Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mass Spectrom Rev ; 41(4): 529-567, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33993543

RESUMEN

Helium droplets represent a cold inert matrix, free of walls with outstanding properties to grow complexes and clusters at conditions that are perfect to simulate cold and dense regions of the interstellar medium. At sub-Kelvin temperatures, barrierless reactions triggered by radicals or ions have been observed and studied by optical spectroscopy and mass spectrometry. The present review summarizes developments of experimental techniques and methods and recent results they enabled.

2.
Phys Rev Lett ; 127(26): 263401, 2021 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35029473

RESUMEN

In the present work we observe that helium nanodroplets colliding with surfaces can exhibit splashing in a way that is analogous to classical liquids. We use transmission electron microscopy and mass spectrometry to demonstrate that neutral and ionic dopants embedded in the droplets are efficiently backscattered in such events. High abundances of weakly bound He-tagged ions of both polarities indicate a gentle extraction mechanism of these ions from the droplets upon collision with a solid surface. This backscattering process is observed for dopant particles with masses up to 400 kilodaltons, indicating an unexpected mechanism that effectively lowers deposition rates of nanoparticles formed in helium droplets.

3.
Phys Rev Lett ; 123(16): 165301, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31702350

RESUMEN

We report on the production and study of stable, highly charged droplets of superfluid helium. Using a novel experimental setup we produce neutral beams of liquid helium nanodroplets containing millions of atoms or more that can be ionized by electron impact, mass-per-charge selected, and ionized a second time before being analyzed. Droplets containing up to 55 net positive charges are identified and the appearance sizes of multiply charge droplets are determined as a function of the charge state. We show that the droplets are stable on the millisecond timescale of the experiment and decay through the loss of small charged clusters, not through symmetric Coulomb explosions.

4.
J Phys Chem Lett ; 12(17): 4112-4117, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33886323

RESUMEN

There are myriad ions that are deemed too short-lived to be experimentally accessible. One of them is SF6+. It has never been observed, although not for lack of trying. We demonstrate that long-lived SF6+ can be formed by doping charged helium nanodroplets (HNDs) with sulfur hexafluoride; excess helium is then gently stripped from the doped HNDs by collisions with helium gas. The ion is identified by high-resolution mass spectrometry (resolution m/Δm = 15000), the close agreement between the expected and observed yield of ions that contain minor sulfur isotopes, and collision-induced dissociation in which mass-selected HenSF6+ ions collide with helium gas. Under optimized conditions, the yield of SF6+ exceeds that of SF5+. The procedure is versatile and suitable for stabilizing many other transient molecular ions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA