Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Entropy (Basel) ; 22(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33334058

RESUMEN

The design of a computer-aided system for identifying the seizure onset zone (SOZ) from interictal and ictal electroencephalograms (EEGs) is desired by epileptologists. This study aims to introduce the statistical features of high-frequency components (HFCs) in interictal intracranial electroencephalograms (iEEGs) to identify the possible seizure onset zone (SOZ) channels. It is known that the activity of HFCs in interictal iEEGs, including ripple and fast ripple bands, is associated with epileptic seizures. This paper proposes to decompose multi-channel interictal iEEG signals into a number of subbands. For every 20 s segment, twelve features are computed from each subband. A mutual information (MI)-based method with grid search was applied to select the most prominent bands and features. A gradient-boosting decision tree-based algorithm called LightGBM was used to score each segment of the channels and these were averaged together to achieve a final score for each channel. The possible SOZ channels were localized based on the higher value channels. The experimental results with eleven epilepsy patients were tested to observe the efficiency of the proposed design compared to the state-of-the-art methods.

2.
Sci Rep ; 10(1): 7044, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341371

RESUMEN

Presurgical investigations for categorizing focal patterns are crucial, leading to localization and surgical removal of the epileptic focus. This paper presents a machine learning approach using information theoretic features extracted from high-frequency subbands to detect the epileptic focus from interictal intracranial electroencephalogram (iEEG). It is known that high-frequency subbands (>80 Hz) include important biomarkers such as high-frequency oscillations (HFOs) for identifying epileptic focus commonly referred to as the seizure onset zone (SOZ). In this analysis, the multi-channel interictal iEEG signals were splitted into segments and each segment was decomposed into multiple high-frequency subbands. The different types of entropy were calculated for each of the subbands and the sparse linear discriminant analysis (sLDA) was applied to select the prominent entropy features. Due to the imbalance of SOZ and non-SOZ channels in iEEG data, the use of machine learning techniques is always tricky. To deal with the imbalanced learning problem, an adaptive synthetic oversampling approach (ADASYN) with radial basis function kernel-based SVM was used to detect the focal segments. Finally, the epileptic focus was identified based on detection of focal segments on SOZ and non-SOZ channels. Eight patients were examined to observe the efficiency of the automatic detector. The experimental results and statistical tests indicate that the proposed automatic detector can identify the epileptic focus accurately and efficiently.


Asunto(s)
Electrocorticografía/métodos , Entropía , Epilepsia/fisiopatología , Automatización , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA