Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
An Acad Bras Cienc ; 90(1): 3-16, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29424394

RESUMEN

Serra Pelada is the newest Brazilian eucrite and the first recovered fall from Amazonia (State of Pará, Brazil, June 29th 2017). In this paper, we report on its petrography, chemistry, mineralogy and its magnetic properties. Study of four thin sections reveals that the meteorite is brecciated, containing basaltic and gabbroic clasts, as well of recrystallized impact melt, embedded into a fine-medium grained matrix. Chemical analyses suggest that Serra Pelada is a monomict basaltic eucritic breccia, and that the meteorite is a normal member of the HED suite. Our results provide additional geological and compositional information on the lithological diversity of its parent body. The mineralogy of Serra Pelada consists basically of low-Ca pyroxene and high-Ca plagioclase with accessory minerals such as quartz, sulphide (troilite), chromite - ulvöspinel and ilmenite. These data are consistent with the meteorite being an eucrite, a basaltic achondrite and a member of the howardite-eucrite-diogenite (HED) clan of meteorites which most likely are from the crust asteroid 4 Vesta.

2.
J Phys Chem A ; 114(26): 6917-26, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20540546

RESUMEN

Recent experimental results on negatively charged formic acid clusters generated by the impact of (252)Cf fission fragments on icy formic acid target are compared to quantum mechanical calculations. Structures for the clusters series, (HCOOH)nOH(-), where 2 < or = n < or = 4, are proposed based on ab initio electronic structure methods. The results show that cluster growth does not have a regular pattern of nucleation. A stability analysis was performed considering the commonly defined stability function. Temporal behavior of the clusters was evaluated by Born-Oppenheimer molecular dynamics to check the mechanism that provides cluster stability. The evaluated temporal profiles indicate the importance of hydrogen atom migration between the formic acid moieties in maintaining the stability of the structures and the water formation due to hydrogen abstraction by the hydroxyl approach.

3.
J Phys Chem A ; 113(42): 11161-6, 2009 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-19534497

RESUMEN

Titan, the largest satellite of Saturn, has an atmosphere chiefly made up of N(2) and CH(4) and includes traces of many simple organic compounds. This atmosphere also partly consists of haze and aerosol particles which during the last 4.5 gigayears have been processed by electric discharges, ions, and ionizing photons, being slowly deposited over the Titan surface. In this work, we investigate the possible effects produced by soft X-rays (and secondary electrons) on Titan aerosol analogs in an attempt to simulate some prebiotic photochemistry. The experiments have been performed inside a high vacuum chamber coupled to the soft X-ray spectroscopy beamline at the Brazilian Synchrotron Light Source, Campinas, Brazil. In-situ sample analyses were performed by a Fourier transform infrared spectrometer. The infrared spectra have presented several organic molecules, including nitriles and aromatic CN compounds. After the irradiation, the brownish-orange organic residue (tholin) was analyzed ex-situ by gas chromatographic (GC/MS) and nuclear magnetic resonance ((1)H NMR) techniques, revealing the presence of adenine (C(5)H(5)N(5)), one of the constituents of the DNA molecule. This confirms previous results which showed that the organic chemistry on the Titan surface can be very complex and extremely rich in prebiotic compounds. Molecules like these on the early Earth have found a place to allow life (as we know) to flourish.


Asunto(s)
Adenina/síntesis química , Adenina/efectos de la radiación , Medio Ambiente Extraterrestre/química , Saturno , Adenina/química , Atmósfera/química , Dióxido de Carbono/síntesis química , Dióxido de Carbono/química , Monóxido de Carbono/síntesis química , Monóxido de Carbono/química , Cianatos/síntesis química , Cianatos/química , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Aromáticos/síntesis química , Hidrocarburos Aromáticos/química , Espectroscopía de Resonancia Magnética , Metano/síntesis química , Metano/química , Nitrilos/síntesis química , Nitrilos/química , Nitrógeno/química , Espectroscopía Infrarroja por Transformada de Fourier , Agua/química , Rayos X
4.
J Phys Chem A ; 112(51): 13382-92, 2008 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-19053548

RESUMEN

Recent experimental results on positive charged formic acid clusters generated by the impact of (252)Cf fission fragments (FF) on icy formic acid target are examined in this paper by quantum mechanical calculations. Structures for the clusters series, (HCOOH)(n)H(+) and (HCOOH)(n)H(3)O(+), where 2 < or = n < or = 4, are proposed based on ab initio electronic structure methods. Results show that cluster growth does not present a regular pattern of nucleation. A stability analysis was performed considering the commonly defined stability function, where E is the total electronic energy plus the zero point vibrational energy correction, including the BSSE correction. The stability analysis leads to a picture that is compatible with experimental observations, indicating a decay of the stability with the increase of cluster mass. Temporal behavior of the clusters was evaluated by Born-Oppenheimer molecular dynamics to check the mechanism that provides cluster stability. The evaluated temporal profiles indicate the importance of hydrogen atom migration between the formic acid moieties to maintain the stability of the structures.


Asunto(s)
Formiatos/química , Algoritmos , Análisis por Conglomerados , Simulación por Computador , Electrones , Enlace de Hidrógeno , Iones/química , Modelos Químicos , Teoría Cuántica , Termodinámica , Agua/química
5.
An. acad. bras. ciênc ; 90(1): 3-16, Mar. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-886886

RESUMEN

ABSTRACT Serra Pelada is the newest Brazilian eucrite and the first recovered fall from Amazonia (State of Pará, Brazil, June 29th 2017). In this paper, we report on its petrography, chemistry, mineralogy and its magnetic properties. Study of four thin sections reveals that the meteorite is brecciated, containing basaltic and gabbroic clasts, as well of recrystallized impact melt, embedded into a fine-medium grained matrix. Chemical analyses suggest that Serra Pelada is a monomict basaltic eucritic breccia, and that the meteorite is a normal member of the HED suite. Our results provide additional geological and compositional information on the lithological diversity of its parent body. The mineralogy of Serra Pelada consists basically of low-Ca pyroxene and high-Ca plagioclase with accessory minerals such as quartz, sulphide (troilite), chromite - ulvöspinel and ilmenite. These data are consistent with the meteorite being an eucrite, a basaltic achondrite and a member of the howardite-eucrite-diogenite (HED) clan of meteorites which most likely are from the crust asteroid 4 Vesta.

6.
Astrobiology ; 11(9): 883-93, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22066498

RESUMEN

Despite the extensive search for glycine (NH2CH2COOH) and other amino acids in molecular clouds associated with star-forming regions, only upper limits have been derived from radio observations. Nevertheless, two of glycine's precursors, formic acid and acetic acid, have been abundantly detected. Although both precursors may lead to glycine formation, the efficiency of reaction depends on their abundance and survival in the presence of a radiation field. These facts could promote some favoritism in the reaction pathways in the gas phase and solid phase (ice). Glycine and these two simplest carboxylic acids are found in many meteorites. Recently, glycine was also observed in cometary samples returned by the Stardust space probe. The goal of this work was to perform theoretical calculations for several interstellar reactions involving the simplest carboxylic acids as well as the carboxyl radical (COOH) in both gas and solid (ice) phase to understand which reactions could be the most favorable to produce glycine in interstellar regions fully illuminated by soft X-rays and UV, such as star-forming regions. The calculations were performed at four different levels for the gas phase (B3LYP/6-31G*, B3LYP/6-31++G**, MP2/6-31G*, and MP2/6-31++G**) and at MP2/6-31++G** level for the solid phase (ice). The current two-body reactions (thermochemical calculation) were combined with previous experimental data on the photodissociation of carboxylic acids to promote possible favoritism for glycine formation in the scenario involving formic and acetic acid in both gas and solid phase. Given that formic acid is destroyed more in the gas phase by soft X-rays than acetic acid is, we suggest that in the gas phase the most favorable reactions are acetic acid with NH or NH2OH. Another possible reaction involves NH2CH2 and COOH, one of the most-produced radicals from the photodissociation of acetic acid. In the solid phase, we suggest that the reactions of formic acid with NH2CH or NH2CH2OH are the most favorable from the thermochemical point of view.


Asunto(s)
Ácidos Carboxílicos/química , Gases/química , Glicina/síntesis química , Transición de Fase , Estrellas Celestiales/química , Glicina/química , Iones , Modelos Químicos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA