Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Development ; 143(2): 298-305, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26657764

RESUMEN

During embryogenesis the sea urchin early pluteus larva differentiates 40-50 neurons marked by expression of the pan-neural marker synaptotagmin B (SynB) that are distributed along the ciliary band, in the apical plate and pharyngeal endoderm, and 4-6 serotonergic neurons that are confined to the apical plate. Development of all neurons has been shown to depend on the function of Six3. Using a combination of molecular screens and tests of gene function by morpholino-mediated knockdown, we identified SoxC and Brn1/2/4, which function sequentially in the neurogenic regulatory pathway and are also required for the differentiation of all neurons. Misexpression of Brn1/2/4 at low dose caused an increase in the number of serotonin-expressing cells and at higher dose converted most of the embryo to a neurogenic epithelial sphere expressing the Hnf6 ciliary band marker. A third factor, Z167, was shown to work downstream of the Six3 and SoxC core factors and to define a branch specific for the differentiation of serotonergic neurons. These results provide a framework for building a gene regulatory network for neurogenesis in the sea urchin embryo.


Asunto(s)
Embrión no Mamífero/metabolismo , Erizos de Mar/embriología , Erizos de Mar/metabolismo , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Embrión no Mamífero/citología , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Factores del Dominio POU/genética , Factores del Dominio POU/metabolismo , Proteína Homeobox SIX3
2.
PLoS Biol ; 11(1): e1001467, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23335859

RESUMEN

Patterning the neuroectoderm along the anterior-posterior (AP) axis is a critical event in the early development of deuterostome embryos. However, the mechanisms that regulate the specification and patterning of the neuroectoderm are incompletely understood. Remarkably, the anterior neuroectoderm (ANE) of the deuterostome sea urchin embryo expresses many of the same transcription factors and secreted modulators of Wnt signaling, as does the early vertebrate ANE (forebrain/eye field). Moreover, as is the case in vertebrate embryos, confining the ANE to the anterior end of the embryo requires a Wnt/ß-catenin-dependent signaling mechanism. Here we use morpholino- or dominant negative-mediated interference to demonstrate that the early sea urchin embryo integrates information not only from Wnt/ß-catenin but also from Wnt/Fzl5/8-JNK and Fzl1/2/7-PKC pathways to provide precise spatiotemporal control of neuroectoderm patterning along its AP axis. Together, through the Wnt1 and Wnt8 ligands, they orchestrate a progressive posterior-to-anterior wave of re-specification that restricts the initial, ubiquitous, maternally specified, ANE regulatory state to the most anterior blastomeres. There, the Wnt receptor antagonist, Dkk1, protects this state through a negative feedback mechanism. Because these different Wnt pathways converge on the same cell fate specification process, our data suggest they may function as integrated components of an interactive Wnt signaling network. Our findings provide strong support for the idea that the sea urchin ANE regulatory state and the mechanisms that position and define its borders represent an ancient regulatory patterning system that was present in the common echinoderm/vertebrate ancestor.


Asunto(s)
Tipificación del Cuerpo/genética , Placa Neural/embriología , Strongylocentrotus purpuratus/embriología , Proteínas Wnt/metabolismo , Animales , Blastómeros/metabolismo , Tipificación del Cuerpo/fisiología , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Morfolinos/genética , Placa Neural/metabolismo , ARN Mensajero/genética , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/metabolismo , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
3.
Development ; 139(9): 1662-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22438568

RESUMEN

Wnt and Nodal signaling pathways are required for initial patterning of cell fates along anterior-posterior (AP) and dorsal-ventral (DV) axes, respectively, of sea urchin embryos during cleavage and early blastula stages. These mechanisms are connected because expression of nodal depends on early Wnt/ß-catenin signaling. Here, we show that an important subsequent function of Wnt signaling is to control the shape of the nodal expression domain and maintain correct specification of different cell types along the axes of the embryo. In the absence of Wnt1, the posterior-ventral region of the embryo is severely altered during early gastrulation. Strikingly, at this time, nodal and its downstream target genes gsc and bra are expressed ectopically, extending posteriorly to the blastopore. They override the initial specification of posterior-ventral ectoderm and endoderm fates, eliminating the ventral contribution to the gut and displacing the ciliary band dorsally towards, and occasionally beyond, the blastopore. Consequently, in Wnt1 morphants, the blastopore is located at the border of the re-specified posterior-ventral oral ectoderm and by larval stages it is in the same plane near the stomodeum on the ventral side. In normal embryos, a Nodal-dependent process downregulates wnt1 expression in dorsal posterior cells during early gastrulation, focusing Wnt1 signaling to the posterior-ventral region where it suppresses nodal expression. These subsequent interactions between Wnt and Nodal signaling are thus mutually antagonistic, each limiting the range of the other's activity, in order to maintain and stabilize the body plan initially established by those same signaling pathways in the early embryo.


Asunto(s)
Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína Nodal/metabolismo , Transducción de Señal/fisiología , Strongylocentrotus purpuratus/embriología , Proteína Wnt1/metabolismo , Animales , Caspasa 3 , Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Inmunohistoquímica , Hibridación in Situ , Oligodesoxirribonucleótidos Antisentido/genética
4.
Development ; 138(17): 3613-23, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21828090

RESUMEN

Recent studies of the sea urchin embryo have elucidated the mechanisms that localize and pattern its nervous system. These studies have revealed the presence of two overlapping regions of neurogenic potential at the beginning of embryogenesis, each of which becomes progressively restricted by separate, yet linked, signals, including Wnt and subsequently Nodal and BMP. These signals act to specify and localize the embryonic neural fields - the anterior neuroectoderm and the more posterior ciliary band neuroectoderm - during development. Here, we review these conserved nervous system patterning signals and consider how the relationships between them might have changed during deuterostome evolution.


Asunto(s)
Tipificación del Cuerpo/fisiología , Sistema Nervioso/metabolismo , Erizos de Mar/enzimología , Erizos de Mar/metabolismo , Animales , Tipificación del Cuerpo/genética , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Erizos de Mar/crecimiento & desarrollo , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
5.
Development ; 138(19): 4233-43, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21852402

RESUMEN

Partitioning ectoderm precisely into neurogenic and non-neurogenic regions is an essential step for neurogenesis of almost all bilaterian embryos. Although it is widely accepted that antagonism between BMP and its inhibitors primarily sets up the border between these two types of ectoderm, it is unclear how such extracellular, diffusible molecules create a sharp and precise border at the single-cell level. Here, we show that Fez, a zinc finger protein, functions as an intracellular factor attenuating BMP signaling specifically within the neurogenic region at the anterior end of sea urchin embryos, termed the animal plate. When Fez function is blocked, the size of this neurogenic ectoderm becomes smaller than normal. However, this reduction is rescued in Fez morphants simply by blocking BMP2/4 translation, indicating that Fez maintains the size of the animal plate by attenuating BMP2/4 function. Consistent with this, the gradient of BMP activity along the aboral side of the animal plate, as measured by pSmad1/5/8 levels, drops significantly in cells expressing Fez and this steep decline requires Fez function. Our data reveal that this neurogenic ectoderm produces an intrinsic system that attenuates BMP signaling to ensure the establishment of a stable, well-defined neural territory, the animal plate.


Asunto(s)
Proteínas Morfogenéticas Óseas/química , Regulación del Desarrollo de la Expresión Génica , Proteínas Smad/metabolismo , Factores de Transcripción/fisiología , Dedos de Zinc , Animales , Blástula/metabolismo , Tipificación del Cuerpo/genética , Linaje de la Célula , Ectodermo/metabolismo , Embrión no Mamífero/metabolismo , Inmunohistoquímica/métodos , Modelos Biológicos , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Erizos de Mar , Factores de Transcripción/genética
6.
Proc Natl Acad Sci U S A ; 108(22): 9143-7, 2011 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-21576476

RESUMEN

Although it is well established that neural cells are ectodermal derivatives in bilaterian animals, here we report the surprising discovery that some of the pharyngeal neurons of sea urchin embryos develop de novo from the endoderm. The appearance of these neurons is independent of mouth formation, in which the stomodeal ectoderm joins the foregut. The neurons do not derive from migration of ectoderm cells to the foregut, as shown by lineage tracing with the photoactivatable protein KikGR. Their specification and development depend on expression of Nkx3-2, which in turn depends on Six3, both of which are expressed in the foregut lineage. SoxB1, which is closely related to the vertebrate Sox factors that support a neural precursor state, is also expressed in the foregut throughout gastrulation, suggesting that this region of the fully formed archenteron retains an unexpected pluripotency. Together, these results lead to the unexpected conclusion that, within a cell lineage already specified to be endoderm by a well-established gene regulatory network [Peter IS, Davidson EH (2010) Dev Biol 340:188-199], there also operates a Six3/Nkx3-2-dependent pathway required for the de novo specification of some of the neurons in the pharynx. As a result, neuroendoderm precursors form in the foregut aided by retention of a SoxB1-dependent pluripotent state.


Asunto(s)
Endodermo/citología , Regulación del Desarrollo de la Expresión Génica , Intestinos/citología , Animales , Linaje de la Célula , Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Oligonucleótidos Antisentido/genética , ARN Mensajero/metabolismo , Factores de Transcripción SOXB1/metabolismo , Erizos de Mar , Factores de Tiempo , Proteína Homeobox SIX3
7.
Dev Biol ; 363(1): 74-83, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22210002

RESUMEN

Serotonergic neurons differentiate in the neurogenic animal plate ectoderm of the sea urchin embryo. The regulatory mechanisms that control the specification or differentiation of these neurons in the sea urchin embryo are not yet understood, although, after the genome was sequenced, many genes encoding transcription factors expressed in this region were identified. Here, we report that zinc finger homeobox (zfhx1/z81) is expressed in serotonergic neural precursor cells, using double in situ hybridization screening with a serotonergic neural marker, tryptophan 5-hydroxylase (tph) encoding a serotonin synthase that is required for the differentiation of serotonergic neurons. zfhx1/z81 begins to be expressed at gastrula stage in individual cells in the anterior neuroectoderm, some of which also express delta. zfhx1/z81 expression gradually disappears as neural differentiation begins with tph expression. When the translation of Zfhx1/Z81 is blocked by morpholino injection, embryos express neither tph nor the neural marker synaptotagminB in cells of the animal plate, and serotonergic neurons do not differentiate. In contrast, Zfhx1/Z81 morphants do express fez, another neural precursor marker, which appears to function in the initial phase of specification/differentiation of serotonergic neurons. In addition, zfhx1/z81 is one of the targets suppressed in the animal plate by anti-neural signals such as Nodal as well as Delta-Notch. We conclude that Zfhx1/Z81 functions during the specification of individual anterior neural precursors and promotes the expression of tph and synaptotagminB, required for the differentiation of serotonergic neurons.


Asunto(s)
Diferenciación Celular/genética , Genes Homeobox/genética , Hemicentrotus/genética , Neuronas Serotoninérgicas/metabolismo , Dedos de Zinc/genética , Secuencia de Aminoácidos , Animales , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Gástrula/embriología , Gástrula/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hemicentrotus/embriología , Proteínas de Homeodominio/genética , Hibridación in Situ/métodos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Modelos Genéticos , Datos de Secuencia Molecular , Proteína Nodal/genética , Receptores Notch/genética , Homología de Secuencia de Aminoácido , Neuronas Serotoninérgicas/citología , Transducción de Señal/genética , Sinaptotagminas/genética , Triptófano Hidroxilasa/genética
8.
Dev Cell ; 14(1): 97-107, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18194656

RESUMEN

The primary (animal-vegetal) (AV) and secondary (oral-aboral) (OA) axes of sea urchin embryos are established by distinct regulatory pathways. However, because experimental perturbations of AV patterning also invariably disrupt OA patterning and radialize the embryo, these two axes must be mechanistically linked. Here we show that FoxQ2, which is progressively restricted to the animal plate during cleavage stages, provides this linkage. When AV patterning is prevented by blocking the nuclear function of beta-catenin, the animal plate where FoxQ2 is expressed expands throughout the future ectoderm, and expression of nodal, which initiates OA polarity, is blocked. Surprisingly, nodal transcription and OA differentiation are rescued simply by inhibiting FoxQ2 translation. Therefore, restriction of FoxQ2 to the animal plate is a crucial element of canonical Wnt signaling that coordinates patterning along the AV axis with the initiation of OA specification.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión no Mamífero/fisiología , Erizos de Mar/embriología , Factores de Transcripción/fisiología , Proteínas Wnt/fisiología , Animales , Ectodermo/crecimiento & desarrollo , Ectodermo/fisiología , Desarrollo Embrionario/fisiología , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética , Factores de Transcripción/genética , Proteínas Wnt/genética , beta Catenina/fisiología
9.
PLoS Biol ; 7(2): e1000029, 2009 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-19192949

RESUMEN

A major goal of contemporary studies of embryonic development is to understand large sets of regulatory changes that accompany the phenomenon of embryonic induction. The highly resolved sea urchin pregastrular endomesoderm-gene regulatory network (EM-GRN) provides a unique framework to study the global regulatory interactions underlying endomesoderm induction. Vegetal micromeres of the sea urchin embryo constitute a classic endomesoderm signaling center, whose potential to induce archenteron formation from presumptive ectoderm was demonstrated almost a century ago. In this work, we ectopically activate the primary mesenchyme cell-GRN (PMC-GRN) that operates in micromere progeny by misexpressing the micromere determinant Pmar1 and identify the responding EM-GRN that is induced in animal blastomeres. Using localized loss-of -function analyses in conjunction with expression of endo16, the molecular definition of micromere-dependent endomesoderm specification, we show that the TGFbeta cytokine, ActivinB, is an essential component of this induction in blastomeres that emit this signal, as well as in cells that respond to it. We report that normal pregastrular endomesoderm specification requires activation of the Pmar1-inducible subset of the EM-GRN by the same cytokine, strongly suggesting that early micromere-mediated endomesoderm specification, which regulates timely gastrulation in the sea urchin embryo, is also ActivinB dependent. This study unexpectedly uncovers the existence of an additional uncharacterized micromere signal to endomesoderm progenitors, significantly revising existing models. In one of the first network-level characterizations of an intercellular inductive phenomenon, we describe an important in vivo model of the requirement of ActivinB signaling in the earliest steps of embryonic endomesoderm progenitor specification.


Asunto(s)
Activinas/genética , Inducción Embrionaria/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Mesodermo/embriología , Erizos de Mar/genética , Animales , Blastómeros/citología , Moléculas de Adhesión Celular/genética , Desarrollo Embrionario/genética , Gástrula/citología , Gástrula/crecimiento & desarrollo , Mesodermo/citología , Erizos de Mar/embriología , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética
10.
Dev Biol ; 347(1): 71-81, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20709054

RESUMEN

The ciliary band is a distinct region of embryonic ectoderm that is specified between oral and aboral ectoderm. Flask-shaped ciliary cells and neurons differentiate in this region and they are patterned to form an integrated tissue that functions as the principal swimming and feeding organ of the larva. TGFß signaling, which is known to mediate oral and aboral patterning of the ectoderm, has been implicated in ciliary band formation. We have used morpholino knockdown and ectopic expression of RNA to alter TGFß signaling at the level of ligands, receptors, and signal transduction components and assessed the differentiation and patterning of the ciliary band cells and associated neurons. We propose that the primary effects of these signals are to position the ciliary cells, which in turn support neural differentiation. We show that Nodal signaling, which is known to be localized by Lefty, positions the oral margin of the ciliary band. Signaling from BMP through Alk3/6, affects the position of the oral and aboral margins of the ciliary band. Since both Nodal and BMP signaling produce ectoderm that does not support neurogenesis, we propose that formation of a ciliary band requires protection from these signals. Expression of BMP2/4 and Nodal suppress neural differentiation. However, the response to receptor knockdown or dominant-negative forms of signal transduction components indicate signaling is not acting directly on unspecified ectoderm cells to prevent their differentiation as neurons. Instead, it produces a restricted field of ciliary band cells that supports neurogenesis. We propose a model that incorporates spatially regulated control of Nodal and BMP signaling to determine the position and differentiation of the ciliary band, and subsequent neural patterning.


Asunto(s)
Tipificación del Cuerpo , Cilios/metabolismo , Embrión no Mamífero/citología , Neuronas/metabolismo , Erizos de Mar/embriología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Ectodermo/citología , Ectodermo/metabolismo , Embrión no Mamífero/metabolismo , Larva/citología , Larva/metabolismo , Modelos Biológicos , Sistema Nervioso/citología , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Neuronas/citología , Proteína Nodal/metabolismo , Erizos de Mar/citología , Erizos de Mar/metabolismo
11.
Dev Biol ; 348(1): 67-75, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20875818

RESUMEN

In sea urchin embryos, the apical tuft forms within the neurogenic animal plate. When FoxQ2, one of the earliest factors expressed specifically in the animal plate by early blastula stage, is knocked down, the structure of the apical tuft is altered. To determine the basis of this phenotype, we identified FoxQ2-dependent genes using microarray analysis. The most strongly down-regulated gene in FoxQ2 morphants encodes a protein with ankyrin repeats region in its N-terminal domain. We named this gene ankAT-1, Ankyrin-containing gene specific for Apical Tuft. Initially its expression in the animal pole region of very early blastula stage embryos is FoxQ2-independent but becomes FoxQ2-dependent beginning at mesenchyme blastula stage and continuing in the animal plate of 3-day larvae. Furthermore, like FoxQ2, this gene is expressed throughout the expanded apical tuft region that forms in embryos lacking nuclear ß-catenin. When AnkAT-1 is knocked-down by injecting a morpholino, the cilia at the animal plate in the resulting embryos are much shorter and their motility is less than that of motile cilia in other ectoderm cells, and remains similar to that of long apical tuft cilia. We conclude that AnkAT-1 is involved in regulating the length of apical tuft cilia.


Asunto(s)
Cilios/ultraestructura , Regulación del Desarrollo de la Expresión Génica , Hemicentrotus/embriología , Strongylocentrotus purpuratus/embriología , Animales , Blástula/metabolismo , Blástula/ultraestructura , Polaridad Celular , Ectodermo/citología , Ectodermo/ultraestructura , Embrión no Mamífero/metabolismo , Embrión no Mamífero/ultraestructura , Factores de Transcripción Forkhead/fisiología , Técnicas de Silenciamiento del Gen , Hemicentrotus/genética , Hibridación in Situ , Larva , Subfamilia A de Receptores Similares a Lectina de Células NK/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Oligonucleótidos Antisentido/farmacología , Transducción de Señal/fisiología , Strongylocentrotus purpuratus/genética , Strongylocentrotus purpuratus/crecimiento & desarrollo , Factor de Crecimiento Transformador beta/fisiología , Proteínas Wnt/fisiología , beta Catenina/fisiología
12.
Genesis ; 52(3): 157, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24659345
13.
PLoS One ; 12(4): e0176479, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28448610

RESUMEN

Mucin-type O-glycosylation is a ubiquitous posttranslational modification in which N-Acetylgalactosamine (GalNAc) is added to the hydroxyl group of select serine or threonine residues of a protein by the family of UDP-GalNAc:Polypeptide N-Acetylgalactosaminyltransferases (GalNAc-Ts; EC 2.4.1.41). Previous studies demonstrate that O-glycosylation plays essential roles in protein function, cell-cell interactions, cell polarity and differentiation in developing mouse and Drosophila embryos. Although this type of protein modification is highly conserved among higher eukaryotes, little is known about this family of enzymes in echinoderms, basal deuterostome relatives of the chordates. To investigate the potential role of GalNAc-Ts in echinoderms, we have begun the characterization of this enzyme family in the purple sea urchin, S. purpuratus. We have fully or partially cloned a total of 13 genes (SpGalnts) encoding putative sea urchin SpGalNAc-Ts, and have confirmed enzymatic activity of five recombinant proteins. Amino acid alignments revealed high sequence similarity among sea urchin and mammalian glycosyltransferases, suggesting the presence of putative orthologues. Structural models underscored these similarities and helped reconcile some of the substrate preferences observed. Temporal and spatial expression of SpGalnt transcripts, was studied by whole-mount in situ hybridization. We found that many of these genes are transcribed early in developing embryos, often with restricted expression to the endomesodermal region. Multicolor fluorescent in situ hybridization (FISH) demonstrated that transcripts encoding SpGalnt7-2 co-localized with both Endo16 (a gene expressed in the endoderm), and Gcm (a gene expressed in secondary mesenchyme cells) at the early blastula stage, 20 hours post fertilization (hpf). At late blastula stage (28 hpf), SpGalnt7-2 message co-expresses with Gcm, suggesting that it may play a role in secondary mesenchyme development. We also discovered that morpholino-mediated knockdown of SpGalnt13 transcripts, results in a deficiency of embryonic skeleton and neurons, suggesting that mucin-type O-glycans play essential roles during embryonic development in S. purpuratus.


Asunto(s)
Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Strongylocentrotus purpuratus/embriología , Strongylocentrotus purpuratus/genética , Acetilgalactosamina/metabolismo , Secuencia de Aminoácidos , Animales , Técnicas de Silenciamiento del Gen , Modelos Moleculares , Mucinas/metabolismo , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Neuronas/metabolismo , Conformación Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Strongylocentrotus purpuratus/citología , Strongylocentrotus purpuratus/metabolismo
14.
Dev Growth Differ ; 37(1): 57-68, 1995 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37282207

RESUMEN

We have analyzed a gene, designated VEB4, that is expressed transiently in very early blastulae of the sea urchin, Strongylocentrotus purpuratus. Sequence analysis of the complete open reading frame shows that VEB4 encodes an unusual, highly charged protein with a pl of 9.55. We show here that VEB4 mRNA accumulate in a spatial pattern that is indistinguishable from that of two other recently described genes encoding metallo-endoproteases, SpAN, related to astacin and SpHE, the hatching enzyme (Reynolds et al. 1992). VEB4 and other members of this gene set encode the earliest strictly zygotic gene products that have been identified. The asymmetric accumulation of VEB4 mRNA in non-vegetal blastomeres of the 16 cell embryo and their descendants reflects the animal-vegetal maternal developmental axis.

15.
Dev Growth Differ ; 35(2): 139-151, 1993 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37280843

RESUMEN

We have determined the expression pattern of arylsulfatase in embryos of the sea urchin Strongylocentrotus purpuratus. Polyclonal antibodies raised against a fusion protein containing sequences encoded by SpARSI (Yang et al., 1989, Dev. Biol. 135: 53-61, 1989) detect several peptides of 65-70 kD on immunoblots. Treatment with glycopeptidase F shows that at least one of these peptides is modified by N-linked glycosylation, which accounts for some of the peptide diversity. We have also identified a second arylsulfatase gene (SpARSII) whose sequence is highly similar to ARS, a gene expressed in the Hemicentrotus pulcherrimus embryo. Arylsulfatase activity is detectable in unfertilized eggs, in which only SpARSII mRNA can be detected. Both SpARSI and SpARSII mRNAs increase greatly in abundance during embryogenesis accompanied by parallel changes in arylsulfatase activity and immunoreactivity. Immunohistochemistry with the anti-SpARSI antibody shows that arylsulfatase accumulates primarily along the apical surface of the aboral ectoderm of pluteus larvae, and to a lesser extent along portions of oral ectoderm. At earlier stages, the protein is more uniformly distributed along all presumptive ectoderm, reflecting a more uniform mRNA distribution. Treatment of embryos with glycine-EDTA, which dissociates but does not lyse cells of the embryo, releases virtually all enzymatic activity and all immunoreactive protein. Embryos cultured in sulfate-free sea water, which arrest at gastrula stage, show normal accumulation and secretion of peptide detected with the SpARSI antibody.

16.
Methods Mol Biol ; 1128: 249-62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24567220

RESUMEN

The sea urchin embryo is an important model system for developmental gene regulatory network (GRN) analysis. This chapter describes the use of multicolor fluorescent in situ hybridization (FISH) as well as a combination of FISH and immunohistochemistry in sea urchin embryonic GRN studies. The methods presented here can be applied to a variety of experimental settings where accurate spatial resolution of multiple gene products is required for constructing a developmental GRN.


Asunto(s)
Redes Reguladoras de Genes , Hibridación Fluorescente in Situ/métodos , Erizos de Mar/genética , Animales , Blástula/metabolismo , Colorantes Fluorescentes/química , Regulación del Desarrollo de la Expresión Génica , Erizos de Mar/metabolismo , Coloración y Etiquetado , Fijación del Tejido
17.
Science ; 335(6068): 590-3, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22301319

RESUMEN

The segregation of embryonic endomesoderm into separate endoderm and mesoderm fates is not well understood in deuterostomes. Using sea urchin embryos, we showed that Notch signaling initiates segregation of the endomesoderm precursor field by inhibiting expression of a key endoderm transcription factor in presumptive mesoderm. The regulatory circuit activated by this transcription factor subsequently maintains transcription of a canonical Wnt (cWnt) ligand only in endoderm precursors. This cWnt ligand reinforces the endoderm state, amplifying the distinction between emerging endoderm and mesoderm. Before gastrulation, Notch-dependent nuclear export of an essential ß-catenin transcriptional coactivator from mesoderm renders it refractory to cWnt signals, insulating it against an endoderm fate. Thus, we report that endomesoderm segregation is a progressive process, requiring a succession of regulatory interactions between cWnt and Notch signaling.


Asunto(s)
Embrión no Mamífero/fisiología , Desarrollo Embrionario , Endodermo/fisiología , Receptores Notch/metabolismo , Erizos de Mar/embriología , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Blastómeros/citología , Blastómeros/fisiología , Blástula/fisiología , Embrión no Mamífero/embriología , Endodermo/embriología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Ligandos , Mesodermo/embriología , Mesodermo/fisiología , Receptores Notch/genética , Erizos de Mar/genética , Erizos de Mar/fisiología , Factores de Transcripción TCF/genética , Factores de Transcripción TCF/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/genética , Vía de Señalización Wnt , beta Catenina/metabolismo
18.
Nat Commun ; 2: 592, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22186888

RESUMEN

Food can act as a powerful stimulus, eliciting metabolic, behavioural and developmental responses. These phenotypic changes can alter ecological and evolutionary processes; yet, the molecular mechanisms underlying many plastic phenotypic responses remain unknown. Here we show that dopamine signalling through a type-D(2) receptor mediates developmental plasticity by regulating arm length in pre-feeding sea urchin larvae in response to food availability. Although prey-induced traits are often thought to improve food acquisition, the mechanism underlying this plastic response acts to reduce feeding structure size and subsequent feeding rate. Consequently, the developmental programme and/or maternal provisioning predetermine the maximum possible feeding rate, and food-induced dopamine signalling reduces food acquisition potential during periods of abundant resources to preserve maternal energetic reserves. Sea urchin larvae may have co-opted the widespread use of food-induced dopamine signalling from behavioural responses to instead alter their development.


Asunto(s)
Adaptación Fisiológica , Dopamina/metabolismo , Larva/anatomía & histología , Morfogénesis/fisiología , Receptores de Dopamina D2/metabolismo , Erizos de Mar/fisiología , Animales , Evolución Biológica , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Antagonistas de los Receptores de Dopamina D2 , Conducta Alimentaria , Alimentos , Larva/fisiología , Microesferas , Fenotipo , Conducta Predatoria , Receptores de Dopamina D2/agonistas , Transducción de Señal
19.
Development ; 136(7): 1179-89, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19270175

RESUMEN

Two major signaling centers have been shown to control patterning of sea urchin embryos. Canonical Wnt signaling in vegetal blastomeres and Nodal signaling in presumptive oral ectoderm are necessary and sufficient to initiate patterning along the primary and secondary axes, respectively. Here we define and characterize a third patterning center, the animal pole domain (APD), which contains neurogenic ectoderm, and can oppose Wnt and Nodal signaling. The regulatory influence of the APD is normally restricted to the animal pole region, but can operate in most cells of the embryo because, in the absence of Wnt and Nodal, the APD expands throughout the embryo. We have identified many constituent APD regulatory genes expressed in the early blastula and have shown that expression of most of them requires Six3 function. Furthermore, Six3 is necessary for the differentiation of diverse cell types in the APD, including the neurogenic animal plate and immediately flanking ectoderm, indicating that it functions at or near the top of several APD gene regulatory networks. Remarkably, it is also sufficient to respecify the fates of cells in the rest of the embryo, generating an embryo consisting of a greatly expanded, but correctly patterned, APD. A fraction of the large group of Six3-dependent regulatory proteins are orthologous to those expressed in the vertebrate forebrain, suggesting that they controlled formation of the early neurogenic domain in the common deuterostome ancestor of echinoderms and vertebrates.


Asunto(s)
Proteínas del Ojo/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/fisiología , Strongylocentrotus purpuratus/embriología , Strongylocentrotus purpuratus/metabolismo , Animales , Secuencia de Bases , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas del Ojo/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Reguladores , Proteínas de Homeodominio/genética , Proteínas del Tejido Nervioso/genética , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Strongylocentrotus purpuratus/genética , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteína Homeobox SIX3
20.
Evol Dev ; 9(1): 10-24, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17227363

RESUMEN

Molecular paleoecology is the application of molecular data to test hypotheses made by paleoecological scenarios. Here, we use gene regulatory analysis to test between two competing paleoecological scenarios put forth to explain the evolution of complex life cycles. The first posits that early bilaterians were holobenthic, and the evolution of macrophagous grazing drove the exploitation of the pelagos by metazoan eggs and embryos, and eventually larvae. The alternative hypothesis predicts that early bilaterians were holopelagic, and new adult stages were added on when these holopelagic forms began to feed on the benthos. The former hypothesis predicts that the larvae of protostomes and deuterostomes are not homologous, with the implication that larval-specific structures, including the apical organ, are the products of convergent evolution, whereas the latter hypothesis predicts homology of larvae, specifically homology of the apical organ. We show that in the sea urchin, Strongylocentrotus purpuratus, the transcription factors NK2.1 and HNF6 are necessary for the correct spatial expression profiles of five different cilia genes. All of these genes are expressed exclusively in the apical plate after the mesenchyme-blastula stage in cells that also express NK2.1 and HNF6. In addition, abrogation of SpNK2.1 results in embryos that lack the apical tuft. However, in the red abalone, Haliotis rufescens, NK2.1 and HNF6 are not expressed in any cells that also express these same five cilia genes. Nonetheless, like the sea urchin, the gastropod expresses both NK2.1 and FoxA around the stomodeum and foregut, and FoxA around the proctodeum. As we detected no similarity in the development of the apical tuft between the sea urchin and the abalone, these molecular data are consistent with the hypothesis that the evolution of mobile, macrophagous metazoans drove the evolution of complex life cycles multiple times independently in the late Precambrian.


Asunto(s)
Ecología , Estadios del Ciclo de Vida , Paleontología , Animales , Secuencia de Bases , Cartilla de ADN , ADN Complementario , Reacción en Cadena de la Polimerasa , Erizos de Mar/genética , Erizos de Mar/crecimiento & desarrollo , Técnica de Sustracción , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA