404161

RESUMEN

BACKGROUND: Mouse embryos are cup shaped, but most nonrodent eutherian embryos are disk shaped. Extraembryonic ectoderm (ExEc), which may have essential roles in anterior-posterior (A-P) axis formation in mouse embryos, does not develop in many eutherian embryos. To assess A-P axis formation in eutherians, comparative analyses were made on rabbit, porcine, and Suncus embryos. RESULTS: All embryos examined expressed Nodal initially throughout epiblast and visceral endoderm; its expression became restricted to the posterior region before gastrulation. Anterior visceral endoderm (AVE) genes were expressed in Otx2-positive visceral endoderm, with Dkk1 expression being most anterior. The mouse pattern of AVE formation was conserved in rabbit embryos, but had diverged in porcine and Suncus embryos. No structure that was molecularly equivalent to Bmp-positive ExEc, existed in rabbit or pig embryos. In Suncus embryos, A-P axis was determined at prehatching stage, and these embryos attached to uterine wall at future posterior side. CONCLUSIONS: Nodal, but not Bmp, functions in epiblast and visceral endoderm development may be conserved in eutherians. AVE functions may also be conserved, but the pattern of its formation has diverged among eutherians. Roles of BMP and NODAL gradients in AVE formation seem to have been established in a subset of rodents.


Asunto(s)
Ectodermo/fisiología , Desarrollo Embrionario/fisiología , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica , Animales , Tipificación del Cuerpo/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Proteína Nodal/genética , Conejos , Porcinos
17.
J Bacteriol ; 198(3): 410-5, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26527646

RESUMEN

UNLABELLED: The flagellar hook is a short tubular structure located between the external filament and the membrane-bound basal body. The average hook length is 55 nm and is determined by the soluble protein FliK and the integral membrane protein FlhB. Hook elongation is terminated by FliK-mediated cessation of hook protein secretion, followed by the secretion of filamentous proteins. This process is referred to as the substrate specificity switch. Switching of the secretion modes results from a direct interaction between the FliK C-terminal domain (FliKC) and the secretion gate in FlhB. FliKC consists of two α-helices and four ß-strands. Loop 2 connects the first two ß-sheets and contains a conserved sequence of 9 residues. Genetic and physiological analyses of various fliK partial deletion mutants pointed to loop 2 as essential for induction of a conformational change in the FlhB gate. We constructed single-amino-acid substitutions in the conserved region of loop 2 of FliK and discovered that the loop sequence LRL is essential for the timely switching of secretion modes. IMPORTANCE: Flagellar protein secretion is controlled by the soluble protein FliK. We discovered that the loop 2 sequence LRL in the FliK C terminus was essential for timely switching of secretion modes. This mechanism is applicable to type three secretions systems that secrete virulence factors in bacterial pathogens.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelina/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Salmonella typhimurium/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Flagelina/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Salmonella typhimurium/genética , Especificidad por Sustrato
18.
J Bacteriol ; 198(16): 2219-27, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27274031

RESUMEN

UNLABELLED: Actinoplanes missouriensis, a Gram-positive and soil-inhabiting bacterium, is a member of the rare actinomycetes. The filamentous cells produce sporangia, which contain hundreds of flagellated spores that can swim rapidly for a short period of time until they find niches for germination. These swimming cells are called zoospores, and the mechanism of this unique temporal flagellation has not been elucidated. Here, we report all of the flagellar genes in the bacterial genome and their expected function and contribution for flagellar morphogenesis. We identified a large flagellar gene cluster composed of 33 genes that encode the majority of proteins essential for assembling the functional flagella of Gram-positive bacteria. One noted exception to the cluster was the location of the fliQ gene, which was separated from the cluster. We examined the involvement of four genes in flagellar biosynthesis by gene disruption, fliQ, fliC, fliK, and lytA Furthermore, we performed a transcriptional analysis of the flagellar genes using RNA samples prepared from A. missouriensis grown on a sporangium-producing agar medium for 1, 3, 6, and 40 days. We demonstrated that the transcription of the flagellar genes was activated in conjunction with sporangium formation. Eleven transcriptional start points of the flagellar genes were determined using the rapid amplification of cDNA 5' ends (RACE) procedure, which revealed the highly conserved promoter sequence CTCA(N15-17)GCCGAA. This result suggests that a sigma factor is responsible for the transcription of all flagellar genes and that the flagellar structure assembles simultaneously. IMPORTANCE: The biology of a zoospore is very interesting from the viewpoint of morphogenesis, survival strategy, and evolution. Here, we analyzed flagellar genes in A. missouriensis, which produces sporangia containing hundreds of flagellated spores each. Zoospores released from the sporangia swim for a short time before germination occurs. We identified a large flagellar gene cluster and an orphan flagellar gene (fliQ). These findings indicate that the zoospore flagellar components are typical of Gram-positive bacteria. However, the transcriptional analysis revealed that all flagellar genes are transcribed simultaneously during sporangium formation, a pattern differing from the orderly, regulated expression of flagellar genes in other bacteria, such as Salmonella and Escherichia coli These results suggest a novel regulatory mechanism for flagellar formation in A. missouriensis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Micromonosporaceae/genética , Micromonosporaceae/metabolismo , Proteínas Bacterianas/genética , Secuencia de Bases , ADN Bacteriano/genética , Flagelos/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo
19.
Dev Biol ; 402(2): 175-91, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25910836

RESUMEN

The initial landmark of anterior-posterior (A-P) axis formation in mouse embryos is the distal visceral endoderm, DVE, which expresses a series of anterior genes at embryonic day 5.5 (E5.5). Subsequently, DVE cells move to the future anterior region, generating anterior visceral endoderm (AVE). Questions remain regarding how the DVE is formed and how the direction of the movement is determined. This study compares the detailed expression patterns of OTX2, HHEX, CER1, LEFTY1 and DKK1 by immunohistology and live imaging at E4.5-E6.5. At E6.5, the AVE is subdivided into four domains: most anterior (OTX2, HHEX, CER1-low/DKK1-high), anterior (OTX2, HHEX, CER1-high/DKK1-low), main (OTX2, HHEX, CER1, LEFTY1-high) and antero-lateral and posterior (OTX2, HHEX-low). The study demonstrates how this pattern is established. AVE protein expression in the DVE occurs de novo at E5.25-E5.5. Neither HHEX, LEFTY1 nor CER1 expression is asymmetric. In contrast, OTX2 expression is tilted on the future posterior side with the DKK1 expression at its proximal domain; the DVE cells move in the opposite direction of the tilt.


Asunto(s)
Tipificación del Cuerpo/fisiología , Movimiento Celular/fisiología , Endodermo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Factores de Transcripción Otx/metabolismo , Animales , Tipificación del Cuerpo/genética , Citocinas , Endodermo/citología , Proteínas de Homeodominio/metabolismo , Inmunohistoquímica , Hibridación in Situ , Factores de Determinación Derecha-Izquierda/metabolismo , Proteínas Luminiscentes , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Proteínas/metabolismo , Imagen de Lapso de Tiempo , Factores de Transcripción/metabolismo , Proteína Fluorescente Roja
20.
Dev Biol ; 400(2): 248-57, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25722189

RESUMEN

Cilia are microtubule-based structures that project into the extracellular space. Ciliary defects are associated with several human diseases, including polycystic kidney disease, primary ciliary dyskinesia, left-right axis patterning, hydrocephalus and retinal degeneration. However, the genetic and cellular biological control of ciliogenesis remains poorly understood. The IFT46 is one of the highly conserved intraflagellar transport complex B proteins. In zebrafish, ift46 is expressed in various ciliated tissues such as Kupffer׳s vesicle, pronephric ducts, ears and spinal cord. We show that ift46 is localized to the basal body. Knockdown of ift46 gene results in multiple phenotypes associated with various ciliopathies including kidney cysts, pericardial edema and ventral axis curvature. In ift46 morphants, cilia in kidney and spinal canal are shortened and abnormal. Similar ciliary defects are observed in otic vesicles, lateral line hair cells, olfactory pits, but not in Kupffer׳s vesicle. To explore the functions of Ift46 during mouse development, we have generated Ift46 knock-out mice. The Ift46 mutants have developmental defects in brain, neural tube and heart. In particular Ift46(-/-) homozygotes displays randomization of the embryo heart looping, which is a hallmark of defective left-right (L/R) axis patterning. Taken together, our results demonstrated that IFT46 has an essential role in vertebrate ciliary development.


Asunto(s)
Cilios/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Cuerpos Basales/metabolismo , Proteínas del Citoesqueleto , Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Alineación de Secuencia , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA