Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 610(7931): 381-388, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198800

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and caused the devastating global pandemic of coronavirus disease 2019 (COVID-19), in part because of its ability to effectively suppress host cell responses1-3. In rare cases, viral proteins dampen antiviral responses by mimicking critical regions of human histone proteins4-8, particularly those containing post-translational modifications required for transcriptional regulation9-11. Recent work has demonstrated that SARS-CoV-2 markedly disrupts host cell epigenetic regulation12-14. However, how SARS-CoV-2 controls the host cell epigenome and whether it uses histone mimicry to do so remain unclear. Here we show that the SARS-CoV-2 protein encoded by ORF8 (ORF8) functions as a histone mimic of the ARKS motifs in histone H3 to disrupt host cell epigenetic regulation. ORF8 is associated with chromatin, disrupts regulation of critical histone post-translational modifications and promotes chromatin compaction. Deletion of either the ORF8 gene or the histone mimic site attenuates the ability of SARS-CoV-2 to disrupt host cell chromatin, affects the transcriptional response to infection and attenuates viral genome copy number. These findings demonstrate a new function of ORF8 and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Further, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.


Asunto(s)
COVID-19 , Epigénesis Genética , Histonas , Interacciones Microbiota-Huesped , Imitación Molecular , SARS-CoV-2 , Proteínas Virales , COVID-19/genética , COVID-19/metabolismo , COVID-19/virología , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Epigenoma/genética , Histonas/química , Histonas/metabolismo , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
2.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33259812

RESUMEN

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Antivirales , COVID-19/genética , COVID-19/patología , Chlorocebus aethiops , Efecto Citopatogénico Viral , Citoesqueleto , Evaluación Preclínica de Medicamentos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/virología , Fosfoproteínas/genética , Transporte de Proteínas , Proteoma/genética , SARS-CoV-2/genética , Transducción de Señal , Células Vero , Tratamiento Farmacológico de COVID-19
6.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34413211

RESUMEN

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Asunto(s)
Antivirales/farmacología , Factores Inmunológicos/farmacología , Lactoferrina/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Células CACO-2 , Línea Celular Tumoral , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Células Epiteliales , Heparitina Sulfato/antagonistas & inhibidores , Heparitina Sulfato/inmunología , Heparitina Sulfato/metabolismo , Hepatocitos , Ensayos Analíticos de Alto Rendimiento , Humanos , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Células Vero , Tratamiento Farmacológico de COVID-19
7.
Sci Immunol ; 6(58)2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33827897

RESUMEN

Patients with coronavirus disease 2019 (COVID-19) present a wide range of acute clinical manifestations affecting the lungs, liver, kidneys and gut. Angiotensin converting enzyme (ACE) 2, the best-characterized entry receptor for the disease-causing virus SARS-CoV-2, is highly expressed in the aforementioned tissues. However, the pathways that underlie the disease are still poorly understood. Here, we unexpectedly found that the complement system was one of the intracellular pathways most highly induced by SARS-CoV-2 infection in lung epithelial cells. Infection of respiratory epithelial cells with SARS-CoV-2 generated activated complement component C3a and could be blocked by a cell-permeable inhibitor of complement factor B (CFBi), indicating the presence of an inducible cell-intrinsic C3 convertase in respiratory epithelial cells. Within cells of the bronchoalveolar lavage of patients, distinct signatures of complement activation in myeloid, lymphoid and epithelial cells tracked with disease severity. Genes induced by SARS-CoV-2 and the drugs that could normalize these genes both implicated the interferon-JAK1/2-STAT1 signaling system and NF-κB as the main drivers of their expression. Ruxolitinib, a JAK1/2 inhibitor, normalized interferon signature genes and all complement gene transcripts induced by SARS-CoV-2 in lung epithelial cell lines, but did not affect NF-κB-regulated genes. Ruxolitinib, alone or in combination with the antiviral remdesivir, inhibited C3a protein produced by infected cells. Together, we postulate that combination therapy with JAK inhibitors and drugs that normalize NF-κB-signaling could potentially have clinical application for severe COVID-19.


Asunto(s)
COVID-19/metabolismo , Activación de Complemento , Células Epiteliales/metabolismo , Janus Quinasa 1/metabolismo , Janus Quinasa 2/metabolismo , Pulmón/metabolismo , Sistema de Señalización de MAP Quinasas , SARS-CoV-2/metabolismo , COVID-19/patología , Línea Celular Tumoral , Complemento C3a/metabolismo , Factor B del Complemento/metabolismo , Células Epiteliales/patología , Humanos , Pulmón/patología
8.
bioRxiv ; 2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32577635

RESUMEN

Development of an anti-SARS-CoV-2 therapeutic is hindered by the lack of physiologically relevant model systems that can recapitulate host-viral interactions in human cell types, specifically the epithelium of the lung. Here, we compare induced pluripotent stem cell (iPSC)-derived alveolar and airway epithelial cells to primary lung epithelial cell controls, focusing on expression levels of genes relevant for COVID-19 disease modeling. iPSC-derived alveolar epithelial type II-like cells (iAT2s) and iPSC-derived airway epithelial lineages express key transcripts associated with lung identity in the majority of cells produced in culture. They express ACE2 and TMPRSS2, transcripts encoding essential host factors required for SARS-CoV-2 infection, in a minor subset of each cell sub-lineage, similar to frequencies observed in primary cells. In order to prepare human culture systems that are amenable to modeling viral infection of both the proximal and distal lung epithelium, we adapt iPSC-derived alveolar and airway epithelial cells to two-dimensional air-liquid interface cultures. These engineered human lung cell systems represent sharable, physiologically relevant platforms for SARS-CoV-2 infection modeling and may therefore expedite the development of an effective pharmacologic intervention for COVID-19.

9.
bioRxiv ; 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-32577649

RESUMEN

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10-15 years from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 FDA-approved compounds and clinical candidates, we identified 17 dose-responsive compounds with in vitro antiviral efficacy in human liver Huh7 cells and confirmed antiviral efficacy in human colon carcinoma Caco-2, human prostate adenocarcinoma LNCaP, and in a physiologic relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein classically found in secretory fluids, including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.

10.
Cell Stem Cell ; 26(4): 593-608.e8, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32004478

RESUMEN

Alveolar epithelial type 2 cells (AEC2s) are the facultative progenitors responsible for maintaining lung alveoli throughout life but are difficult to isolate from patients. Here, we engineer AEC2s from human pluripotent stem cells (PSCs) in vitro and use time-series single-cell RNA sequencing with lentiviral barcoding to profile the kinetics of their differentiation in comparison to primary fetal and adult AEC2 benchmarks. We observe bifurcating cell-fate trajectories as primordial lung progenitors differentiate in vitro, with some progeny reaching their AEC2 fate target, while others diverge to alternative non-lung endodermal fates. We develop a Continuous State Hidden Markov model to identify the timing and type of signals, such as overexuberant Wnt responses, that induce some early multipotent NKX2-1+ progenitors to lose lung fate. Finally, we find that this initial developmental plasticity is regulatable and subsides over time, ultimately resulting in PSC-derived AEC2s that exhibit a stable phenotype and nearly limitless self-renewal capacity.


Asunto(s)
Pulmón , Células Madre Pluripotentes , Células Epiteliales Alveolares , Diferenciación Celular , Humanos , Alveolos Pulmonares
11.
PLoS One ; 7(3): e33271, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22413008

RESUMEN

Interleukin 9 (IL-9) has been implicated in mast cell-related inflammatory diseases, such as asthma, where vascular endothelial growth factor (VEGF) is involved. Here we report that IL-9 (10-20 ng/ml) induces gene expression and secretion of VEGF from human LAD2. IL-9 does not induce mast cell degranulation or the release of other mediators (IL-1, IL-8, or TNF). VEGF production in response to IL-9 involves STAT-3 activation. The effect is inhibited (about 80%) by the STAT-3 inhibitor, Stattic. Gene-expression of IL-9 and IL-9 receptor is significantly increased in lesional skin areas of atopic dermatitis (AD) patients as compared to normal control skin, while serum IL-9 is not different from controls. These results imply that functional interactions between IL-9 and mast cells leading to VEGF release contribute to the initiation/propagation of the pathogenesis of AD, a skin inflammatory disease.


Asunto(s)
Dermatitis Atópica/genética , Dermatitis Atópica/metabolismo , Interleucina-9/genética , Mastocitos/metabolismo , Receptores de Interleucina-9/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Línea Celular , Dermatitis Atópica/inmunología , Humanos , Interleucina-9/sangre , Interleucina-9/farmacología , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA