Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 26(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34641387

RESUMEN

Natural products from plants contain many interesting biomolecules. Among them, quercetin (Q), gallic acid (GA), and rutin (R) all have well-reported antileishmanial activity; however, their exact mechanisms of action are still not known. The current study is a step forward towards unveil the possible modes of action of these compounds against Leishmania donovani (the causative agent of visceral leishmaniasis). The selected compounds were checked for their mechanisms of action against L. donovani using different biological assays including apoptosis and necrosis evaluation, effects on genetic material (DNA), quantitative testing of nitric oxide production, ultrastructural modification via transmission electron microscopy, and real-time PCR analysis. The results confirmed that these compounds are active against L. donovani, with IC50 values of 84.65 µg/mL, 86 µg/mL, and 98 µg/mL for Q, GA, and R, respectively. These compounds increased nitric oxide production and caused apoptosis and DNA damage, which led to changes in the treated cells' ultrastructural behavior and finally to the death of L. donovani. These compounds also suppressed essential enzymes like trypanothione reductase and trypanothione synthetase, which are critical for leishmanial survival. The selected compounds have high antileishmanial potentials, and thus in-vivo testing and further screening are highly recommended.


Asunto(s)
Antiprotozoarios/farmacología , Apoptosis , Daño del ADN , Flavonoides/farmacología , Leishmania donovani/crecimiento & desarrollo , Leishmaniasis Visceral/patología , Macrófagos/patología , Animales , Leishmania donovani/efectos de los fármacos , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/genética , Leishmaniasis Visceral/parasitología , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Ratones , Ratones Endogámicos BALB C , Necrosis
2.
3 Biotech ; 9(5): 192, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31065492

RESUMEN

Natural antimicrobial peptides have been shown as one of the important tools to combat certain pathogens and play important role as a part of innate immune system in plants and, also adaptive immunity in animals. Defensin is one of the antimicrobial peptides with a diverse nature of mechanism against different pathogens like viruses, bacteria and fungi. They have a broad function in humans, vertebrates, invertebrates, insects, and plants. Plant defensins primarily interact with membrane lipids for their biological activity. Several antimicrobial peptides (AMPs) have been overexpressed in plants for enhanced disease protection. The plants defensin peptides have been efficiently employed as an effective strategy for control of diseases in plants. They can be successfully integrated in plants genome along with some other peptide genes in order to produce transgenic crops for enhanced disease resistance. This review summarizes plant defensins, their expression in plants and enhanced disease resistance potential against phytopathogens.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA