Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Immunol ; 24(9): 1511-1526, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592015

RESUMEN

Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4+ and CD8+ T, circulating T follicular helper, T helper type 17, myeloid dendritic and CD16+ natural killer (NK) cell subsets. Conversely, increased susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ T cells and activated CD16- NK cells, as well as TNFα+ single-cytokine-producing CD8+ T cells. Multivariate and predictive modeling indicated that cellular subsets (1) work synergistically with humoral immunity to confer protection, (2) improve model performance over demographic and serologic factors alone and (3) comprise the most important predictive covariates. Together, these results demonstrate that preinfection peripheral cell composition improves the prediction of symptomatic influenza susceptibility over vaccination, demographics or serology alone.


Asunto(s)
Enfermedades Transmisibles , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Adulto , Humanos , Linfocitos T CD8-positivos
2.
Nat Immunol ; 23(5): 781-790, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383307

RESUMEN

Although mRNA vaccine efficacy against severe coronavirus disease 2019 remains high, variant emergence has prompted booster immunizations. However, the effects of repeated exposures to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens on memory T cells are poorly understood. Here, we utilize major histocompatibility complex multimers with single-cell RNA sequencing to profile SARS-CoV-2-responsive T cells ex vivo from humans with one, two or three antigen exposures, including vaccination, primary infection and breakthrough infection. Exposure order determined the distribution between spike-specific and non-spike-specific responses, with vaccination after infection leading to expansion of spike-specific T cells and differentiation to CCR7-CD45RA+ effectors. In contrast, individuals after breakthrough infection mount vigorous non-spike-specific responses. Analysis of over 4,000 epitope-specific T cell antigen receptor (TCR) sequences demonstrates that all exposures elicit diverse repertoires characterized by shared TCR motifs, confirmed by monoclonal TCR characterization, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and current vaccination protocols continue to expand and differentiate spike-specific memory.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD8-positivos , Humanos , Fenotipo , Receptores de Antígenos de Linfocitos T/genética , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas , Vacunas de ARNm
3.
Nat Immunol ; 20(5): 613-625, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30778243

RESUMEN

Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas/inmunología , Gammainfluenzavirus/inmunología , Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Gripe Humana/inmunología , Adolescente , Adulto , Anciano , Animales , Linfocitos T CD8-positivos/virología , Niño , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Gammainfluenzavirus/fisiología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
4.
Immunity ; 55(5): 749-780, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545027

RESUMEN

The lungs are constantly exposed to inhaled debris, allergens, pollutants, commensal or pathogenic microorganisms, and respiratory viruses. As a result, innate and adaptive immune responses in the respiratory tract are tightly regulated and are in continual flux between states of enhanced pathogen clearance, immune-modulation, and tissue repair. New single-cell-sequencing techniques are expanding our knowledge of airway cellular complexity and the nuanced connections between structural and immune cell compartments. Understanding these varied interactions is critical in treatment of human pulmonary disease and infections and in next-generation vaccine design. Here, we review the innate and adaptive immune responses in the lung and airways following infection and vaccination, with particular focus on influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The ongoing SARS-CoV-2 pandemic has put pulmonary research firmly into the global spotlight, challenging previously held notions of respiratory immunity and helping identify new populations at high risk for respiratory distress.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , Humanos , Inmunidad Innata , Inmunidad Mucosa , Pulmón , Vacunación
5.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35750048

RESUMEN

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Epítopos de Linfocito T , Humanos , Memoria Inmunológica , Receptores de Antígenos de Linfocitos T , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Glicoproteína de la Espiga del Coronavirus
6.
Immunity ; 49(3): 531-544.e6, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30170813

RESUMEN

Compared to adults, infants suffer higher rates of hospitalization, severe clinical complications, and mortality due to influenza infection. We found that γδ T cells protected neonatal mice against mortality during influenza infection. γδ T cell deficiency did not alter viral clearance or interferon-γ production. Instead, neonatal influenza infection induced the accumulation of interleukin-17A (IL-17A)-producing γδ T cells, which was associated with IL-33 production by lung epithelial cells. Neonates lacking IL-17A-expressing γδ T cells or Il33 had higher mortality upon influenza infection. γδ T cells and IL-33 promoted lung infiltration of group 2 innate lymphoid cells and regulatory T cells, resulting in increased amphiregulin secretion and tissue repair. In influenza-infected children, IL-17A, IL-33, and amphiregulin expression were correlated, and increased IL-17A levels in nasal aspirates were associated with better clinical outcomes. Our results indicate that γδ T cells are required in influenza-infected neonates to initiate protective immunity and mediate lung homeostasis.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Interleucina-17/metabolismo , Pulmón/inmunología , Infecciones por Orthomyxoviridae/inmunología , Linfocitos T/inmunología , Células Th2/inmunología , Adulto , Anfirregulina/metabolismo , Animales , Células Cultivadas , Niño , Humanos , Inmunidad , Recién Nacido , Interleucina-33/metabolismo , Ratones , Pronóstico , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo
8.
Nature ; 587(7834): 466-471, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116313

RESUMEN

Severe respiratory infections can result in acute respiratory distress syndrome (ARDS)1. There are no effective pharmacological therapies that have been shown to improve outcomes for patients with ARDS. Although the host inflammatory response limits spread of and eventually clears the pathogen, immunopathology is a major contributor to tissue damage and ARDS1,2. Here we demonstrate that respiratory viral infection induces distinct fibroblast activation states, which we term extracellular matrix (ECM)-synthesizing, damage-responsive and interferon-responsive states. We provide evidence that excess activity of damage-responsive lung fibroblasts drives lethal immunopathology during severe influenza virus infection. By producing ECM-remodelling enzymes-in particular the ECM protease ADAMTS4-and inflammatory cytokines, damage-responsive fibroblasts modify the lung microenvironment to promote robust immune cell infiltration at the expense of lung function. In three cohorts of human participants, the levels of ADAMTS4 in the lower respiratory tract were associated with the severity of infection with seasonal or avian influenza virus. A therapeutic agent that targets the ECM protease activity of damage-responsive lung fibroblasts could provide a promising approach to preserving lung function and improving clinical outcomes following severe respiratory infections.


Asunto(s)
Proteína ADAMTS4/metabolismo , Fibroblastos/enzimología , Fibroblastos/patología , Virus de la Influenza A/patogenicidad , Pulmón/patología , Pulmón/fisiopatología , Proteína ADAMTS4/antagonistas & inhibidores , Animales , Aves/virología , Matriz Extracelular/enzimología , Perfilación de la Expresión Génica , Humanos , Gripe Aviar/virología , Gripe Humana/patología , Gripe Humana/terapia , Gripe Humana/virología , Interferones/inmunología , Interferones/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Pulmón/enzimología , Pulmón/virología , Ratones , Síndrome de Dificultad Respiratoria/enzimología , Síndrome de Dificultad Respiratoria/fisiopatología , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/virología , Estaciones del Año , Análisis de la Célula Individual , Células del Estroma/metabolismo
9.
Clin Infect Dis ; 75(1): e705-e714, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34891165

RESUMEN

BACKGROUND: Following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination there is significant variability between individuals in protective antibody levels against SARS-CoV-2, and within individuals against different virus variants. However, host demographic or clinical characteristics that predict variability in cross-reactive antibody levels are not well-described. These data could inform clinicians, researchers, and policymakers on the populations most likely to require vaccine booster shots. METHODS: In an institutional review board-approved prospective observational cohort study of staff at St. Jude Children's Research Hospital, we identified participants with plasma samples collected after SARS-CoV-2 infection, after mRNA vaccination, and after vaccination following infection, and quantitated immunoglobulin G (IgG) levels by enzyme-linked immunosorbent assay to the spike receptor binding domain (RBD) from 5 important SARS-CoV-2 variants (Wuhan Hu-1, B.1.1.7, B.1.351, P.1, and B.1.617.2). We used regression models to identify factors that contributed to cross-reactive IgG against 1 or multiple viral variants. RESULTS: Following infection, a minority of the cohort generated cross-reactive antibodies, IgG antibodies that bound all tested variants. Those who did had increased disease severity, poor metabolic health, and were of a particular ancestry. Vaccination increased the levels of cross-reactive IgG levels in all populations, including immunocompromised, elderly, and persons with poor metabolic health. Younger people with a healthy weight mounted the highest responses. CONCLUSIONS: Our findings provide important new information on individual antibody responses to infection/vaccination that could inform clinicians on populations that may require follow-on immunization.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anciano , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Humanos , Inmunoglobulina G , Persona de Mediana Edad , Estudios Prospectivos , Glicoproteína de la Espiga del Coronavirus , Vacunación
10.
J Immunol ; 204(5): 1119-1133, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31988181

RESUMEN

Mucosal-associated invariant T (MAIT) cells are important for immune responses against microbial infections. Although known to undergo marked numerical changes with age in humans, our understanding of how MAIT cells are altered during different phases across the human life span is largely unknown. Although also abundant in the tissues, our study focuses on MAIT cell analyses in blood. Across the human life span, we show that naive-like MAIT cells in umbilical cord blood switch to a central/effector memory-like profile that is sustained into older age. Whereas low-grade levels of plasma cytokine/chemokine were apparent in older donors (>65 y old), surprisingly, they did not correlate with the ex vivo MAIT hyperinflammatory cytokine profile observed in older adults. Removal of MAIT cells from older individuals and an aged environment resulted in the reversal of the baseline effector molecule profile comparable with MAIT cells from younger adults. An upregulated basal inflammatory profile accounted for reduced Escherichia coli-specific responses in aged MAIT cells compared with their young adult counterparts when fold change in expression levels of GzmB, CD107a, IFN-γ, and TNF was examined. However, the magnitude of antimicrobial MR1-dependent activation remained as potent and polyfunctional as with younger adults. Paired TCRαß analyses of MAIT cells revealed large clonal expansions in older adults and tissues that rivalled, remarkably, the TCRαß repertoire diversity of virus-specific CD8+ T cells. These data suggest that MAIT cells in older individuals, although associated with large clonal TCRαß expansions and increased baseline inflammatory potential, demonstrate plasticity and provide potent antimicrobial immunity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Receptores de Antígenos de Linfocitos T alfa-beta/inmunología , Adulto , Anciano , Escherichia coli/inmunología , Femenino , Granzimas/inmunología , Humanos , Interferón gamma/inmunología , Proteína 1 de la Membrana Asociada a los Lisosomas/inmunología , Masculino , Persona de Mediana Edad , Factor de Necrosis Tumoral alfa/inmunología , Virus/inmunología
11.
Am J Respir Cell Mol Biol ; 63(3): 349-361, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32551899

RESUMEN

Allogeneic hematopoietic cell-transplant (alloHCT) recipients are at increased risk of complications from viral respiratory-tract infections (vRTIs). We measured cytokine concentrations in nasal washes (NWs) from pediatric alloHCT recipients to better understand their local response to vRTI. Forty-one immunologic analytes were measured in 70 NWs, collected during and after vRTI, from 15 alloHCT recipients (median age, 11 yr) with 19 episodes of vRTI. These were compared with NW cytokine concentrations from an independent group of otherwise healthy patients. AlloHCT recipients are able to produce a local response to vRTI and produce IFN-α2 and IL-12p40 in significant quantities above an uninfected baseline early in infection. Compared with otherwise healthy comparator-group patients, alloHCT recipients have higher NW concentrations of IL-4 when challenged with vRTI. Further study of these immunologic analytes as well as of type 1 versus type 2 balance in the respiratory mucosa in the context of vRTI during immune reconstitution may be of future research interest in this vulnerable patient population.


Asunto(s)
Citocinas/metabolismo , Trasplante de Células Madre Hematopoyéticas , Receptores de Trasplantes , Trasplante Homólogo , Adolescente , Niño , Preescolar , Femenino , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Lactante , Infecciones/etiología , Infecciones/metabolismo , Masculino , Líquido del Lavado Nasal/citología , Trasplante Homólogo/efectos adversos
12.
Curr Allergy Asthma Rep ; 14(2): 411, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24415464

RESUMEN

Otitis media (OM) is the most common disease in children in the United States, with about $5 billion spent each year in direct and indirect costs. OM is the number one reason for pediatric antibiotic usage and surgery, although treatment options are limited. Numerous studies have established the high heritability of OM and a genetic contribution to OM pathogenesis. Candidate gene studies have highlighted the roles of inflammation, mucin secretion, and pathogen recognition, but this approach is unable to identify novel pathways to target for treatment or screening purposes. Here, we review the current literature on agnostic approaches to discover novel genes and pathways involved in OM pathogenesis.


Asunto(s)
Otitis Media/genética , Animales , Antibacterianos/uso terapéutico , Femenino , Ligamiento Genético , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Otitis Media/complicaciones , Otitis Media/diagnóstico , Otitis Media/tratamiento farmacológico , Embarazo , Complicaciones del Embarazo/genética
13.
J Pediatric Infect Dis Soc ; 13(1): 91-99, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38016076

RESUMEN

BACKGROUND: Characterization of longitudinal SARS-CoV-2-specific antibody responses in children following infection and vaccination is needed to inform SARS-CoV-2 vaccine policy decisions for children, which may differ from adults. METHODS: We enrolled individuals at the time of SARS-CoV-2 infection or vaccination for longitudinal serological testing and compared SARS-CoV-2-spike-specific IgG and neutralization activity in children and adults stratified by infection and vaccination status using enzyme-linked immunosorbent and virus neutralization assays. RESULTS: Between June 2020 and December 2022, we collected sera from 669 participants aged 40 days to 55 years, including 330 unvaccinated individuals with laboratory-confirmed SARS-CoV-2 infection, 180 vaccinated SARS-CoV-2-naïve individuals, and 159 vaccinated previously infected individuals. Half (n = 330, 49.3%) were children. SARS-CoV-2-specific IgG and neutralization activity in children < 12 years old in response to infection persisted at higher levels than those of adults through at least 6 months (spike-specific IgG levels, 2.05 [95% CI: 1.4-3.1] times higher than adults; neutralizing activity, median 88.8 vs 75.2%, respectively, p = .04). In addition, all pediatric participants had significantly higher IgG levels compared with adults at 6 months following infection or vaccination, regardless of prior infection status. Vaccine-induced SARS-CoV-2-specific IgG responses in previously infected individuals persisted at higher levels than those from infection alone at 6 months (median AUC, children 5-11 years old, 9115 vs 368; adolescents 3613 vs 475; adults 1956 vs 263, all p < .001). CONCLUSIONS: These data demonstrate the robust and persistent immunologic response of SARS-CoV-2 vaccination in children and emphasize the benefit of vaccination after SARS-CoV-2 infection.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Adolescente , Adulto , Humanos , Niño , Preescolar , SARS-CoV-2 , COVID-19/prevención & control , Vacunación , Anticuerpos Antivirales , Inmunoglobulina G , Inmunidad Adaptativa
14.
Nat Commun ; 15(1): 2749, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553461

RESUMEN

Virus-specific T cells (VST) from partially-HLA matched donors have been effective for treatment of refractory viral infections in immunocompromised patients in prior studies with a good safety profile, but rare adverse events have been described. Here we describe a unique and severe adverse event of VST therapy in an infant with severe combined immunodeficiency, who receives, as part of a clinical trial (NCT03475212), third party VSTs for treating cytomegalovirus viremia following bone marrow transplantation. At one-month post-VST infusion, rejection of graft and reversal of chimerism is observed, as is an expansion of T cells exclusively from the VST donor. Single-cell gene expression and T cell receptor profiling demonstrate a narrow repertoire of predominantly activated CD4+ T cells in the recipient at the time of rejection, with the repertoire overlapping more with that of peripheral blood from VST donor than the infused VST product. This case thus demonstrates a rare but serious side effect of VST therapy.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Virosis , Lactante , Humanos , Trasplante de Médula Ósea/efectos adversos , Médula Ósea , Inmunoterapia Adoptiva , Linfocitos T/trasplante , Trasplante de Células Madre Hematopoyéticas/efectos adversos
15.
Cell Rep Med ; 5(3): 101469, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508137

RESUMEN

Fibrolamellar carcinoma (FLC) is a liver tumor with a high mortality burden and few treatment options. A promising therapeutic vulnerability in FLC is its driver mutation, a conserved DNAJB1-PRKACA gene fusion that could be an ideal target neoantigen for immunotherapy. In this study, we aim to define endogenous CD8 T cell responses to this fusion in FLC patients and evaluate fusion-specific T cell receptors (TCRs) for use in cellular immunotherapies. We observe that fusion-specific CD8 T cells are rare and that FLC patient TCR repertoires lack large clusters of related TCR sequences characteristic of potent antigen-specific responses, potentially explaining why endogenous immune responses are insufficient to clear FLC tumors. Nevertheless, we define two functional fusion-specific TCRs, one of which has strong anti-tumor activity in vivo. Together, our results provide insights into the fragmented nature of neoantigen-specific repertoires in humans and indicate routes for clinical development of successful immunotherapies for FLC.


Asunto(s)
Carcinoma Hepatocelular , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T/patología , Tratamiento Basado en Trasplante de Células y Tejidos , Proteínas del Choque Térmico HSP40/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética
16.
Nat Commun ; 14(1): 3870, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391405

RESUMEN

Acute respiratory distress syndrome (ARDS), termed pediatric ARDS (pARDS) in children, is a severe form of acute respiratory failure (ARF). Pathologic immune responses are implicated in pARDS pathogenesis. Here, we present a description of microbial sequencing and single cell gene expression in tracheal aspirates (TAs) obtained longitudinally from infants with ARF. We show reduced interferon stimulated gene (ISG) expression, altered mononuclear phagocyte (MNP) transcriptional programs, and progressive airway neutrophilia associated with unique transcriptional profiles in patients with moderate to severe pARDS compared to those with no or mild pARDS. We additionally show that an innate immune cell product, Folate Receptor 3 (FOLR3), is enriched in moderate or severe pARDS. Our findings demonstrate distinct inflammatory responses in pARDS that are dependent upon etiology and severity and specifically implicate reduced ISG expression, altered macrophage repair-associated transcriptional programs, and accumulation of aged neutrophils in the pathogenesis of moderate to severe pARDS caused by RSV.


Asunto(s)
Síndrome de Dificultad Respiratoria , Transcriptoma , Lactante , Humanos , Niño , Anciano , Transcriptoma/genética , Perfilación de la Expresión Génica , Síndrome de Dificultad Respiratoria/genética , Interferones , Leucocitosis
17.
bioRxiv ; 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-36993205

RESUMEN

Prior studies have identified genetic, infectious, and biological associations with immune competence and disease severity; however, there have been few integrative analyses of these factors and study populations are often limited in demographic diversity. Utilizing samples from 1,705 individuals in 5 countries, we examined putative determinants of immunity, including: single nucleotide polymorphisms, ancestry informative markers, herpesvirus status, age, and sex. In healthy subjects, we found significant differences in cytokine levels, leukocyte phenotypes, and gene expression. Transcriptional responses also varied by cohort, and the most significant determinant was ancestry. In influenza infected subjects, we found two disease severity immunophenotypes, largely driven by age. Additionally, cytokine regression models show each determinant differentially contributes to acute immune variation, with unique and interactive, location-specific herpesvirus effects. These results provide novel insight into the scope of immune heterogeneity across diverse populations, the integrative effects of factors which drive it, and the consequences for illness outcomes.

18.
JCI Insight ; 8(7)2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37036008

RESUMEN

Pregnancy poses a greater risk for severe COVID-19; however, underlying immunological changes associated with SARS-CoV-2 during pregnancy are poorly understood. We defined immune responses to SARS-CoV-2 in unvaccinated pregnant and nonpregnant women with acute and convalescent COVID-19, quantifying 217 immunological parameters. Humoral responses to SARS-CoV-2 were similar in pregnant and nonpregnant women, although our systems serology approach revealed distinct antibody and FcγR profiles between pregnant and nonpregnant women. Cellular analyses demonstrated marked differences in NK cell and unconventional T cell activation dynamics in pregnant women. Healthy pregnant women displayed preactivated NK cells and γδ T cells when compared with healthy nonpregnant women, which remained unchanged during acute and convalescent COVID-19. Conversely, nonpregnant women had prototypical activation of NK and γδ T cells. Activation of CD4+ and CD8+ T cells and T follicular helper cells was similar in SARS-CoV-2-infected pregnant and nonpregnant women, while antibody-secreting B cells were increased in pregnant women during acute COVID-19. Elevated levels of IL-8, IL-10, and IL-18 were found in pregnant women in their healthy state, and these cytokine levels remained elevated during acute and convalescent COVID-19. Collectively, we demonstrate perturbations in NK cell and γδ T cell activation in unvaccinated pregnant women with COVID-19, which may impact disease progression and severity during pregnancy.


Asunto(s)
COVID-19 , Embarazo , Femenino , Humanos , SARS-CoV-2 , Células Asesinas Naturales , Linfocitos T CD8-positivos , Anticuerpos
19.
Elife ; 112022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35315770

RESUMEN

Every T cell receptor (TCR) repertoire is shaped by a complex probabilistic tangle of genetically determined biases and immune exposures. T cells combine a random V(D)J recombination process with a selection process to generate highly diverse and functional TCRs. The extent to which an individual's genetic background is associated with their resulting TCR repertoire diversity has yet to be fully explored. Using a previously published repertoire sequencing dataset paired with high-resolution genome-wide genotyping from a large human cohort, we infer specific genetic loci associated with V(D)J recombination probabilities using genome-wide association inference. We show that V(D)J gene usage profiles are associated with variation in the TCRB locus and, specifically for the functional TCR repertoire, variation in the major histocompatibility complex locus. Further, we identify specific variations in the genes encoding the Artemis protein and the TdT protein to be associated with biasing junctional nucleotide deletion and N-insertion, respectively. These results refine our understanding of genetically-determined TCR repertoire biases by confirming and extending previous studies on the genetic determinants of V(D)J gene usage and providing the first examples of trans genetic variants which are associated with modifying junctional diversity. Together, these insights lay the groundwork for further explorations into how immune responses vary between individuals.


Asunto(s)
Estudio de Asociación del Genoma Completo , Recombinación V(D)J , Sitios Genéticos , Genotipo , Humanos , Probabilidad , Receptores de Antígenos de Linfocitos T/genética , Recombinación V(D)J/genética
20.
Open Forum Infect Dis ; 9(10): ofac490, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36221269

RESUMEN

Although numerous studies have evaluated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using cycle threshold (Ct) values as a surrogate of viral ribonucleic acid (RNA) load, few studies have used standardized, quantitative methods. We validated a quantitative SARS-CoV-2 digital polymerase chain reaction assay normalized to World Health Organization International Units and correlated viral RNA load with symptoms and disease severity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA