Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 130(6): 064305, 2009 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-19222276

RESUMEN

Fourier transform ion cyclotron resonance mass spectrometry has been employed to study the reactions of gas-phase cationic cobalt clusters, Co(n) (+) (n=4-30), with nitric oxide, NO, and nitrous oxide, N(2)O, under single collision conditions. Isolation of the initial cluster permits detailed investigation of fragmentation channels which characterize the reactions of all but the largest clusters studied. In reaction with N(2)O, most clusters generate the monoxides Co(n)O(+) without fragmentation, cobalt atom loss accompanying only subsequent reactions. By contrast, chemisorption of even a single NO molecule is accompanied by fragmentation of the cluster. The measured rate coefficients for the Co(n) (+)+N(2)O reaction as a function of cluster size are significantly smaller than those calculated using the surface charge capture model, while for NO the rates are comparable. The reactions have been studied under high coverage conditions by storing clusters for extended periods to permit multiple reactions to occur. This leads to interesting chemistry on the surface of the cluster resulting in the formation of stable oxide clusters and/or the decomposition of nitric oxide on the cluster with the resulting loss of molecular nitrogen.

2.
J Phys Chem A ; 110(38): 10992-1000, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16986831

RESUMEN

The decomposition of nitric oxide on small charged rhodium clusters Rh(n)(+/-) (6 < n < 30) has been investigated by Fourier transform ion cyclotron resonance mass spectrometry. For both cationic and anionic naked clusters, the rates of reaction with NO increase smoothly with cluster size in the range studied without the dramatic size-dependent fluctuations often associated with the reactions of transition-metal clusters. The cationic clusters react significantly faster than the anions and both exhibit rate constants exceeding collision rates calculated by average dipole orientation theory. Both the approximate magnitude and the trends in reactivity are modeled well by the surface charge capture model recently proposed by Kummerlöwe and Beyer. All clusters studied here exhibit pseudo-first-order kinetics with no sign of biexponential kinetics often interpreted as evidence for multiple isomeric structures. Experiments involving prolonged exposure to NO have revealed interesting size-dependent trends in the mechanism and efficiency of NO decomposition: For most small clusters (n < 17), once two NO molecules are coadsorbed on a cluster, N(2) is evolved, generating the corresponding dioxide cluster. By analogy with experiments on extended surfaces, this observation is interpreted in terms of the dissociative adsorption of NO in the early stages of reaction, generating N atoms that are mobile on the surface of the cluster. For clusters where n < 13, this chemistry, which occurs independently of the cluster charge, repeats until a size-dependent, limiting oxygen coverage is achieved. Following this, NO is observed to adsorb on the oxide cluster without further N(2) evolution. For n = 14-16 no single end-point is observed and reaction products are based on a small range of oxide structures. By contrast, no evidence for N(2) production is observed for clusters n = 13 and n > 16, for which simple sequential NO adsorption dominates the chemistry. Interestingly, there is no evidence for the production of N(2)O or NO(2) on any of the clusters studied. A simple general mechanism is proposed that accounts for all observations. The detailed decomposition mechanisms for each cluster exhibit size (and, by implication, structure) dependent features with Rh(13)(+/-) particularly anomalous by comparison with neighboring clusters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA