Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 19(3)2018 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-29522491

RESUMEN

Stilbenoids are a group of naturally occurring phenolic compounds found in various plant species. They share a common backbone structure known as stilbene, but differ in the nature and position of substituents. Stilbenoids are classified as phytoalexins, which are antimicrobial compounds produced de novo in plants to protect against fungal infection and toxins. In this review, the biological effects of stilbenoids such as resveratrol, pterostilbene, gnetol and piceatannol are discussed. Stilbenoids exert various biological activities ranging from cardioprotection, neuroprotection, anti-diabetic properties, depigmentation, anti-inflammation, cancer prevention and treatment. The results presented cover a myriad of models, from cell culture to animal studies as well as clinical human trials. Although positive results were obtained in most cell culture and animal studies, further human studies are needed to substantiate beneficial effects of stilbenoids. Resveratrol remains the most widely studied stilbenoid. However, there is limited information regarding the potential of less common stilbenoids. Therefore, further research is warranted to evaluate the salutary effects of various stilbenoids.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos Fitogénicos/farmacología , Cardiotónicos/farmacología , Hipoglucemiantes/farmacología , Fármacos Neuroprotectores/farmacología , Estilbenos/farmacología , Animales , Línea Celular Tumoral , Humanos , Modelos Animales , Resveratrol
2.
Molecules ; 22(2)2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-28157155

RESUMEN

Stilbenoids are bioactive polyphenols, and resveratrol (trans-3,5,40-trihydroxystilbene) is a representative stilbenoid that reportedly exerts cardioprotective actions. As resveratrol exhibits low oral bioavailability, we turned our attention to other stilbenoid compounds with a history of medicinal use and/or improved bioavailability. We determined the effects of gnetol (trans-3,5,20,60-tetrahydroxystilbene) and pterostilbene (trans-3,5-dimethoxy-40-hydroxystilbene) on cardiac hypertrophy. In vitro, gnetol and pterostilbene prevented endothelin-1-induced indicators of cardiomyocyte hypertrophy including cell enlargement and protein synthesis. Gnetol and pterostilbene stimulated AMP-activated protein kinase (AMPK), and inhibition of AMPK, using compound C or shRNA knockdown,abolished these anti-hypertrophiceffects. In contrast,resveratrol, gnetol, nor pterostilbene reduced blood pressure or hypertrophy in the spontaneously hypertensive heart failure (SHHF) rat. In fact, AMPK levels were similar between Sprague-Dawley and SHHF rats whether treated by stilbenoids or not. These data suggest that the anti-hypertrophic actions of resveratrol (and other stilbenoids?) do not extend to the SHHF rat, which models heart failure superimposed on hypertension. Notably, SHHF rat hearts exhibited prolonged isovolumic relaxationtime(an indicator of diastolicdys function),and this was improved by stilbenoid treatment.In conclusion, stilbenoid-based treatment as a viable strategy to prevent pathological cardiac hypertrophy,a major risk factor for heart failure,may be context-dependent and requires furtherstudy.


Asunto(s)
Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Polifenoles/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Pruebas de Función Cardíaca , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Polifenoles/química , Ratas , Ratas Endogámicas SHR , Resveratrol , Estilbenos/química , Estilbenos/farmacología
3.
Phytother Res ; 29(8): 1168-79, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25939395

RESUMEN

Studies were undertaken to evaluate the bioavailability in rats and content analysis of gnetol in Gnetum gnemon products reported to contain gnetol and to examine the pharmacological properties of gnetol in in vitro models including anti-inflammatory/analgesic, antidiabetic, anti-adipogenesis, and anticancer activity. Male Sprague-Dawley rats were cannulated and dosed either intravenously with gnetol (10 mg/kg) or orally (100 mg/kg). Various methanolic extractions of G. gnemon products were quantified. Gnetol's effect on cell viability in selected cell lines with or without inflammatory stimulus was assessed. α-Amylase and α-glucosidase inhibition was evaluated. Cyclooxygenase (COX)-1, COX-2, and histone deacetylase inhibition and adipogenesis inhibition were examined. After oral and intravenous administration, gnetol was detected in both serum and urine as the parent compound and as a glucuronidated metabolite. The bioavailability of gnetol was determined to be 6%. Gnetol is rapidly glucuronidated and is excreted in urine and via nonrenal routes. Gnetol was found to exist as an aglycone and as a glycoside in G. gnemon products. Gnetol showed concentration-dependent reductions in cell viability in cancer cell lines with greatest activity in colorectal cancer and potent COX-1, histone deacetylase, and weak COX-2 activities along with limited reduction in inflammation. Gnetol also possessed concentration-dependent alpha-amylase, alpha-glucosidase, and adipogenesis activities. Pretreatment of mice with gnetol was able to increase the latency period to response in analgesia models.


Asunto(s)
Inhibidores Enzimáticos/farmacocinética , Análisis de los Alimentos , Gnetum/química , Estilbenos/farmacocinética , Animales , Antioxidantes/farmacología , Disponibilidad Biológica , Línea Celular Tumoral , Ciclooxigenasa 1 , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2/farmacocinética , Inhibidores de Glicósido Hidrolasas/farmacología , Humanos , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Dolor/tratamiento farmacológico , Ratas , Ratas Sprague-Dawley , Estilbenos/sangre , Estilbenos/orina , alfa-Amilasas/antagonistas & inhibidores , alfa-Glucosidasas
4.
J Cardiovasc Pharmacol ; 64(5): 420-30, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24979612

RESUMEN

: Endocannabinoids are bioactive amides, esters, and ethers of long-chain polyunsaturated fatty acids. Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries. As cardiac hypertrophy is a convergence point of risk factors for heart failure, we determined a role for endocannabinoids in attenuating endothelin-1-induced hypertrophy and probed the signaling pathways involved. The cannabinoid receptor ligand anandamide and its metabolically stable analog, R-methanandamide, suppressed hypertrophic indicators including cardiomyocyte enlargement and fetal gene activation (ie, the brain natriuretic peptide gene) elicited by endothelin-1 in isolated neonatal rat ventricular myocytes. The ability of R-methanandamide to suppress myocyte enlargement and fetal gene activation was mediated by CB2 and CB1 receptors, respectively. Accordingly, a CB2-selective agonist, JWH-133, prevented only myocyte enlargement but not brain natriuretic peptide gene activation. A CB1/CB2 dual agonist with limited brain penetration, CB-13, inhibited both hypertrophic indicators. CB-13 activated AMP-activated protein kinase (AMPK) and, in an AMPK-dependent manner, endothelial nitric oxide synthase (eNOS). Disruption of AMPK signaling, using compound C or short hairpinRNA knockdown, and eNOS inhibition using L-NIO abolished the antihypertrophic actions of CB-13. In conclusion, CB-13 inhibits cardiomyocyte hypertrophy through AMPK-eNOS signaling and may represent a novel therapeutic approach to cardioprotection.


Asunto(s)
Agonistas de Receptores de Cannabinoides/farmacología , Cardiomegalia/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Naftalenos/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Animales Recién Nacidos , Ácidos Araquidónicos/farmacología , Cannabinoides/farmacología , Cardiomegalia/patología , Cardiotónicos/farmacología , Endocannabinoides/farmacología , Endotelina-1/metabolismo , Técnicas de Silenciamiento del Gen , Ligandos , Masculino , Miocitos Cardíacos/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Alcamidas Poliinsaturadas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/efectos de los fármacos , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA