Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38090855

RESUMEN

When microbubble contrast agents are excited at low frequencies (less than 5 MHz), they resonate and produce higher-order harmonics due to their nonlinear behavior. We propose a novel scheme with a capacitive micromachined ultrasonic transducer (CMUT) array to receive high-frequency microbubble harmonics in collapse mode and to transmit a low-frequency high-pressure pulse by releasing the CMUT plate from collapse and pull it back to collapse again in the same transmit-receive cycle. By patterning and etching the substrate to create glass spacers in the device cavity we can reliably operate the CMUT in collapse mode and receive high-frequency signals. Previously, we demonstrated a single-element CMUT with spacers operating in the described fashion. In this article, we present the design and fabrication of a dual-mode, dual-frequency 1-D CMUT array with 256 elements. We present two different insulating glass spacer designs in rectangular cells for the collapse mode. For the device with torus-shaped spacers, the 3 dB receive bandwidth is from 8 to 17 MHz, and the transmitted maximum peak-to-peak pressure from 32 elements at 4 mm focal depth was 2.12 MPa with a 1.21 MPa peak negative pressure, which corresponds to a mechanical index (MI) of 0.58 at 4.3 MHz. For the device with line-shaped spacers, the 3-dB receive bandwidth at 150 V dc bias extends from 10.9 to 19.2 MHz. By increasing the bias voltage to 180 V, the 3 dB bandwidth shifts, and extends from 11.7 to 20.4 MHz. The transmitting maximum peak-to-peak pressure with 32 elements at 4 mm was 2.06 MPa with a peak negative pressure of 1.19 MPa, which corresponds to an MI of 0.62 at 3.7 MHz.

2.
Micromachines (Basel) ; 15(9)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39337765

RESUMEN

In a recent study using 3-D fullwave simulations, it was shown for a nonhuman primate model that a helmet-shaped 3D array of 128 transducer elements can be assembled for neurostimulation in an optimized configuration with the accommodation of an imaging aperture. Considering all acoustic losses, according to this study, for a nonhuman primate skull, the assembly of the proposed transducers was projected to produce sufficient focusing gain in two different focal positions at deep and shallow brain regions, thus providing sufficient acoustic intensity at these distinct focal points for neural stimulation. This array also has the ability to focus on multiple additional brain regions. In the work presented here, we designed and fabricated a single 15 mm diameter capacitive micromachined ultrasonic transducer (CMUT) element operating at 800 kHz central frequency with a 480 kHz 3 dB bandwidth, capable of producing a 190 kPa peak negative pressure (PNP) on the surface. The corresponding projected transcranial spatial peak pulse average intensity (ISPPA) was 28 Wcm-2, and the mechanical index (MI) value was 1.1 for an array of 128 of these elements.

3.
IEEE Trans Biomed Circuits Syst ; 16(5): 842-851, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35671313

RESUMEN

Ultrasonic wireless power transmission (WPT) using pre-charged capacitive micromachined ultrasonic transducers (CMUT) is drawing great attention due to the easy integration of CMUT with CMOS techniques. Here, we present an integrated circuit (IC) that interfaces with a pre-charged CMUT device for ultrasonic energy harvesting. We implemented an adaptive high voltage charge pump (HVCP) in the proposed IC, which features low power, overvoltage stress (OVS) robustness, and a wide output range. The ultrasonic energy harvesting IC is fabricated in the 180 nm HV BCD process and occupies a 2 × 2.5 mm2 silicon area. The adaptive HVCP offers a 2× - 12× voltage conversion ratio (VCR), thereby providing a wide bias voltage range of 4 V-44 V for the pre-charged CMUT. Moreover, a VCR tunning finite state machine (FSM) implemented in the proposed IC can dynamically adjust the VCR to stabilize the HVCP output (i.e., the pre-charged CMUT bias voltage) to a target voltage in a closed-loop manner. Such a closed-loop control mechanism improves the tolerance of the proposed IC to the received power variation caused by misalignments, amount of transmitted power change, and/or load variation. Besides, the proposed ultrasonic energy harvesting IC has an average power consumption of 35 µW-554 µW corresponding to the HVCP output from 4 V-44 V. The CMUT device with a local surface acoustic intensity of 3.78 mW/mm2, which is well below the FDA limit for power flux (7.2 mW/mm2), can deliver sufficient power to the IC.


Asunto(s)
Transductores , Ultrasonido , Ultrasonografía , Diseño de Equipo , Capacidad Eléctrica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA