Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 28(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375332

RESUMEN

A new chlorobenzylidene imine ligand, (E)-1-((5-chloro-2-hydroxybenzylidene)amino) naphthalen-2-ol (HL), and its [Zn(L)(NO3)(H2O)3], [La(L)(NO3)2(H2O)2], [VO(L)(OC2H5)(H2O)2], [Cu(L)(NO3)(H2O)3], and [Cr(L)(NO3)2(H2O)2], complexes were synthesized and characterized. The characterization involved elemental analysis, FT-IR, UV/Vis, NMR, mass spectra, molar conductance, and magnetic susceptibility measurements. The obtained data confirmed the octahedral geometrical structures of all metal complexes, while the [VO(L)(OC2H5)(H2O)2] complex exhibited a distorted square pyramidal structure. The complexes were found to be thermally stable based on their kinetic parameters determined using the Coats-Redfern method. The DFT/B3LYP technique was employed to calculate the optimized structures, energy gaps, and other important theoretical descriptors of the complexes. In vitro antibacterial assays were conducted to evaluate the complexes' potential against pathogenic bacteria and fungi, comparing them to the free ligand. The compounds exhibited excellent fungicidal activity against Candida albicans ATCC: 10231 (C. albicans) and Aspergillus negar ATCC: 16404 (A. negar), with inhibition zones of HL, [Zn(L)(NO3)(H2O)3], and [La(L)(NO3)2(H2O)2] three times higher than that of the Nystatin antibiotic. The DNA binding affinity of the metal complexes and their ligand was investigated using UV-visible, viscosity, and gel electrophoresis methods, suggesting an intercalative binding mode. The absorption studies yielded Kb values ranging from 4.40 × 105 to 7.30 × 105 M-1, indicating high binding strength to DNA comparable to ethidium bromide (value 107 M-1). Additionally, the antioxidant activity of all complexes was measured and compared to vitamin C. The anti-inflammatory efficacy of the ligand and its metal complexes was evaluated, revealing that [Cu(L)(NO3)(H2O)3] exhibited the most effective activity compared to ibuprofen. Molecular docking studies were conducted to explore the binding nature and affinity of the synthesized compounds with the receptor of Candida albicans oxidoreductase/oxidoreductase INHIBITOR (PDB ID: 5V5Z). Overall, the combined findings of this work demonstrate the potential of these new compounds as efficient fungicidal and anti-inflammatory agents. Furthermore, the photocatalytic effect of the Cu(II) Schiff base complex/GO was examined.


Asunto(s)
Antiinfecciosos , Complejos de Coordinación , Bases de Schiff/química , Antioxidantes/farmacología , Azul de Metileno , Complejos de Coordinación/química , Simulación del Acoplamiento Molecular , Ligandos , Fotólisis , Espectroscopía Infrarroja por Transformada de Fourier , Antiinfecciosos/química , Antibacterianos/farmacología , ADN/química , Zinc , Antiinflamatorios/farmacología , Oxidorreductasas
2.
J Mol Struct ; 1247: 131348, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36406284

RESUMEN

For first time the new N-picolinoypicolinlamide was obtained as in situ ligand during the reaction of 2,4,6-ris(2-pyridyl)-,3,5-triazine with aqueous solution of CuNO3·3H2O and formed the corresponding complex [Cu(dipicolinoylamide)(NO3)(H2O)]. The crystal structure of the obtained complex was determined by x-ray structure. The complex crystallizes in space group P21/n, a = 10.2782(9) Å, b = 7.5173(6) Å, c = 17.738(2) Å, α = 90.00°, ß = 91.368(1)°, γ = 90.00°, V = 1370.1(2) Å3, Z = 4. The copper center has a distorted octahedral geometry. DFT calculations show good agreement between theoretical and X-ray data. The Molecular docking studies were executed to consider the nature of binding and binding affinity of the synthesized compounds with the receptor of COVID-19 main protease viral protein (PDB ID: 6lu7), the receptor of gram -ve bacteria (Escherichia coli, PDB ID: 1fj4) and the receptor of gram +ve bacteria (Staphylococcus aureus, PDB ID: 3q8u and Proteus PDB ID: 5i39) and with human DNA. Finally, in silico ADMET predictions was also examined.

3.
Molecules ; 27(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897895

RESUMEN

Honey is known for its content of biomolecules, such as enzymes. The enzymes of honey originate from bees, plant nectars, secretions or excretions of plant-sucking insects, or from microorganisms such as yeasts. Honey can be characterized by enzyme-catalyzed and non-enzymatic reactions. Notable examples of enzyme-catalyzed reactions are the production of hydrogen peroxide through glucose oxidase activity and the conversion of hydrogen peroxide to water and oxygen by catalase enzymes. Production of hydroxymethylfurfural (HMF) from glucose or fructose is an example of non-enzymatic reactions in honey.


Asunto(s)
Miel , Animales , Abejas , Fructosa , Furaldehído , Glucosa , Peróxido de Hidrógeno/metabolismo
4.
Bioorg Chem ; 114: 105106, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34182310

RESUMEN

The pharmacological efficacy of the variety tetradentate ligands encouraged us to design attractive compounds through effective synthetic procedure. The prepared Schiff base ligand 6,6'-((1E,1'E)-((4-chloro-1,2-phenylene)bis(azaneylylidene))bis(methaneylylidene))bis(2-ethoxy phenol (H2L), which derived from 4-chloro-o-phenylenediamine and 3-ethoxy-salicylaldehyde and its VO(II), Zn(II) and ZrO(II) metal chelates, have been synthesized and characterized with aim of that it may struggle the invasion of drug resistance. The chemical structural of studied compounds were discussed by TGA, elemental analysis, UV-Vis., 1H NMR, 13C NMR, FTIR, mass spectral, PXRD, molar conductance, magnetic susceptibility measurements and density functional theory. The results assigned square pyramid geometries for [VOL] and [ZrOL].2H2O chelates and an octahedral geometry for [ZnL(H2O)2].2H2O chelate. Powder XRD data showed that the complexes are monoclinic with polycrystalline nature. The results of CT-DNA interaction with the titled chelates showed that the binding between CT-DNA and the metal complexes occurs through intercalation mode. Their CT-DNA binding efficiency estimated in terms of their binding constants (Kb), which gave the order: VOL (6.9 × 105) > ZrOL (6.3 × 105) > ZnL(H2O)2 (5.5 × 105). The antimicrobial activities of the synthesized compounds were tested against selected fungal and bacterial strains using well diffusion technique. The obtained chelates showed higher antifungal and antibacterial activities than their corresponding ligand. Furthermore, the M-complexes showed higher potent cytotoxic effect toward HEK-293, human colorectal HepG-2, HCT-116 and MCF-7 adenocarcinoma cell lines compared to the free H2L ligand. Investigation of antioxidant property represented that all the prepared complexes have better radical scavenging potencies against DPPH radicals than the free H2L ligand. To study the molecular docking of proposed compounds versus Tyrosine kinases receptor (TKR), we used AutoDock1.5.6rc3® suite. The current compounds (H2L, VOL, ZrOL and ZnL(H2O)2) and STI were found to bind with C-kit of TKR with HBs at ILE789.A, ILE808.A, ASP810.A, GLU640.A and TYR846 amino acid residue and the binding energies were - 8.9, -8.93, -8.83, -1.48 and -10.39 kcal/mol respectively.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Quelantes/farmacología , ADN/química , Teoría Funcional de la Densidad , Simulación del Acoplamiento Molecular , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Bacterias/efectos de los fármacos , Sitios de Unión , Bovinos , Quelantes/síntesis química , Quelantes/química , Relación Dosis-Respuesta a Droga , Hongos/efectos de los fármacos , Humanos , Ligandos , Metales Pesados/química , Metales Pesados/farmacología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Relación Estructura-Actividad
5.
Molecules ; 26(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34443314

RESUMEN

Despite the common use of salens and hydroxyquinolines as therapeutic and bioactive agents, their metal complexes are still under development. Here, we report the synthesis of novel mixed-ligand metal complexes (MSQ) comprising salen (S), derived from (2,2'-{1,2-ethanediylbis[nitrilo(E) methylylidene]}diphenol, and 8-hydroxyquinoline (Q) with Co(II), Ni(II), Cd(II), Al(III), and La(III). The structures and properties of these MSQ metal complexes were investigated using molar conductivity, melting point, FTIR, 1H NMR, 13C NMR, UV-VIS, mass spectra, and thermal analysis. Quantum calculation, analytical, and experimental measurements seem to suggest the proposed structure of the compounds and its uncommon monobasic tridentate binding mode of salen via phenolic oxygen, azomethine group, and the NH group. The general molecular formula of MSQ metal complexes is [M(S)(Q)(H2O)] for M (II) = Co, Ni, and Cd or [M(S)(Q)(Cl)] and [M(S)(Q)(H2O)]Cl for M(III) = La and Al, respectively. Importantly, all prepared metal complexes were evaluated for their antimicrobial and anticancer activities. The metal complexes exhibited high cytotoxic potency against human breast cancer (MDA-MB231) and liver cancer (Hep-G2) cell lines. Among all MSQ metal complexes, CoSQ and LaSQ produced IC50 values (1.49 and 1.95 µM, respectively) that were comparable to that of cisplatin (1.55 µM) against Hep-G2 cells, whereas CdSQ and LaSQ had best potency against MDA-MB231 with IC50 values of 1.95 and 1.43 µM, respectively. Furthermore, the metal complexes exhibited significant antimicrobial activities against a wide spectrum of both Gram-positive and -negative bacterial and fungal strains. The antibacterial and antifungal efficacies for the MSQ metal complexes, the free S and Q ligands, and the standard drugs gentamycin and ketoconazole decreased in the order AlSQ > LaSQ > CdSQ > gentamycin > NiSQ > CoSQ > Q > S for antibacterial activity, and for antifungal activity followed the trend of LaSQ > AlSQ > CdSQ > ketoconazole > NiSQ > CoSQ > Q > S. Molecular docking studies were performed to investigate the binding of the synthesized compounds with breast cancer oxidoreductase (PDB ID: 3HB5). According to the data obtained, the most probable coordination geometry is octahedral for all the metal complexes. The molecular and electronic structures of the metal complexes were optimized theoretically, and their quantum chemical parameters were calculated. PXRD results for the Cd(II) and La(III) metal complexes indicated that they were crystalline in nature.


Asunto(s)
Antibacterianos/farmacología , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Teoría Funcional de la Densidad , Etilenodiaminas/síntesis química , Simulación del Acoplamiento Molecular , Oxiquinolina/síntesis química , Oxiquinolina/farmacología , Antibacterianos/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Complejos de Coordinación/química , Etilenodiaminas/química , Etilenodiaminas/farmacología , Humanos , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Ligandos , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Oxiquinolina/química , Difracción de Polvo , Espectroscopía de Protones por Resonancia Magnética , Espectrometría de Masa por Ionización de Electrospray , Espectroscopía Infrarroja por Transformada de Fourier , Termogravimetría
6.
ACS Omega ; 8(2): 2773-2779, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36687111

RESUMEN

Potentiometric and conductometric methods were successfully applied to elucidate the interaction of 10 ions, viz., Cr3+, Fe3+, La2+, Th4+, Co2+, Mn2+, Pd2+, Sr2+, Ti2+, and Zr2+, with the antihypertensive drug captopril (CAP) and its role to determine CAP in pure powder and tablet forms. The ionization constant of CAP and the generated complexes' stability constants (log K) were evaluated using potentiometric and conductometric methods at 25 ± 0.1 °C and 0.05 M ionic strength (I) of NaNO3 aqueous solution, and CAP was then determined in pure powder and tablet forms. Complexes having metal:ligand ratios of 1:1, 1:2, and/or 1:3 were produced, regardless of the type of the ligand or metal ions. Both the suggested potentiometric and conductometric procedures were utilized to confirm the stoichiometry of the M-CAP binary complexes formed. These two different techniques were utilized successfully to determine CAP in pure powder and tablet forms. Using the standard addition method (SAM) based on the Gran plot, CAP was satisfactorily determined throughout the concentration range of 0.83-13.04 mg/mL (SD = 0.20, R = 0.9986 (n = 5)), with a detection limit of 0.64 mg/mL (SD = 0.20, R = 0.9986 (n = 5)). In the presence of common tablet excipients, no interferences were observed. The percentage of CAP recovered from various dosage formulations (tablets) varied from 95.88 to 99.92%.

7.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-36015126

RESUMEN

Wound dressings created using nanotechnology are known as suitable substrates to speed up the healing of both acute and chronic wounds. Therapeutic substances can be delivered using these materials. In this study, a hydrogel loaded with Cu (II) Schiff base 8-hydroxy quinoline complex (CuSQ) solid lipid nanoparticles (SLN) was formulated to investigate its wound healing potential in an excision wound healing model in rats. The CuSQ SLN were spherical shaped with sizes ranging from 111 to 202 nm and a polydispersity index (PDI) ranging from 0.43 to 0.76, encapsulation efficiency (EE) % between 85 and 88, and zeta potential (ZP) of -11.8 to -40 mV. The formulated hydrogel showed good homogeneity, good stability, and a pH of 6.4 which indicates no skin irritation and had no cytotoxicity on the human skin fibroblast (HSF) cell line. In the in vivo study, animals were placed in five groups: control, standard, plain hydrogel, low dose, and high dose of CuSQ hydrogel. Both doses of CuSQ showed significantly faster healing rates compared to standard and control rats. In addition, the histopathology study showed more collagen, improved angiogenesis, and intact re-epithelization with less inflammation. A significant increase in transforming growth factor-beta1 (TGF-ß1) level and increased immune expression of vascular endothelial growth factor (VEGF) by CuSQ treatment validates its role in collagen synthesis, proliferation of fibroblasts and enhancement of angiogenesis. Matrix metalloproteinase-9 (MMP-9) was found to be significantly reduced after CuSQ treatment. Immunohistochemistry of tumor necrosis factor alpha (TNF-α) revealed a marked decrease in inflammation. Thus, we concluded that CuSQ would be a beneficial drug for cutaneous wound healing since it effectively accelerated wound healing through regulation of various cytokines and growth factors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA