Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 366: 121931, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39033620

RESUMEN

The global demand for petroleum-derived plastics continues to increase, as does pollution caused by plastic consumption and landfilling plastic waste. Recycling waste plastics by thermomechanical molding may be advantageous, but it alone cannot address the challenges associated with plastic demand and its widespread pollution. A more sustainable and cleaner approach for recycling plastic waste could be to produce thermoplastic composite blends of waste plastic and biobased alternative materials such as marine algal biomass. In this study, Geitlerinema sp., a marine cyanobacterium, was cultivated with waste nitrogen fertilizer as a nitrogen source, resulting in phycocyanin content and biomass density of 6.5% and 0.7 g/L, respectively. The minimum and maximum tensile strengths of thermoplastic blends containing Geitlerinema sp. biomass, recycled glycerol plasticizer, and waste plastic were 0.29-23.2 MPa, respectively. The tensile strength and Young's modulus of thermoplastic composites decreased as the Geitlerinema sp. biomass concentration increased. Furthermore, thermal analysis revealed that thermoplastics containing Geitlerinema sp. biomass have lower thermal onset and biomass degradation temperatures than waste polyethylene. Nevertheless, 35-50% of Geitlerinema sp. biomass could be a sustainable biobased alternative feedstock for producing thermoplastic blends, making the recycling of waste plastics more sustainable and environmentally friendly.


Asunto(s)
Cianobacterias , Fertilizantes , Nitrógeno , Plásticos , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Biomasa , Reciclaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA