Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 141(38): 15413-15422, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31453686

RESUMEN

Carbon dots (C-Dots) are promising new materials for the development of biocompatible photosensitizers for solar-driven catalysis and hydrogen production in aqueous solution. Compared to common semiconducting quantum dots, C-Dots have good physicochemical, as well as photochemical stability, optical brightness, stability and nontoxicity, while their carbon based source results in tunable surface chemistry, chemical versatility, low cost, and biocompatibility. Herein we show that doping the C-Dots with phosphate or boron significantly influences their excited-state dynamics, which is observed by the formation of a unique long-lived photoproduct as a function of the different dopants. To probe the photosensitizing capabilities of the C-Dots, we followed the photoreduction of methyl viologen (MV2+), which acts as a molecular redox mediator (electron acceptor) to the C-Dots (the photosensitizer, i.e., electron donor) in aqueous solution, using steady-state and time-resolved fluorescence and absorption spectroscopic techniques as well as electrochemical measurements. We show that ultrafast electron transfer to MV2+ and slow charge recombination results in a high quantum yield of MV2+ photoreduction, while the doping drastically influences this quantum yield of MV2+ radical. Our findings contribute to the photophysical understanding of this intriguing and relatively new carbon-based nanoparticle and can improve the design and development of efficient photosensitizers over commonly used heterogeneous catalysts in photocatalytic systems by increasing the efficiency of radical generation.

2.
Nano Lett ; 17(12): 7675-7683, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29078048

RESUMEN

We use femtosecond transient absorption spectroscopy to study the temporal dynamics of strongly coupled exciton-plasmon polaritons in metasurfaces of aluminum nanoantennas coated with J-aggregate molecules. Compared with the thermal nonlinearities of aluminum nanoantennas, the exciton-plasmon hybridization introduces strong ultrafast nonlinearities in the composite metasurfaces. Within femtoseconds after the pump excitation, the plasmonic resonance is broadened and shifted, showcasing its high sensitivity to excited-state modification of the molecular surroundings. In addition, we observe temporal oscillations due to the deep subangstrom acoustic breathing modes of the nanoantennas in both bare and hybrid metasurfaces. Finally, unlike the dynamics of hybrid states in optical microcavities, here, ground-state bleaching is observed with a significantly longer relaxation time at the upper polariton band.

3.
Opt Lett ; 42(13): 2411-2414, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957246

RESUMEN

We experimentally study mechanical vibrations in planar Fabry-Perot microcavities made of metallic mirrors and a polymer spacer, using broadband pump-probe spectroscopy. These acoustic waves oscillate at a picosecond time-scale and result in spectral oscillations of the cavity transmission spectrum. We find that the oscillations are initiated at the metal mirrors and that their temporal dynamics match the elastic modes of the polymer layer, indicating that mechanical momentum is transferred within the structure. Such structures combine the strong optical absorption of metals with the elasticity and the processability of polymers, which open the road to a new class of optomechanical devices.

4.
J Phys Chem A ; 118(13): 2470-9, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24601591

RESUMEN

Femtosecond UV-vis pump-probe spectroscopy was employed to study the acid effect on curcumin in the excited state. Curcumin in solutions of weak acids was found to be a photobase forming a protonated curcumin within a few tens of picoseconds from the time of excitation. The excited-state protonation reaction is also observed in the steady-state emission spectrum as a new red emission band with a maximum at 620 nm in the presence of weak acids. The transient pump-probe spectrum consists of four spectral bands, two emission bands, and two absorption bands. We assign a transient absorption band at ∼600 nm and an emission band at ∼540 nm to the neutral ROH form of curcumin. An absorption band at ∼500 nm and an emission band at 620 nm are assigned to the protonated ROH2(+) form of curcumin.


Asunto(s)
Ácidos/química , Curcumina/química , Estructura Molecular , Protones , Espectrofotometría Ultravioleta , Factores de Tiempo
5.
J Phys Chem A ; 118(25): 4425-43, 2014 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-24870027

RESUMEN

Steady-state and time-resolved optical techniques were employed to study the photoprotolytic mechanism of a general photoacid. Previously, a general scheme was suggested that includes an intermediate product that, up until now, had not been clearly observed experimentally. For our study, we used quinone cyanine 7 (QCy7) and QCy9, the strongest photoacids synthesized so far, to look for the missing intermediate product of an excited-state proton transfer to the solvent. Low-temperature steady-state emission spectra of both QCy7 and QCy9 clearly show an emission band at T < 165 K in H2O ice that could be assigned to ion-pair RO(-)*···H3O(+), the missing intermediate. Room-temperature femtosecond pump-probe spectroscopy transient spectra at short times (t < 4 ps) also shows the existence of transient absorption and emission bands that we assigned to the RO(-)*···H3O(+) ion pair. The intermediate dissociates on a time scale of 1 ps and about 1.5 ps in H2O and D2O samples, respectively.

6.
Nat Commun ; 10(1): 3248, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31324768

RESUMEN

Several years ago, strong coupling between electronic molecular transitions and photonic structures was shown to modify the electronic landscape of the molecules and affect their chemical behavior. Since then, this concept has evolved into a new field known as polaritonic chemistry. An important ingredient in the progress of this field was the demonstration of strong coupling with intra-molecular vibrations, which enabled the modification of processes occurring at the electronic ground-state. Here we demonstrate strong coupling with collective, inter-molecular vibrations occurring in organic materials in the low-terahertz region ([Formula: see text]1012 Hz). Using a cavity filled with α-lactose molecules, we measure the temporal evolution and observe coherent Rabi oscillations, corresponding to a splitting of 68 GHz. These results take strong coupling into a new class of materials and processes, including skeletal polymer motions, protein dynamics, metal organic frameworks and other materials, in which collective, spatially extended degrees of freedom participate in the dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA