Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(43): 19825-19831, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36256880

RESUMEN

Covalently patterned Janus-functionalized graphene featuring a spatially defined asymmetric bifacial addend binding motif remains a challenging synthetic target. Here, a facile and universal laser writing approach for a one-step covalent Janus patterning of graphene is reported, leading to the formation of up to now elusive graphene architectures, solely consisting of antaratopically functionalized superlattices. The structurally defined covalent functionalization procedure is based on laser-triggered concurrent photolysis of two different photosensitizers situated on both sides of the graphene plane, generating radicals and subsequent addend binding in the laser-irradiated areas only. Careful structure analysis was performed by Raman spectroscopy and Kelvin probe force microscopy. In terms of the advantages of our newly established concept, including a simple/easy-to-operate patterning procedure, arbitrary pattern availability, and a high degree of addend binding, an easy access to tailor-designed Janus-functionalized graphene devices with spatially resolved functional entities can be envisaged.

2.
Angew Chem Int Ed Engl ; 61(33): e202201169, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35647672

RESUMEN

The sequential vertical polyfunctionalization of 2D addend-patterned graphene is still elusive. Here, we report a practical realization of this goal via a "molecular building blocks" approach, which is based on a combination of a lithography-assisted reductive functionalization approach and a post-functionalization step to sequentially and controllably link the molecular building blocks ethylpyridine, cis-dichlorobis(2,2'-bipyridyl)ruthenium, and triphenylphosphine (4-methylbenzenethiol, respectively) on selected lattice regions of a graphene matrix. The assembled 2D hetero-architectures are unambiguously characterized by various spectroscopic and microscopic measurements, revealing the stepwise stacking of the molecular building blocks on the graphene surface. Our method overcomes the current limitation of a one-layer-only binding to the graphene surface and opens the door for a vertical growth in the z-direction.

3.
J Am Chem Soc ; 142(52): 21926-21931, 2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33337875

RESUMEN

Laser writing as a simple and straightforward method for covalent 2D patterning of graphene remains challenging. Here, we report a facile and efficient approach for a laser-induced 2D patterning of graphene utilizing silver trifluoroacetate, providing an unprecedented high degree of functionalization. The use of laser-triggered photolysis of silver trifluoroacetate to generate trifluoromethyl radicals, confined only to the laser-irradiated region, leads to the selective reaction of graphene, thereby completing direct laser writing on graphene toward a spatially resolved 2D-patterned architecture. This highly 2D-functionalized graphene is completely reversible. Furthermore, a more complex patterned graphene hybrid architecture was constructed, taking advantage of the simultaneously produced/patterned silver nanoparticles during the laser-writing process. Considering the simplicity of this approach and its ability to provide high degrees of functionalization, the prerequisite of 2D patterning of other 2D materials based on this method is provided.

4.
Angew Chem Int Ed Engl ; 59(51): 23329-23334, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-32808699

RESUMEN

We report a facile and efficient method for the covalent 2D-patterning of monolayer graphene via laser irradiation. We utilized the photo-cleavage of dibenzoylperoxide (DBPO) and optimized the subsequent radical additions to non-activated graphene up to that level where controlled covalent 2D-patterning of graphene initiated by spatially resolved laser writing is possible. The covalent 2D-functionalization of graphene, which is monitored by scanning Raman microscopy (SRM) is completely reversible. This new concept enables write/read/erase control over the covalent chemical information stored on the graphene surface.

5.
Chem Commun (Camb) ; 60(6): 734-737, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38115763

RESUMEN

Two classes of photoactive compounds containing fluoroalkyl- and alkyl silver carboxylates were utilized for graphene laser writing, affording a set of patterned graphene architectures bearing various functionalities. The laser patterning of graphene is accomplished by using laser-triggered decomposition of silver carboxylates to generate radicals confined to the irradiated area for the selective binding of graphene.

6.
Chem Commun (Camb) ; 57(38): 4654-4657, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33977981

RESUMEN

Three novel types of spatially resolved graphene architectures GA, GB, and GC respectively bearing CH3-, C6H5- and C3F7 groups are efficiently constructed by newly developed laser-writing concepts using silver carboxylates as corresponding photosensitizers. These 2D-structured samples are unequivocally characterized by Raman spectroscopy and SEM-EDS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA