RESUMEN
Francisella tularensis can cause severe disease in humans via the respiratory or cutaneous routes and a case fatality ratio of up to 10 % is reported due to lack of proper antibiotic treatment, while F. novicida causes disease in severely immunocompromised individuals. Efforts are needed to develop effective vaccine candidates against Francisella species. Thus, in this study, a systematic computational work frame was used to deeply investigate the whole proteome of Francisella novicida containing 1728 proteins to develop vaccine against F. tularensis and related species. Whole-proteome analysis revealed that four proteins including (A0Q492) (A0Q7Y4), (A0Q4N4), and (A0Q5D9) are the suitable vaccine targets after the removal of homologous, paralogous and prediction of subcellular localization. These proteins were used to predict the T cell, B cell, and HTL epitopes which were joined together through suitable linkers to construct a multi-epitopes vaccine (MEVC). The MEVC was found to be highly immunogenic and non-allergenic while the physiochemical properties revealed the feasible expression and purification. Moreover, the molecular interaction of MEVC with TLR2, molecular simulation, and binding free energy analyses further validated the immune potential of the construct. According to Jcat analysis, the refined sequence demonstrates GC contents of 41.48 % and a CAI value of 1. The in-silico cloning and optimization process ensured compatibility with host codon usage, thereby facilitating efficient expression. Computational immune simulation studies underscored the capacity of MEVC to induce both primary and secondary immune responses. The conservation analysis further revealed that the selected epitopes exhibit 100 % conservation across different species and thus provides wider protection against Francisella.
Asunto(s)
Inmunidad Adaptativa , Vacunas Bacterianas , Francisella tularensis , Proteómica , Tularemia , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/genética , Francisella tularensis/inmunología , Francisella tularensis/genética , Tularemia/prevención & control , Tularemia/inmunología , Tularemia/microbiología , Humanos , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteoma , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/genética , Epítopos/inmunología , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/genética , Receptor Toll-Like 2/inmunología , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Desarrollo de Vacunas , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/genéticaRESUMEN
Thymus linearis from the Himalayan woodlands of Gilgit Baltistan, Pakistan, is a phytomedicine that has not been well-studied. Traditionally, it is recognized for its potential in treating conditions such as dermatitis, psoriasis, weight loss, and discomfort. The study investigates the wound-healing properties of methanolic extracts from the plant's stems, leaves, and roots. GC-MS disclosed cadaverine, dihydroxy-3,3-dimethyl-3-hydroxy-N-isopropylbutyramide, phthalic acid-di(2-propylpentyl)ester, and benzo[h]quinolone-2,4-dimethyl in stem along with betamethasone velerate, 17-pentatriacontene, 1,1-cyclobutanedicarboxmide, heptadecane-9-hexyl, cyclohexanol-2-methylene-3(1-methylethenyl) and pentacyclo[12.3.0.0(1,13).0(2,10).0(5,9)]hepatodecane-6-ol-15-one in leaf extracts and 2-myristynonyl pantetheine, 7,8-epoxylanostan-11-ol-3-acetoxy, heneicosane (1-(1-ethyl propyl)), 2-piperidinone-N-[4-bromobutyl] and 1-monolinoleoylglycerol trimethyl silyl ether in the root extract. The antioxidant activity was assessed using several assays including DPPH, bound iron %, ABTS, total flavonoid content, and total phenolic content. The methanolic stem extract (MSE) showed the highest antioxidant capacity compared to the leaf and root extracts. The stem extract demonstrated the highest wound-healing potential, followed by leaves and roots in albino mice. The findings were supported by computational analysis, which revealed that the binding interactions of phytochemicals from stem have more affinity than leaf and root with specific receptor sites. The in-silico analysis ascertains that dihydroxy-3,3-dimethyl-3-hydroxy-N-isopropylbutyramide from MSE is the most effective wound-healing agent. Moreover, ADME predictions demonstrated the drug-like properties of the hit compounds.
RESUMEN
IL-1ß mediates inflammation and regulates immune responses, cell proliferation, and differentiation. Dysregulation of IL-1ß is linked to inflammatory and autoimmune diseases. Elevated IL-1ß levels are found in patients with severe COVID-19, indicating its excessive production may worsen the disease. Also, dry eye disease patients show high IL-1ß levels in tears and conjunctival epithelium. Therefore, IL-1ß signaling is a potential therapeutic targeting for COVID-19 and aforementioned diseases. No small-molecule IL-1ß inhibitor is clinically approved despite efforts. Developing such inhibitors is highly desirable. Herein, a docking-based strategy was used to screen the TCM (Traditional Chinese Medicine) database to identify possible IL-1ß inhibitors with desirable pharmacological characteristics by targeting the IL-1ß/IL-1R interface. Primarily, the docking-based screening was performed by selecting the crucial residues of IL-1ß interface to retrieve the potential compounds. Afterwards, the compounds were shortlisted on the basis of binding scores and significant interactions with the crucial residues of IL-1ß. Further, to gain insights into the dynamic behavior of the protein-ligand interactions, MD simulations were performed. The analysis suggests that four selected compounds were stabilized in an IL-1ß pocket, possibly blocking the formation of an IL-1ß/IL-1R complex. This indicates their potential to interfere with the immune response, making them potential therapeutic agents to investigate further.
Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Productos Biológicos/farmacologíaRESUMEN
Overexpression of the thymidine phosphorylase (TP) enzyme induces angiogenesis, which eventually leads to metastasis and tumor growth. The crucial role of TP in cancer development makes it an important target for anticancer drug discovery. Currently, there is only one US-FDA-approved drug, i.e., Lonsurf, a combination of trifluridine and tipiracil, for the treatment of metastatic colorectal cancer. Unfortunately, numerous adverse effects are associated with its use, such as myelosuppression, anemia, and neutropenia. Since the last few decades, the discovery of new, safe, and effective TP inhibitory agents has been rigorously pursued. In the present study, we evaluated a series of previously synthesized dihydropyrimidone derivatives 1-40 for their TP inhibitory potential. Compounds 1, 12, and 33 showed a good activity with IC50 = 314.0 ± 0.90, 303.5 ± 0.40, and 322.6 ± 1.60 µM, respectively. The results of mechanistic studies revealed that compounds 1, 12, and 33 were the non-competitive inhibitors. These compounds were also evaluated for cytotoxicity against 3T3 (mouse fibroblast) cells and were found to be non-cytotoxic. Finally, the molecular docking suggested the plausible mechanism of non-competitive inhibition of TP. The current study thus identifies some dihydropyrimidone derivatives as potential inhibitors of TP, which can be further optimized as leads for cancer treatment.
Asunto(s)
Inhibidores Enzimáticos , Timidina Fosforilasa , Animales , Ratones , Simulación del Acoplamiento Molecular , Inhibidores Enzimáticos/farmacología , Descubrimiento de DrogasRESUMEN
Replication of Human Cytomegalovirus (HCMV) requires the presence of a metal-dependent endonuclease at the C-terminus of pUL89, in order to properly pack and cleave the viral genome. Therefore, pUL89 is an attractive target to design anti-CMV intervention. Herein, we used integrated structure-based and ligand-based virtual screening approaches in combination with MD simulation for the identification of potential metal binding small molecule antagonist of pUL89. In this regard, the essential chemical features needed for the inhibition of pUL89 endonuclease domain were defined and used as a 3D query to search chemical compounds from ZINC and ChEMBL database. Thereafter, the molecular docking and ligand-based shape screening were used to narrow down the compounds based on previously identified pUL89 antagonists. The selected virtual hits were further subjected to MD simulation to determine the intrinsic and ligand-induced flexibility of pUL89. The predicted binding modes showed that the compounds reside well in the binding site of endonuclease domain by chelating with the metal ions and crucial residues. Taken in concert, the in silico investigation led to the identification of potential pUL89 antagonists. This study provided promising starting point for further in vitro and in vivo studies.
Asunto(s)
Citomegalovirus , Endonucleasas , Humanos , Endonucleasas/metabolismo , Citomegalovirus/metabolismo , Proteínas Virales/metabolismo , Simulación del Acoplamiento Molecular , Ligandos , Endodesoxirribonucleasas/metabolismo , Simulación de Dinámica MolecularRESUMEN
The emergence of immune-evading variants of SARS-CoV-2 further aggravated the ongoing pandemic. Despite the deployments of various vaccines, the acquired mutations are capable of escaping both natural and vaccine-induced immune responses. Therefore, further investigation is needed to design a decisive pharmacological treatment that could efficiently block the entry of this virus into cells. Hence, the current study used structure-based methods to target the RBD of the recombinant variant (Deltacron) of SARS-CoV-2, which was used as a model variant. From the virtual drug screenings of various databases, a total of four hits were identified as potential lead molecules. Key residues were blocked by these molecules with favorable structural dynamic features. The binding free energies further validated the potentials of these molecules. The TBE for MNP was calculated to be -32.86 ± 0.10 kcal/mol, for SANC00222 the TBE was -23.41 ± 0.15 kcal/mol, for Liriodenine the TBE was -34.29 ± 0.07 kcal/mol, while for Carviolin the TBE was calculated to be -27.67 ± 0.12 kcal/mol. Moreover, each complex demonstrated distinct internal motion and a free energy profile, indicating a different strategy for the interaction with and inhibition of the RBD. In conclusion, the current study demands further in vivo and in vitro validation for the possible usage of these compounds as potential drugs against SARS-CoV-2 and its variants.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , Vacunas Virales , Humanos , SARS-CoV-2 , Pandemias , Unión Proteica , Simulación del Acoplamiento MolecularRESUMEN
The severe acute respiratory syndrome coronavirus 2, also known as SARS-CoV-2, is the causative agent of the COVID-19 global pandemic. SARS-CoV-2 has a highly conserved non-structural protein 12 (NSP-12) involved in RNA-dependent RNA polymerase (RdRp) activity. For the identification of potential inhibitors for NSP-12, computational approaches such as the identification of homologous proteins that have been previously targeted by FDA-approved antivirals can be employed. Herein, homologous proteins of NSP-12 were retrieved from Protein DataBank (PDB) and the evolutionary conserved sequence and structure similarity of the active site of the RdRp domain of NSP-12 was characterized. The identified homologous structures of NSP-12 belonged to four viral families: Coronaviridae, Flaviviridae, Picornaviridae, and Caliciviridae, and shared evolutionary conserved relationships. The multiple sequences and structural alignment of homologous structures showed highly conserved amino acid residues that were located at the active site of the RdRp domain of NSP-12. The conserved active site of the RdRp domain of NSP-12 was evaluated for binding affinity with the FDA-approved antivirals, i.e., Sofosbuvir and Dasabuvir in a molecular docking study. The molecular docking of Sofosbuvir and Dasabuvir with the active site that contains conserved motifs (motif A-G) of the RdRp domain of NSP-12 revealed significant binding affinity. Furthermore, MD simulation also inferred the potency of Sofosbuvir and Dasabuvir. In conclusion, targeting the active site of the RdRp domain of NSP-12 with Dasabuvir and Sofosbuvir might reduce viral replication and pathogenicity and could be further studied for the treatment of SARS-CoV-2.
Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Reposicionamiento de Medicamentos , Sofosbuvir , Simulación del Acoplamiento Molecular , ARN Polimerasa Dependiente del ARN/genética , Antivirales/farmacología , Antivirales/uso terapéuticoRESUMEN
In this study, a methodical workflow using subtractive proteomics, vaccine designing, molecular simulation, and agent-based modeling approaches were used to annotate the whole proteome of Burkholderia pseudomallei (strain K96243) for vaccine designing. Among the total 5717 proteins in the whole proteome, 505 were observed to be essential for the pathogen's survival and pathogenesis predicted by the Database of Essential Genes. Among these, 23 vaccine targets were identified, of which fimbrial assembly chaperone (Q63UH5), Outer membrane protein (Q63UH1), and Hemolysin-like protein (Q63UE4) were selected for the subsequent analysis based on the systematic approaches. Using immunoinformatic approaches CTL (cytotoxic T lymphocytes), HTL (helper T lymphocytes), IFN-positive, and B cell epitopes were predicted for these targets. A total of 9 CTL epitopes were added using the GSS linker, 6 HTL epitopes using the GPGPG linker, and 6 B cell epitopes using the KK linker. An adjuvant was added for enhanced antigenicity, an HIV-TAT peptide for improved delivery, and a PADRE sequence was added to form a 466 amino acids long vaccine construct. The construct was classified as non-allergenic, highly antigenic, and experimentally feasible. Molecular docking results validated the robust interaction of MEVC with immune receptors such as TLR2/4. Furthermore, molecular simulation revealed stable dynamics and compact nature of the complexes. The binding free energy results further validated the robust binding. In silico cloning, results revealed GC contents of 50.73 % and a CIA value of 0.978 which shows proper downstream processing. Immune simulation results reported that after the three injections of the vaccine a robust secondary immune response, improved antigen clearance, and effective immune memory generation were observed highlighting its potential for effective and sustained immunity. Future directions should encompass experimental validations, animal model studies, and clinical trials to substantiate the vaccine's efficacy, safety, and immunogenicity.
Asunto(s)
Vacunas Bacterianas , Burkholderia pseudomallei , Epítopos de Linfocito B , Epítopos de Linfocito T , Proteómica , Vacunas Bacterianas/inmunología , Burkholderia pseudomallei/inmunología , Proteómica/métodos , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito B/química , Epítopos de Linfocito T/inmunología , Epítopos de Linfocito T/química , Simulación del Acoplamiento Molecular , Humanos , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Melioidosis/prevención & control , Melioidosis/inmunología , Proteoma , Simulación de Dinámica MolecularRESUMEN
Alzheimer's disease (AD), marked by tau tangles and amyloid-beta plaques, leads to cognitive decline. Despite extensive research, its complex etiology remains elusive, necessitating new treatments. This study utilized machine learning (ML) to analyze compounds with neuroprotective potential. This approach exposed the disease's complexity and identified important proteins, namely MTOR and BCL2, as central to the pathogenic network of AD. MTOR regulates neuronal autophagy and survival, whereas BCL2 regulates apoptosis, both of which are disrupted in AD. The identified compounds, including Armepavine, Oprea1_264702,1-cyclopropyl-7-fluoro-8-methoxy-4-oxoquinoline-3-carboxylic acid,(2S)-4'-Hydroxy-5,7,3'-trimethoxyflavan,Oprea1_130514,Sativanone,5-hydroxy-7,8-dimethoxyflavanone,7,4'-Dihydroxy-8,3'-dimethoxyflavanone,N,1-dicyclopropyl-6,Difluoro-Methoxy-Gatifloxacin,6,8-difluoro-1-(2-fluoroethyl),1-ethyl-6-fluoro-7-(4-methylpiperidin-1-yl),Avicenol C, demonstrated potential modulatory effects on these proteins. The potential for synergistic effects of these drugs in treating AD has been revealed via network pharmacology. By targeting numerous proteins at once, these chemicals may provide a more comprehensive therapeutic approach, addressing many aspects of AD's complex pathophysiology. A Molecular docking, dynamic simulation, and Principle Component Analysis have confirmed these drugs' efficacy by establishing substantial binding affinities and interactions with important proteins such as MTOR and BCL2. This evidence implies that various compounds may interact within the AD pathological framework, providing a sophisticated and multifaceted therapy strategy. In conclusion, our study establishes a solid foundation for the use of these drugs in AD therapy. Thus current study highlights the possibility of multi-targeted, synergistic therapeutic approaches in addressing the complex pathophysiology of AD by integrating machine learning, network pharmacology, and molecular docking simulations. This holistic technique not only advances drug development but also opens up new avenues for developing more effective treatments for this difficult and widespread disease.
Asunto(s)
Enfermedad de Alzheimer , Descubrimiento de Drogas , Aprendizaje Automático , Simulación del Acoplamiento Molecular , Farmacología en Red , Serina-Treonina Quinasas TOR , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Descubrimiento de Drogas/métodos , Serina-Treonina Quinasas TOR/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/química , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidoresRESUMEN
This experimental study was conducted to synthesize magnesium oxide (MgO) nanoparticles and investigate their efficiency in removing arsenic, brilliant cresyl blue, and neutral red from aqueous solutions. The MgO nanoparticles were characterized using X-ray diffraction (XRD), energy dispersive X-ray (EDS), Fourier-transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FESEM) analyses. The results revealed that the synthesized MgO nanoparticles had a spherical structure with an estimated average size of approximately 30 nm. The influence of solution pH, concentration, adsorbent amount, type of eluent, and interference of interfering ions was examined and optimized for removing arsenic, brilliant cresyl blue, and neutral red. The optimal conditions for the removal process were determined as pH of 7, MgO amount of 0.037 g, ultrasonication time of 16 min, and concentration of 25 mg L-1. The experimental removal efficiencies of arsenic, brilliant cresyl blue, and neutral red in aqueous samples ranged from 88.49% to 96.03%. The results of eluent selection showed that ethanol had the highest removal efficiency of analytes from the absorbent surface. The reusability of the MgO adsorbent demonstrated its effective use for the continuous removal of arsenic, brilliant cresyl blue, and neutral red for at least four consecutive cycles. Overall, the results suggest that MgO nanoparticles could be an effective and cost-efficient adsorbent for removing arsenic, brilliant cresyl blue, and neutral red from real samples.
Asunto(s)
Óxido de Magnesio , Contaminantes Químicos del Agua , Purificación del Agua , Óxido de Magnesio/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , Purificación del Agua/métodos , Arsénico/química , Arsénico/análisis , Nanopartículas/química , Concentración de Iones de Hidrógeno , Difracción de Rayos X , Nanopartículas del Metal/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
The rise of microbial resistance and emerging infections pose significant health threats. Natural products from endophytic fungi offer a promising source of novel compounds with the potential as major drug leads. This research aims to screen Myrtus communis and Moringa oleifera for endophytic fungi and screen their metabolites for antibacterial and antifungal potential. Six endophytic fungal strains were isolated using a potato dextrose agar (PDA) medium. The M. communis isolates were designated MC1, MC2, and MC3, and the M. oleifera isolates were named MO1, MO2, and MO3. Preliminary bioactivity testing revealed that the MC3 isolate exhibited significant growth inhibition against multidrug-resistant bacterial and fungal pathogens, including Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, and Candida glabrata. The MC3 isolate was identified as Fusarium oxysporum through morphological and microscopic methods. For metabolite production, the fungal strain was cultured in potato dextrose broth (PDB) medium at 28 °C for 14 days in a shaking incubator. The metabolites were purified using various chromatographic techniques, HPLC and GC-MS. The GC-MS analysis of the bioactive compound containing fungal strain (F. oxysporum) revealed multiple compounds at different retention times using the NIST-20 Library. Based on RSI values and probability indices, two compounds were targeted for further purification. Structure elucidation was performed using 1D and 2D nuclear magnetic resonance (NMR) experiments on a Varian 500 NMR machine. The compounds identified were ethyl iso-allocholate (C26H44O5, exact mass 436.32) and 1-monolinoleoyl glycerol trimethylsilyl ether (C27H56O4Si2, exact mass 500.37). The MS (NIST-20) library facilitated the investigation of the in silico antimicrobial activity of these compounds against the elastase virulence protein of P. aeruginosa and protease Sapp1p from C. parapsilosis. Both the compounds were docked with druggable proteins using the Glide induced fit docking (IFD) algorithm. The ethyl iso-allocholate and 1-monolinoleoyl glycerol trimethylsilyl ether compounds showed binding scores - 10.07 kcal mol-1 and - 7.47 kcal mol-1 against elastase, and - 8.16 kcal mol-1 and - 6.89 kcal mol-1 against aspartic protease, respectively. In vitro studies confirmed the inhibitory activity of these compounds against multidrug-resistant P. aeruginosa and E. faecalis. Ethyl iso-allocholate exhibited higher bioactivity against P. aeruginosa with inhibition rates of 41%, 27%, and 35% at concentrations of 1000, 500, and 250 µg mL-1, respectively. These results suggest that bioactive compounds from F. oxysporum have the potential as antimicrobial agents, warranting further research.
RESUMEN
With the use of specific genetic factors and recent developments in cellular reprogramming, it is now possible to generate lineage-committed cells or induced pluripotent stem cells (iPSCs) from readily available and common somatic cell types. However, there are still significant doubts regarding the safety and effectiveness of the current genetic methods for reprogramming cells, as well as the conventional culture methods for maintaining stem cells. Small molecules that target specific epigenetic processes, signaling pathways, and other cellular processes can be used as a complementary approach to manipulate cell fate to achieve a desired objective. It has been discovered that a growing number of small molecules can support lineage differentiation, maintain stem cell self-renewal potential, and facilitate reprogramming by either increasing the efficiency of reprogramming or acting as a genetic reprogramming factor substitute. However, ongoing challenges include improving reprogramming efficiency, ensuring the safety of small molecules, and addressing issues with incomplete epigenetic resetting. Small molecule iPSCs have significant clinical applications in regenerative medicine and personalized therapies. This review emphasizes the versatility and potential safety benefits of small molecules in overcoming challenges associated with the iPSCs reprogramming process.
Asunto(s)
Reprogramación Celular , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Reprogramación Celular/efectos de los fármacos , Animales , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Epigénesis Genética , Diferenciación Celular/efectos de los fármacosRESUMEN
The Nipah virus (NPV) is a highly lethal virus, known for its significant fatality rate. The virus initially originated in Malaysia in 1998 and later led to outbreaks in nearby countries such as Bangladesh, Singapore, and India. Currently, there are no specific vaccines available for this virus. The current work employed the reverse vaccinology method to conduct a comprehensive analysis of the entire proteome of the NPV virus. The aim was to identify and choose the most promising antigenic proteins that could serve as potential candidates for vaccine development. We have also designed B and T cell epitopes-based vaccine candidate using immunoinformatics approach. We have identified a total of 5 novel Cytotoxic T Lymphocytes (CTL), 5 Helper T Lymphocytes (HTL), and 6 linear B-cell potential antigenic epitopes which are novel and can be used for further vaccine development against Nipah virus. Then we performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidate against NPV. Further, Computational analysis indicated that these epitopes possessed highly antigenic properties and were capable of interacting with immune receptors. The designed vaccine were then docked with the human immune receptors, namely TLR-2 and TLR-4 showed robust interaction with the immune receptor. Molecular dynamics simulations demonstrated robust binding and good dynamics. After numerous dosages at varied intervals, computational immune response modeling showed that the immunogenic construct might elicit a significant immune response. In conclusion, the immunogenic construct shows promise in providing protection against NPV, However, further experimental validation is required before moving to clinical trials.
Asunto(s)
Virus Nipah , Humanos , Inmunoinformática , Vacunas de Subunidad/química , Epítopos de Linfocito B/química , Simulación de Dinámica Molecular , Desarrollo de Vacunas , Biología Computacional/métodos , Simulación del Acoplamiento MolecularRESUMEN
Hantaviruses are single-stranded RNA viruses belonging to the family Bunyaviridae that causes hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) worldwide. Currently, there is no effective vaccination or therapy available for the treatment of hantavirus, hence there is a dire need for research to formulate therapeutics for the disease. Computational vaccine designing is currently a highly accurate, time and cost-effective approach for designing effective vaccines against different diseases. In the current study, we shortlisted highly antigenic proteins i.e., envelope, and nucleoprotein from the proteome of hantavirus and subjected to the selection of highly antigenic epitopes to design of next-generation multi-epitope vaccine constructs. A highly antigenic and stable adjuvant was attached to the immune epitopes (T-cell, B-cell, and HTL) to design Env-Vac, NP-Vac, and Com-Vac constructs, which exhibit stronger antigenic, non-allergenic, and favorable physiochemical properties. Moreover, the 3D structures were predicted and docking analysis revealed robust interactions with the human Toll-like receptor 3 (TLR3) to initiate the immune cascade. The total free energy calculated for Env-Vac, NP-Vac, and Com-Vac was -50.02 kcal/mol, -24.13 kcal/mol, and -62.30 kcal/mol, respectively. In silico cloning, results demonstrated a CAI value for the Env-Vac, NP-Vac, and Com-Vac of 0.957, 0.954, and 0.956, respectively, while their corresponding GC contents were 65.1%, 64.0%, and 63.6%. In addition, the immune simulation results from three doses of shots released significant levels of IgG, IgM, interleukins, and cytokines, as well as antigen clearance over time, after receiving the vaccine and two booster doses. Our vaccines against Hantavirus were found to be highly immunogenic, inducing a robust immune response that demands experimental validation for clinical usage.
Asunto(s)
Orthohantavirus , Vacunas Virales , Orthohantavirus/inmunología , Vacunas Virales/inmunología , Humanos , Vacunología/métodos , Simulación del Acoplamiento Molecular , Simulación por Computador , Epítopos/inmunología , Epítopos/química , Modelos Moleculares , Infecciones por Hantavirus/prevención & control , Infecciones por Hantavirus/inmunologíaRESUMEN
Valley surface water is considered a focal public health concern owing to the presence of multi-drug-resistant bacteria. The distribution of antimicrobial resistance (AMR) bacteria in the surface water is affected by the presence of multiple factors, including antibiotics coming from wastewater discharge or other contaminant sources such as pharmaceuticals, biocides, and heavy metals. Furthermore, there is evidence suggesting that high levels of antibiotic resistance genes (ARGs) can be transferred within bacterial communities under the influence of heavy metal stress. Hence, the primary aim of this study is to investigate the presence of heavy metals and bacterial ARGs in upstream as well as downstream locations of Wadi Hanifah Valley in Riyadh, Saudi Arabia. Sample collection was conducted at eighteen surface water sites within the valley in total. The selection of ARGs was associated with the most common antibiotics, including ß-lactam, tetracycline, erythromycin, gentamicin, sulphonamide, chloramphenicol, vancomycin, trimethoprim, and colistin antibiotics, which were detected qualitatively using polymerase chain reaction (PCR) technology. The tested antibiotic resistance genes (ARGs) included (blaNDM-1 (for the antibiotic class Beta-lactamases), mecA (methicillin-resistant Staphylococcus aureus), tet(M) and tet(B) (for the antibiotic class Tetracycline), ampC (for the antibiotic class Beta-lactamases), vanA (for the antibiotic class vancomycin), mcr-1 (for the antibiotic class colistin), erm(B) (for the antibiotic class erythromycin), aac6'-Ie-aph2-Ia (for the antibiotic class Gentamicin), sulII (for the antibiotic class sulphonamide), catII (for the antibiotic class Chlorophincol), and dfrA1 (for the antibiotic class trimethoprim). Moreover, an assessment of the levels of heavy metals such as lithium (Li), beryllium (Be), chromium (Cr), cobalt (Co), arsenic (As), cadmium (Cd), tin (Sn), mercury (Hg), and lead (Pb) was conducted by using inductively coupled plasma mass spectrometry (ICPMS). According to our findings, the concentrations of sulphonamide, erythromycin, and chloramphenicol ARGs (erm(B), sulII, and catII) were observed to be the most elevated. Conversely, two ARGs, namely mecA and mcr-1, were not detected in the samples. Moreover, our data illustrated a significant rise in ARGs in the bacteria of water samples from the upstream sites as compared with the water samples from the downstream sites of Wadi Hanifah Valley. The mean concentration of Li, Be, Cr, Co, As, Cd, Sn, Hg, and Pb in the water samples was estimated to be 37.25 µg/L, 0.02 µg/L, 0.56 µg/L,0.32 µg/L, 0.93 µg/L, 0.01 µg/L, 200.4 µg/L, 0.027 µg/L, and 0.26 µg/L, respectively, for the selected 18 sites. Furthermore, it was revealed that the concentrations of the screened heavy metals in the water samples collected from various sites did not surpass the maximum limits set by the World Health Organization (WHO). In conclusion, this study offers a concise overview of the presence of heavy metals and ARGs in water samples obtained from the Wadi Hanifah Valley in Riyadh, KSA. Such findings will contribute to the ongoing monitoring and future risk assessment of ARGs spread in surface water.
RESUMEN
A serine protease called prolyl endopeptidase (PEP) hydrolyses the peptide bonds on the carboxy side of the proline ring. The excessive PEP expression in brain results in neurodegenerative illnesses like dementia, Alzheimer's disease, and Parkinson's disease. Results of the prior studies on antioxidant activity, and the non-cytotoxic effect of bi-carbazole-linked triazoles, encouraged us to extend our studies towards its anti-diabetic potential. Hence, for this purpose all compounds 1-9 were evaluated to reveal their anti-prolyl endo peptidase activity. Fortunately, seven compounds resulted into significant inhibitory capability ranging from 26 to 63 µM. Among them six compounds 4-9 exhibited more potent inhibitory activity with IC50 values 46.10 ± 1.16, 42.30 ± 1.18, 37.14 ± 1.21, 26.29 ± 0.76, 28.31 ± 0.64 and 31.11 ± 0.84 µM respectively, while compound 3 was the least active compound in the series with IC50 value 63.10 ± 1.58 µM comparing with standard PEP inhibitor bacitracin (IC50 = 125 ± 1.50 µM). Moreover, mechanistic study was performed for the most active compounds 7 and 8 with Ki values 24.10 ± 0.0076 and 23.67 ± 0.0084 µM respectively. Further, the in silico studies suggested that the compounds exhibited potential interactions and significant molecular conformations, thereby elucidating the structural basis for their inhibitory effects.
Asunto(s)
Péptido Hidrolasas , Triazoles , Triazoles/farmacología , Triazoles/química , Prolil Oligopeptidasas , Serina Endopeptidasas , Carbazoles , Relación Estructura-Actividad , Simulación del Acoplamiento MolecularRESUMEN
Understanding the pathogenesis mechanism of the Monkeypox virus (MPXV) is essential to guide therapeutic development against the Monkeypox virus. In the current study, we investigated the impact of the only two reported substitutions, S30L, D88N, and S30L-D88N on the G9R of the replication complex in 2022 with E4R using structural modeling, simulation, and free energy calculation methods. From the molecular docking and dissociation constant (KD) results, it was observed that the binding affinity did not increase in the mutants, but the interaction paradigm was altered by these substitutions. Molecular simulation data revealed that these mutations are responsible for destabilization, changes in protein packing, and internal residue fluctuations, which can cause functional variance. Additionally, hydrogen bonding analysis revealed that the estimated number of hydrogen bonds are almost equal among the wild-type G9R and each mutant. The total binding free energy for the wild-type G9R with E4R was -85.00 kcal/mol while for the mutants the TBE was -42.75 kcal/mol, -43.68 kcal/mol, and -48.65 kcal/mol respectively. This shows that there is no direct impact of these two reported mutations on the binding with E4R, or it may affect the whole replication complex or any other mechanism involved in pathogenesis. To explore these variations further, we conducted PCA and FEL analyses. Based on our findings, we speculate that within the context of interaction with E4R, the mutations in the G9R protein might be benign, potentially leading to functional diversity associated with other proteins.Communicated by Ramaswamy H. Sarma.
RESUMEN
Vegetables are an essential component of a balanced diet. The consumption of ready-to-eat foods may lead to the risk of infections and illnesses due to microbial contamination. To mitigate the potential of microbial contamination risks, it is critical to promote safe handling practices among consumers. In this study, our research evaluated the efficacy of different vegetable washing methods, specifically with lettuce, tomato, and cucumber, to establish optimal practices for reducing microbial contamination. This study consisted of two phases. Initially, a survey was distributed to 150 volunteers using snowball sampling to assess everyday vegetable handling and washing methods. The survey's results identified four predominant methods: washing with a 5% vinegar solution for 3 min followed by tap water rinse (37.3% of participants), rinsing with tap water for 1 min (29.3%), washing with a 5% salt solution (vegetable soap) for 3 min followed by a tap water rinse (16.6%), and a 3 min tap water rinse (14%). A minor segment (3.33%) reported not washing their vegetables at all. The survey's findings guided the second phase, which tested the aforementioned washing protocols' effectiveness in reducing Escherichia coli (E. coli) levels on spiked contaminated salad vegetables. The tested vegetables were sterilized using UV light, inoculated with 0.5 McFarland E. coli, and then washed using the four identified methods. After that, E. coli enumeration after washing was performed using 3M™ Petrifilm and the comparison was analyzed via one-way ANOVA. During this study, it was revealed that the cucumbers had the highest E. coli contamination levels in comparison to the lettuce and tomato after washing. Interestingly, by comparing the three washing methods, it was found that washing the vegetables with vinegar proved to be the most effective solution for reducing microbial presence on both lettuce and cucumbers. Notably, the natural smoothness of tomato skin led to no significant differences in contamination levels across washing methods. In summary, vinegar washing effectively reduces microbial contamination from salad vegetables, highlighting the need for informed consumer practices to prevent foodborne outbreaks. This study emphasizes the importance of monitoring contamination sources and using safe washing techniques.
RESUMEN
Medicinal plants are used widely in the treatment of various infectious diseases. One of these medical plants is Moroccan plants such as Anacyclus pyrethrum. In this study, the essential oil isolated from the leaves of Anacyclus pyrethrum (APEO) by the hydrodistillation method was analyzed using (GC/MS) analysis. A total of forty-four compounds were identified form the oil and the oxygenated monoterpenes were the most abundant class of compounds. The major identified compound is santolina alcohol (40.7 %), followed by germacrene-D (8.9 %). The in-vitro assessment of the antimicrobial efficacy of APEO encompassed an investigation involving six microbial strains, including two Gram-positive bacteria, four Gram-negative bacteria, and three fungal strains. The findings revealed noteworthy antibacterial and antifungal properties against all examined microorganisms, with inhibitory zone diameters ranging from 25.67 ± 0.06 mm to 25.19 ± 0.03 mm for Gram-positive bacteria and from 22.34 ± 0.01 mm to 14.43 ± 0.02 mm for Gram-negative bacteria, as determined through the disc-diffusion assay. In the case of antifungal activity, inhibitory zones ranged from 24.57 ± 0.04 mm to 18.37 ± 0.06 mm. Further evaluation revealed that the MIC values of Gram-positive bacteria were at the concentration 0.25 % v/v, while MBC values ranged from 0.25 % to 1.0 % v/v. The Gram-negative bacteria exhibited MIC values spanning from 0.5 % to 2.0 % v/v, with MBC values in the range of 0.5 %-2.0 % v/v. For the fungal strains, MIC values ranged from 0.5 % to 1.0 % v/v, while the MFC consistently remained at 1.0 % for all tested fungal strains. The assessment of the MBC/MIC and MFC/MIC ratios collectively indicates that A. pyrethrum EO possesses bactericidal and fungicidal attributes. The in silico study of bioavailability predictions for compounds in APEO based on six physicochemical properties show optimal physiochemical properties including size, lipophilicity, solubility, flexibility, and saturation. α-Pinene, limonene, germacrene D, and (E)-ß-farnesene are non-polar due to their lack of polar groups, and the ADME profile indicates desirable properties for considering these compounds in drug development. Molecular docking investigation indicates that all the compounds of APEO reside well into the binding site of the DNA gyrase B enzyme of Staphylococcus aureus by mediating a number of significant interactions with the binding site residues. The ADME analysis suggested that the major compounds APEO possess desirable properties for further consideration in drug development. In light of these findings, APEO could serve as a natural source for the elaboration of new and active antimicrobial drugs.
RESUMEN
Citrobacter koseri is a gram-negative rod that has been linked to infections in people with significant comorbidities and immunocompromised immune systems. It is most commonly known to cause urinary tract infections. Thus, the development of an efficacious C. koseri vaccine is imperative, as the pathogen has acquired resistance to current antibiotics. Subtractive proteomics was employed during this research to identify potential antigenic proteins to design an effective vaccine against C. koseri. The pipeline identified two antigenic proteins as potential vaccine targets: DP-3-O-acyl-N-acetylglucosamine deacetylase and Arabinose 5-phosphate isomerase. B and T cell epitopes from the specific proteins were forecasted employing several immunoinformatic and bioinformatics resources. A vaccine was created using a combination of seven cytotoxic T cell lymphocytes (CTL), five helper T cell lymphocyte (HTL), and seven linear B cell lymphocyte (LBL) epitopes. An adjuvant (ß-defensin) was added to the vaccine to enhance immunological responses. The created vaccine was stable for use in humans, highly antigenic, and non-allergenic. The vaccine's molecular and interactions binding affinity with the human immunological receptor TLR3 were studied using MMGBSA, molecular dynamics (MD) simulations, and molecular docking analyses. E. coli (strain-K12) plasmid vector pET-28a (+) was used to examine the ability of the vaccine to be expressed. The vaccine shows great promise in terms of developing protective immunity against diseases, based on the results of these computer experiments. However, in vitro and animal research are required to validate our findings.Communicated by Ramaswamy H. Sarma.