Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cancer Cell Int ; 24(1): 219, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926695

RESUMEN

Lung cancer (LC) ranks second most prevalent cancer in females after breast cancer and second in males after prostate cancer. Based on the GLOBOCAN 2020 report, India represented 5.9% of LC cases and 8.1% of deaths caused by the disease. Several clinical studies have shown that LC occurs because of biological and morphological abnormalities and the involvement of altered level of antioxidants, cytokines, and apoptotic markers. In the present study, we explored the antiproliferative activity of indeno[1,2-d]thiazolo[3,2-a]pyrimidine analogues against LC using in-vitro, in-silico, and in-vivo models. In-vitro screening against A549 cells revealed compounds 9B (8-methoxy-5-(3,4,5-trimethoxyphenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) and 12B (5-(4-chlorophenyl)-5,6-dihydroindeno[1,2-d]thiazolo[3,2-a]pyrimidine) as potential pyrimidine analogues against LC. Compounds 9B and 12B were docked with different molecular targets IL-6, Cyt-C, Caspase9, and Caspase3 using AutoDock Vina 4.1 to evaluate the binding affinity. Subsequently, in-vivo studies were conducted in albino Wistar rats through ethyl-carbamate (EC)- induced LC. 9B and 12B imparted significant effects on physiological (weight variation), and biochemical (anti-oxidant [TBAR's, SOD, ProC, and GSH), lipid (TC, TG, LDL, VLDL, and HDL)], and cytokine (IL-2, IL-6, IL-10, and IL-1ß) markers in EC-induced LC in albino Wistar rats. Morphological examination (SEM and H&E) and western blotting (IL-6, STAT3, Cyt-C, BAX, Bcl-2, Caspase3, and caspase9) showed that compounds 9B and 12B had antiproliferative effects. Accordingly, from the in-vitro, in-silico, and in-vivo experimental findings, we concluded that 9B and 12B have significant antiproliferative potential and are potential candidates for further evaluation to meet the requirements of investigation of new drug application.

2.
J Biochem Mol Toxicol ; 38(4): e23679, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486411

RESUMEN

Normoxic inactivation of prolyl hydroxylase-2 (PHD-2) in tumour microenvironment paves the way for cancer cells to thrive under the influence of HIF-1α and NF-κB. Henceforth, the present study is aimed to identify small molecule activators of PHD-2. A virtual screening was conducted on a library consisting of 265,242 chemical compounds, with the objective of identifying molecules that exhibit structural similarities to the furan chalcone scaffold. Further, PHD-2 activation potential of screened compound was determined using in vitro 2-oxoglutarate assay. The cytotoxic activity and apoptotic potential of screened compound was determined using various staining techniques, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 4',6-diamidino-2-phenylindole (DAPI), 1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), and acridine orange/ethidium bromide (AO/EB), against MCF-7 cells. 7,12-Dimethylbenz[a]anthracene (DMBA) model of mammary gland cancer was used to study the in vivo antineoplastic efficacy of screened compound. [(E)-1-(4-fluorophenyl)-3-(furan-2-yl) prop-2-en-1-one] (BBAP-7) was screened and validated as a PHD-2 activator by an in vitro 2-oxo-glutarate assay. The IC50 of BBAP-7 on MCF-7 cells is 18.84 µM. AO/EB and DAPI staining showed nuclear fragmentation, blebbing and condensation in MCF-7 cells following BBAP-7 treatment. The red-to-green intensity ratio of JC-1 stained MCF-7 cells decreased after BBAP-7 treatment, indicating mitochondrial-mediated apoptosis. DMBA caused mammary gland dysplasia, duct hyperplasia and ductal carcinoma in situ. Carmine staining, histopathology, and scanning electron microscopy demonstrated that BBAP-7, alone or with tirapazamine, restored mammary gland surface morphology and structural integrity. Additionally, BBAP-7 therapy significantly reduced oxidative stress and glycolysis. The findings reveal that BBAP-7 activates PHD-2, making it a promising anticancer drug.


Asunto(s)
Antineoplásicos , Bencimidazoles , Carbocianinas , Carcinoma , Chalcona , Chalconas , Humanos , Prolil Hidroxilasas , Chalconas/farmacología , Antineoplásicos/farmacología , Naranja de Acridina , Apoptosis , Microambiente Tumoral
3.
Molecules ; 28(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36677632

RESUMEN

Sepsis is a serious health concern globally, which necessitates understanding the root cause of infection for the prevention of proliferation inside the host's body. Phytochemicals present in plants exhibit antibacterial and anti-proliferative properties stipulated for sepsis treatment. The aim of the study was to determine the potential role of Carica papaya leaf extract for sepsis treatment in silico and in vitro. We selected two phytochemical compounds, carpaine and quercetin, and docked them with bacterial proteins, heat shock protein (PDB ID: 4PO2), surfactant protein D (PDB ID: 1PW9), and lactobacillus bacterial protein (PDB ID: 4MKS) against imipenem and cyclophosphamide. Quercetin showed the strongest interaction with 1PW9 and 4MKS proteins. The leaves were extracted using ethanol, methanol, and water through Soxhlet extraction. Total flavonoid content, DPPH assay, HPTLC, and FTIR were performed. In vitro cytotoxicity of ethanol extract was screened via MTT assay on the J774 cell line. Ethanol extract (EE) possessed the maximum number of phytocomponents, the highest amount of flavonoid content, and the maximum antioxidant activity compared to other extracts. FTIR analysis confirmed the presence of N-H, O-H, C-H, C=O, C=C, and C-Cl functional groups in ethanol extract. Cell viability was highest (100%) at 25 µg/mL of EE. The present study demonstrated that the papaya leaves possessed antibacterial and cytotoxic activity against sepsis infection.


Asunto(s)
Carica , Sepsis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteínas Bacterianas , Carica/química , Simulación del Acoplamiento Molecular , Quercetina , Antibacterianos/farmacología , Fitoquímicos/análisis , Flavonoides , Etanol , Sepsis/tratamiento farmacológico , Hojas de la Planta/química
4.
Saudi Pharm J ; 31(7): 1274-1293, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37304359

RESUMEN

Postpartum depression (PPD) is a challenging psychological disorder faced by 10-30% of mothers across the globe. In India, it occurs among 22% of mothers. Its aetiology and pathophysiology aren't fully understood as of today but multiple theories on the interplay of hormones, neurotransmitters, genetics, epigenetics, nutrients, socio-environmental factors, etc. exist. Nutrients are not only essential for the synthesis of neurotransmitters, but they may also indirectly influence genomic pathways that methylate DNA, and there is evidence for molecular associations between nutritional quality and psychological well-being. Increased behavioural disorders have been attributed to macro- and micronutrient deficiencies, and dietary supplementation has been effective in treating several neuropsychiatric illnesses. Nutritional deficiencies occur frequently in women, especially during pregnancy and breastfeeding. The aim of this study was to perform a comprehensive literature review of evidence-based research in order to identify, gather and summarize existing knowledge on PPD's aetiology, pathophysiology, and the role of nutrients in its prevention as well as management. The possible mechanisms of action of nutrients are also presented here. Study findings show that the risk of depression increases when omega-3 fatty acid levels are low. Both fish oil and folic acid supplements have been used to effectively treat depression. Antidepressant efficacy is lowered by folate insufficiency. Folate, vitamin B12, iron, etc. deficiencies are more prevalent in depressed people than in non-depressed people. Serum cholesterol levels and plasma tryptophan levels are found to be inversely correlated with PPD. Serum vitamin D levels were associated inversely with perinatal depression. These findings highlight the importance of adequate nutrition in the antepartum period. Given that nutritional therapies can be affordable, safe, simple to use, and are typically well-accepted by patients, more focus should be placed on dietary variables in PPD.

5.
Molecules ; 27(4)2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209147

RESUMEN

Fenchone is a bicyclic monoterpene found in a variety of aromatic plants, including Foeniculum vulgare and Peumus boldus, and is used in the management of airways disorders. This study aimed to explore the bronchodilator effect of fenchone using guinea pig tracheal muscles as an ex vivo model and in silico studies. A concentration-mediated tracheal relaxant effect of fenchone was evaluated using isolated guinea pig trachea mounted in an organ bath provided with physiological conditions. Sustained contractions were achieved using low K+ (25 mM), high K+ (80 mM), and carbamylcholine (CCh; 1 µM), and fenchone inhibitory concentration-response curves (CRCs) were obtained against these contractions. Fenchone selectively inhibited with higher potency contractions evoked by low K+ compared to high K+ with resultant EC50 values of 0.62 mg/mL (0.58-0.72; n = 5) and 6.44 mg/mL (5.86-7.32; n = 5), respectively. Verapamil (VRP) inhibited both low and high K+ contractions at similar concentrations. Pre-incubation of the tracheal tissues with K+ channel blockers such as glibenclamide (Gb), 4-aminopyridine (4-AP), and tetraethylammonium (TEA) significantly shifted the inhibitory CRCs of fenchone to the right towards higher doses. Fenchone also inhibited CCh-mediated contractions at comparable potency to its effect against high K+ [6.28 mg/mL (5.88-6.42, n = 4); CCh] and [6.44 mg/mL (5.86-7.32; n = 5); high K+]. A similar pattern was obtained with papaverine (PPV), a phosphodiesterase (PDE), and Ca2+ inhibitor which inhibited both CCh and high K+ at similar concentrations [10.46 µM (9.82-11.22, n = 4); CCh] and [10.28 µM (9.18-11.36; n = 5); high K+]. However, verapamil, a standard Ca2+ channel blocker, showed selectively higher potency against high K+ compared to CCh-mediated contractions with respective EC50 values of 0.84 mg/mL (0.82-0.96; n = 5) 14.46 mg/mL (12.24-16.38, n = 4). The PDE-inhibitory action of fenchone was further confirmed when its pre-incubation at 3 and 5 mg/mL potentiated and shifted the isoprenaline inhibitory CRCs towards the left, similar to papaverine, whereas the Ca2+ inhibitory-like action of fenchone pretreated tracheal tissues were authenticated by the rightward shift of Ca2+ CRCs with suppression of maximum response, similar to verapamil, a standard Ca2+ channel blocker. Fenchone showed a spasmolytic effect in isolated trachea mediated predominantly by K+ channel activation followed by dual inhibition of PDE and Ca2+ channels. Further in silico molecular docking studies provided the insight for binding of fenchone with Ca2+ channel (-5.3 kcal/mol) and K+ channel (-5.7), which also endorsed the idea of dual inhibition.


Asunto(s)
Canfanos/química , Canfanos/farmacología , Norbornanos/química , Norbornanos/farmacología , Parasimpatolíticos/química , Parasimpatolíticos/farmacología , Tráquea/efectos de los fármacos , Animales , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacología , Fenómenos Químicos , Relación Dosis-Respuesta a Droga , Cobayas , Técnicas In Vitro , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología , Canales de Potasio/agonistas , Canales de Potasio/química , Relación Estructura-Actividad
6.
Molecules ; 27(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408506

RESUMEN

This present study evaluated and rationalized the medicinal use of the fruit part of Acacia nilotica methanolic extract. The phytochemicals were detected using gas chromatography−mass spectrometry (GC−MS) while the in vivo antidiarrheal test was done using Swiss albino mice. To determine the details of the mechanism(s) involved in the antispasmodic effect, isolated rat ileum was chosen using different ex vivo assays by maintaining a physiological environment. GC−MS results showed that A. nilotica contained pyrogallol as the major polyphenol present (64.04%) in addition to polysaccharides, polyphenol, amino acid, steroids, fatty acid esters, and triterpenoids. In the antidiarrheal experiment, A. nilotica inhibited diarrheal episodes in mice significantly (p < 0.05) by 40% protection of mice at 200 mg/kg, while 80% protection was observed at 400 mg/kg by the orally administered extract. The highest antidiarrheal effect was observed with loperamide (p < 0.01), used as a control drug. In the ex vivo experiments, A. nilotica inhibited completely in increasing concentrations (0.3 to 10 mg/mL) the carbachol (CCh; 1 µM) and high K+ (80 mM)-evoked spasms in ileum tissues at equal potencies (p > 0.05), similar to papaverine, a dual inhibitor of the phosphodiesterase enzyme (PDE) and Ca++ channels. The dual inhibitory-like effects of A. nilotica on PDE and Ca++ were further validated when A. nilotica extract (1 and 3 mg/mL)-pre-incubated ileum tissues potentiated and shifted isoprenaline relaxation curves towards lower doses (leftward), similar to papaverine, thus confirming the PDE inhibitory-like mechanism whereas its CCB-like effect of the extract was confirmed at 3 and 5 mg/mL by non-specific inhibition of CaCl2-mediated concentration response curves towards the right with suppression of the maximum peaks, similar to verapamil, used as standard CCB. Thus, this study characterized the chemical composition and provides mechanistic support for medicinal use of A. nilotica in diarrheal and hyperactive gut motility disorders.


Asunto(s)
Acacia , Antidiarreicos , Animales , Antidiarreicos/química , Diarrea/tratamiento farmacológico , Cromatografía de Gases y Espectrometría de Masas , Fármacos Gastrointestinales/farmacología , Yeyuno , Metanol/farmacología , Ratones , Papaverina/farmacología , Parasimpatolíticos/química , Hidrolasas Diéster Fosfóricas/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Polifenoles/farmacología , Ratas
7.
Molecules ; 27(24)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36558012

RESUMEN

The study was performed to assess and rationalize the traditional utilization of the fruit part of Grewia tenax (G. tenax). The phytoconstituents present in the methanolic extract were analyzed using Gas-Chromatography-Mass Spectroscopy (GC-MS), while the anti-diarrheal activity was investigated in the Swiss albino mice against castor oil-provoked diarrhea in vivo. The antispasmodic effect and the possible pharmacodynamics of the observed antispasmodic effect were determined in an isolated rat ileum using the organ bath setup as an ex vivo model. GC-MS findings indicate that G. tenax is rich in alcohol (6,6-dideutero-nonen-1-ol-3) as the main constituent (20.98%), while 3-Deoxy-d-mannoic lactone (15.36%) was detected as the second major constituents whereas methyl furfural, pyranone, carboxylic acid, vitamin E, fatty acid ester, hydrocarbon, steroids, sesquiterpenes, phytosterols, and ketones were verified as added constituents in the methanolic extract. In mice, the orally administered G. tenax inhibited the diarrheal episodes significantly (p < 0.05) at 200 mg/kg (40% protection), and this protection was escalated to 80% with the next higher dose of 400 mg/kg. Loperamide (10 mg/kg), a positive control drug, imparted 100% protection, whereas no protection was shown by saline. In isolated rat ileum, G. tenax completely inhibited the carbamylcholine (CCh; 1 µM) and KCl (high K+; 80 mM)-evoked spasms in a concentrations-mediated manner (0.03 to 3 mg/mL) by expressing equal potencies (p > 0.05) against both types of evoked spasms, similar to papaverine, having dual inhibitory actions at phosphodiesterase enzyme (PDE) and Ca2+ channels (CCB). Similar to papaverine, the inhibitory effect of G. tenax on PDE was further confirmed indirectly when G. tenax (0.1 and 0.3 mg/mL) preincubated ileal tissues shifted the isoprenaline-relaxation curve towards the left. Whereas, pre-incubating the tissue with 0.3 and 1 mg/mL of G. tenax established the CCB-like effect by non-specific inhibition of CaCl2−mediated concentration-response curves towards the right with suppression of the maximum peaks, similar to verapamil, a standard CCB. Thus, the present investigation revealed the phytochemical constituents and explored the detailed pharmacodynamic basis for the curative use of G. tenax in diarrhea and hyperactive gut motility disorders.


Asunto(s)
Grewia , Parasimpatolíticos , Ratas , Ratones , Animales , Parasimpatolíticos/química , Antidiarreicos/química , Papaverina/farmacología , Yeyuno , Frutas , Cromatografía de Gases y Espectrometría de Masas , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Diarrea/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas/farmacología , Espasmo
8.
Molecules ; 26(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925478

RESUMEN

The present study examined the chemical composition and antimicrobial and gastrointestinal activity of the essential oils of Elettaria cardamomum (L.) Maton harvested in India (EC-I) and Guatemala (EC-G). Monoterpenes were present in higher concentration in EC-I (83.24%) than in EC-G (73.03%), whereas sesquiterpenes were present in a higher concentration in EC-G (18.35%) than in EC-I (9.27%). Minimum inhibitory concentrations (MICs) of 0.5 and 0.25 mg/mL were demonstrated against Pseudomonas aeruginosa in EC-G and EC-I, respectively, whereas MICs of 1 and 0.5 mg/mL were demonstrated against Escherichia coli in EC-G and EC-I, respectively. The treatment with control had the highest kill-time potential, whereas the treatment with oils had shorter kill-time. EC-I was observed to be more potent in the castor oil-induced diarrhea model than EC-G. At 100 and 200 mg/kg, P.O., EC-I exhibited 40% and 80% protection, respectively, and EC-G exhibited 20% and 60% protection, respectively, in mice, whereas loperamide (10 mg/kg, i.p., positive control) exhibited 100% protection. In the in vitro experiments, EC-I inhibited both carbachol (CCh, 1 µM) and high K+ (80 mM)-induced contractions at significantly lower concentrations than EC-G. Thus, EC-I significantly inhibited P. aeruginosa and E. coli and exhibited more potent antidiarrheal and antispasmodic effects than EC-G.


Asunto(s)
Elettaria/química , Enfermedades Gastrointestinales/tratamiento farmacológico , Bacterias Gramnegativas/efectos de los fármacos , Aceites Volátiles/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Modelos Animales de Enfermedad , Eucaliptol/química , Eucaliptol/farmacología , Enfermedades Gastrointestinales/microbiología , Bacterias Gramnegativas/patogenicidad , Guatemala/epidemiología , Humanos , India/epidemiología , Ratones , Aceites Volátiles/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sesquiterpenos/química , Sesquiterpenos/farmacología
9.
Molecules ; 26(5)2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33652584

RESUMEN

The purpose of the research was to examine the protective effect of essential oil from Thymus serrulatus Hochst. ex Benth. (TSA oil) against cadmium (Cd)-induced renal toxicity. The experimental protocol was designed using 30 healthy adult Wistar albino rats allocated into five groups containing six animals in each group. Group 1 was treated as normal control and groups 2, 3, 4, and 5 were treated with cadmium chloride (CdCl2, 3 mg/kg, IP) for 7 days. Group 3 was also treated with silymarin (100 mg/kg, PO) as a standard group, while groups 4 and 5 were administered with TSA oil at doses of 100 and 200 mg/kg PO, respectively. The nephrotoxicity was measured with various parameters such as kidney function markers, oxidative stress markers (glutathione (GSH) and malondialdehyde (MDA)), and messenger ribonucleic acid (mRNA) expression levels of inflammatory factors. The histological studies were also evaluated in the experimental protocol. The CdCl2-treated groups showed a significant increase in the levels of serum kidney function markers along with MDA levels in kidney homogenate. However, renal GSH level was found to be reduced significantly. It was found that CdCl2 significantly upregulated the nuclear factor levels of kappaB (NF-κB p65), inducible nitric oxide synthase (iNOS), and small mothers against decapentaplegic (Smad2) as compared to the normal control group. On the other hand, TSA oil significantly improved the increased levels of serum kidney function markers, non-enzymatic antioxidants, and lipid peroxidation. In addition, TSA oil significantly downregulated the increased expression of NF-κB p65, iNOS, and Smad2 in Cd-intoxicated rats. Moreover, the histological changes in the tissue samples of the kidney of Cd-treated groups were significantly ameliorated in the silymarin- and TSA-oil-treated groups. The present study reveals that TSA oil ameliorates Cd-induced renal injury, and it is also proposed that the observed nephroprotective effect could be due to the antioxidant potential of TSA oil and healing due to its anti-inflammatory action.


Asunto(s)
Enfermedades Renales/tratamiento farmacológico , Aceites Volátiles/química , Estrés Oxidativo/efectos de los fármacos , Thymus (Planta)/química , Animales , Antioxidantes/química , Antioxidantes/farmacología , Cadmio/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/inducido químicamente , FN-kappa B/genética , Óxido Nítrico Sintasa de Tipo II/genética , Aceites Volátiles/farmacología , Ratas , Proteína Smad2/genética
10.
Molecules ; 27(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35011397

RESUMEN

Baricitinib (BTB) is an orally administered Janus kinase inhibitor, therapeutically used for the treatment of rheumatoid arthritis. Recently it has also been approved for the treatment of COVID-19 infection. In this study, four different BTB-loaded lipids (stearin)-polymer (Poly(d,l-lactide-co-glycolide)) hybrid nanoparticles (B-PLN1 to B-PLN4) were prepared by the single-step nanoprecipitation method. Next, they were characterised in terms of physicochemical properties such as particle size, zeta potential (ζP), polydispersity index (PDI), entrapment efficiency (EE) and drug loading (DL). Based on preliminary evaluation, the B-PLN4 was regarded as the optimised formulation with particle size (272 ± 7.6 nm), PDI (0.225), ζP (-36.5 ± 3.1 mV), %EE (71.6 ± 1.5%) and %DL (2.87 ± 0.42%). This formulation (B-PLN4) was further assessed concerning morphology, in vitro release, and in vivo pharmacokinetic studies in rats. The in vitro release profile exhibited a sustained release pattern well-fitted by the Korsmeyer-Peppas kinetic model (R2 = 0.879). The in vivo pharmacokinetic data showed an enhancement (2.92 times more) in bioavailability in comparison to the normal suspension of pure BTB. These data concluded that the formulated lipid-polymer hybrid nanoparticles could be a promising drug delivery option to enhance the bioavailability of BTB. Overall, this study provides a scientific basis for future studies on the entrapment efficiency of lipid-polymer hybrid systems as promising carriers for overcoming pharmacokinetic limitations.


Asunto(s)
Azetidinas/farmacocinética , Portadores de Fármacos/química , Liberación de Fármacos , Liposomas/química , Nanopartículas/química , Polímeros/química , Purinas/farmacocinética , Pirazoles/farmacocinética , Sulfonamidas/farmacocinética , Administración Oral , Animales , Azetidinas/administración & dosificación , Azetidinas/química , Disponibilidad Biológica , Masculino , Purinas/administración & dosificación , Purinas/química , Pirazoles/administración & dosificación , Pirazoles/química , Ratas , Ratas Wistar , Sulfonamidas/administración & dosificación , Sulfonamidas/química
11.
J Thromb Thrombolysis ; 49(3): 404-412, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31898270

RESUMEN

The purpose of the currents study was to enhance bioavailability of rivaroxaban (RXB) and reduce the food effect. RXB loaded PLGA nanoparticles (RXB-PLGA-NPs) were prepared by emulsion solvent evaporation method and optimized using central composite design (CDD). The optimized RXB-PLGA-NPs (F8) with composition, PLGA (125 mg), PVA (0.5%w/w) and RXB (20 mg) was found optimum with particle size (496 ± 8.5 nm), PDI (0.607), ZP (- 18.41 ± 3.14 mV), %EE (87.9 ± 8.6) and %DL (9.5 ± 1.6). The optimized NPs (F8) was further evaluated in vitro for DSC, FTIR, SEM and in vitro release studies. A comparative pharmacokinetic studies with commercial tablet (XARELTO®) were conducted on fasted and fed state rats. Compared to commercial tablet (XARELTO®), the RXB-PLGA-NPs (F8) exhibited a significant enhancement of bioavailability in both fasted and fed state. In addition, the bioavailability of RXB from NPs (F8) was found unaffected in the presence of food.


Asunto(s)
Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Rivaroxabán , Administración Oral , Animales , Disponibilidad Biológica , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Preparaciones de Acción Retardada/farmacología , Interacciones Alimento-Droga , Masculino , Nanopartículas/química , Nanopartículas/uso terapéutico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ratas , Ratas Wistar , Rivaroxabán/química , Rivaroxabán/farmacocinética , Rivaroxabán/farmacología
12.
Clin Exp Pharmacol Physiol ; 47(12): 1891-1901, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32662125

RESUMEN

Cerebral palsy (CP) is the most common non-progressive neurodevelopmental disorder in which the impairment of motor and posture functions occurs. This condition may be present in many different clinical spectra. Various aetiological and risk factors play a crucial role in the causation of CP. In various cases, the causes of CP may not be apparent. Interruption in the supply of oxygen to the fetus or brain asphyxia was considered to be the main causative factor explaining CP. Antenatal, perinatal, and postnatal factors could be involved in the origin of CP. Understanding its pathophysiology is also crucial for developing preventive and protective strategies. A major advancement in the brain stimulation techniques has emerged as a promising status in diagnostic and interventional approaches. This review provides a brief explanation about the various aetiological factors, pathophysiology, and recent therapeutic approaches in the treatment of cerebral palsy.


Asunto(s)
Parálisis Cerebral , Femenino , Humanos , Recién Nacido , Embarazo , Factores de Riesgo
13.
J Dairy Sci ; 103(3): 2701-2706, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31980223

RESUMEN

The current study investigates the therapeutic efficacy of an α-linolenic acid (ALA, 18:3n-3)-based intramammary nanosuspension (ALA-NS) for treatment of subclinical mastitis. After confirmation of mastitis with the help of field-based testing, a total of 9 mixed-breed cows (23 udder quarter samples) were divided into 3 groups and treated with ALA-NS and cefoperazone intramammary suspension for 10 d. Subclinical mastitis on d 1 was confirmed through field-based tests such as pH, California Mastitis Test (CMT), Whiteside test (WST), and bromothymol blue test (BBT) scores. Treatment with ALA-NS (F1 and F2) exhibited significant effects on field-based parameters, along with curtailment of total microbial count [28 ± 3.16 (mean ± standard deviation) and 25 ± 4.24 cfu/50 µL] and somatic cell count (SCC; 3.9 and 2.8 log SCC cells/mL), respectively for ALA-NS F1 and F2, after 10-d treatment. The efficacy of ALA-NS was further affirmed using more stringent markers for inflammation (nuclear factor kappa-light-chain-enhancer of activated B cells, NFκB-p65), milk quality (sterol response element-binding protein-1c, SREBP-1c), and bacterial resistance (ubiquitin carboxyl-terminal hydrolase-1, UCHL-1) in milk samples. Treatment with ALA-NS (at 2 concentrations of ALA, F1 and F2) significantly decreased expression of NFκB-p65, SREBP-1c, and UCHL-1 after d 10 of treatment. Apparently, anti-inflammatory, antibacterial, peripheral analgesic properties of ALA could account for the therapeutic efficacy of the proposed regimen.


Asunto(s)
Analgésicos/administración & dosificación , Antibacterianos/administración & dosificación , Antiinflamatorios/administración & dosificación , Inflamación/tratamiento farmacológico , Mastitis Bovina/tratamiento farmacológico , Leche/normas , Ácido alfa-Linolénico/administración & dosificación , Animales , Bovinos , Cefoperazona/administración & dosificación , Recuento de Células/veterinaria , Femenino , Glándulas Mamarias Animales/microbiología , Mastitis Bovina/microbiología , Nanotecnología
14.
Molecules ; 25(4)2020 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-32102361

RESUMEN

The aim of the present study was to evaluate the possible gut inhibitory role of the phosphodiesterase (PDE) inhibitor roflumilast. Increasing doses of roflumilast were tested against castor oil-induced diarrhea in mice, whereas the pharmacodynamics of the same effect was determined in isolated rabbit jejunum tissues. For in silico analysis, the identified PDE protein was docked with roflumilast and papaverine using the Autodock vina program from the PyRx virtual screening tool. Roflumilast protected against diarrhea significantly at 0.5 and 1.5 mg/kg doses, with 40% and 80% protection. Ex vivo findings from jejunum tissues show that roflumilast possesses an antispasmodic effect by inhibiting spontaneous contractions in a concentration-dependent manner. Roflumilast reversed carbachol (CCh, 1 µM)-mediated and potassium (K+, 80 mM)-mediated contractile responses with comparable efficacies but different potencies. The observed potency against K+ was significantly higher in comparison to CCh, similar to verapamil. Experiments were extended to further confirm the inhibitory effect on Ca++ channels. Interestingly, roflumilast deflected Ca++ concentration-response curves (CRCs) to the right with suppression of the maximum peak at both tested doses (0.001-0.003 mg/mL), similar to verapamil. The PDE-inhibitory effect was authenticated when pre-incubation of jejunum tissues with roflumilast (0.03-0.1 mg/mL) produced a leftward deflection of isoprenaline-mediated inhibitory CRCs and increased the tissue level of cAMP, similar to papaverine. This idea was further strengthened by molecular docking studies, where roflumilast exhibited a better binding affinity (-9.4 kcal/mol) with the PDE protein than the standard papaverine (-8.3 kcal/mol). In conclusion, inhibition of Ca++ channels and the PDE-4 enzyme explains the pharmacodynamics of the gut inhibitory effect of roflumilast.


Asunto(s)
Aminopiridinas/farmacología , Antidiarreicos/farmacología , Benzamidas/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Diarrea/prevención & control , Parasimpatolíticos/farmacología , Inhibidores de Fosfodiesterasa 4/farmacología , Aminopiridinas/química , Aminopiridinas/farmacocinética , Animales , Antidiarreicos/química , Antidiarreicos/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Sitios de Unión , Bloqueadores de los Canales de Calcio/química , Bloqueadores de los Canales de Calcio/farmacocinética , Carbacol/farmacología , Aceite de Ricino/administración & dosificación , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Ciclopropanos/química , Ciclopropanos/farmacocinética , Ciclopropanos/farmacología , Diarrea/inducido químicamente , Diarrea/metabolismo , Diarrea/fisiopatología , Isoproterenol/farmacología , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Papaverina/farmacología , Parasimpatolíticos/química , Parasimpatolíticos/farmacocinética , Inhibidores de Fosfodiesterasa 4/química , Inhibidores de Fosfodiesterasa 4/farmacocinética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Conejos , Verapamilo/farmacología
15.
Saudi Pharm J ; 28(10): 1243-1252, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32868970

RESUMEN

The novel coronavirus outbreak has reported to be rapidly spreading across the countries and becomes a foremost community health alarm. At present, no vaccine or specific drug is on hand for the treatment of this infectious disease. This review investigates the drugs, which are being evaluated and found to be effective against nCOVID-19 infection. A thorough literature search was performedon the recently published research papers in between January 2020 to May 2020, through various databases like "Science Direct", "Google Scholar", "PubMed","Medline", "Web of Science", and "World Health Organization (WHO)". We reviewed and documented the information related with the current and future aspects for the management and cure of COVID-19. As of 21st July 2020 a total of 14,562,550 confirmed cases of coronavirus and 607,781 deaths have been reported world-wide. The main clinical feature of COVID-19 ranges from asymptomatic disease to mild lower respiratory tract illness to severe pneumonia, acute lung injury, acute respiratory distress syndrome (ARDS), multiple organ dysfunction, and death. The drugs at present used in COVID-19 patients and ongoing clinical trials focusing on drug repurposing of various therapeutic classes of drug e.g. antiviral, anti-inflammatory and/or immunomodulatory drugs along with adjuvant/supportive care. Many drugs on clinical trials shows effective results on preliminary scale and now used currently in patients. Adjuvant/supportive care therapy are used in patients to get the best results in order to minimize the short and long-term complications. However, further studies and clinical trials are needed on large scale of population to reach any firm conclusion in terms of its efficacy and safety.

16.
Saudi Pharm J ; 28(6): 698-702, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32550801

RESUMEN

The bronchodilator effects of Roflumilast "a selective phosphodiesterase type-4 (PDE4)" inhibitor studied in this experimental protocol. The spiral strips of isolated guinea-pig tracheal chains mounted in organ bath and maintained in Krebs solution ventilated with carbogen at 32 °C and in Ca++ restricted krebs solution. PDE inhibitory activity was evaluated by recording dose response curves using inhibitory effect of isoprenaline on CCh induced contractions. For confirmation of PDE inhibition the intracellular cAMP levels were also estimated. Roflumilast resulted a sharp inhibition in contractile responses of carbachol (CCh, 1 µM) and K+ (80 mM) and the results were almost similar to verapamil. In Ca++ restricted Krebs solution, a rightward shift in the Ca++ response curves observed in the tracheal chain strips which were pretreated with Roflumilast (0.001-0.003 mg/mL) and the maximum response was suppressed, similarly as with verapamil. PDE inhibitory effect of Roflumilast evaluated by recording dose-dependent (0.03-0.1 mg/mL) responses, the isoprenaline-induced inhibitory dose response curves shifted leftward similar to papaverine (PDE inhibitor). Pretreatment with Roflumilast exhibited elevated intracellular cAMP levels in tracheal strips. Findings of the experiment conclude bronchodilatory influence of Roflumilast via PDE and Ca++ channel inhibition. Results of current experiment offers comprehensive mechanistic background of Roflumilast in future as therapeutic bronchodilator for hyperactive bronchial airway diseases.

17.
Saudi Pharm J ; 28(3): 281-289, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32194329

RESUMEN

Otostegia fruticosa, a plant belonging to the family Lamiaceae, is endemic to Ethiopia. In Ethiopian traditional medicine, O. fruticosa has been used for the treatment of several respiratory-related disorders. The present study was designed to evaluate the bronchodilatory and antimicrobial activities of O. fruticosa leaves crude extract (Of.Cr). Ex-vivo experiments were conducted on guinea-pig trachea provided with physiological oxygenated buffer solution using emkaBath setup. The crude extract was analyzed by gas chromatography-mass spectrometry. Of.Cr, showed the presence of terpenes, fragrance components, saponins, and higher fatty acids. Of.Cr when tested on contracted tracheal chains with carbamylcholine (CCh, 1 µM) and high K+ (80 mM) produced relaxation by showing higher potency against CCh with incomplete inhibition of high K+. Dicyclomine, used as a positive control, also showed selectively higher potency to inhibit CCh when compared with its effect against K+. In the anticholinergic curves, Of.Cr at 1 mg/mL deflected CCh-induced concentration-response curves (CRCs) competitively to the right like dicyclomine (0.03 µM) and atropine whereas a higher dose of Of.Cr (3 mg/mL) produced a non-parallel shift in the CCh curves like a higher dose of dicyclomine (0.1 µM). In the calcium channel inhibitory assay, Of.Cr at 3 & 5 mg/mL, deflected CRCs of Ca++ to the right like verapamil, used as positive control. Of.Cr, at concentrations (1-3 mg/mL) increases cAMP levels in isolated tracheal homogenates, similar to positive control phosphodiesterase inhibitor (papaverine). When tested for antibacterial activity against standard and clinical strains, Of.Cr was found more active (MIC 475 µg/ml) against S. aureus (NCTC 6571), while the maximum inhibition (MIC 625 µg/ml) was observed by the extract when tested against MRSA. These results determine the mechanistic pathways of the observed bronchodilatory effect of Otostegia fruticosa with a combination of anticholinergic and dual inhibition of phosphodiesterase and voltage-gated Ca++ channels.

18.
Pak J Pharm Sci ; 33(4(Supplementary)): 1917-1926, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33612477

RESUMEN

The study was aimed to evaluate in vitro antioxidant, α-amylase inhibitory and in vivo antidiabetic activities of Myrica salicifolia root extracts. The powdered roots of M. salicifolia were extracted with 80% methanol and then dried. The dried extract was further fractionated into chloroform, ethyl acetate, butanol and aqueous fractions. The phytochemical screening of the crude extract was performed using standard chemical identification tests. The antioxidant activity of the extracts was determined by in vitro method using 2,2-diphenyl-1-picrylhydrazyl (DPPH) as radical scavenging reagent. The in vitro α-amylase inhibitory activity was performed using the chromogenic3,5-dinitrosalicylic (DNSA) method. The antidiabetic activity of M. salicifolia root crude extract (200, 400 and 600 mg/kg) and fractions (400 mg/kg) were evaluated in normal, glucose loaded hyperglycemic and streptozotocin (STZ)-induced diabetic mice. The crude root extract of M. salicifolia showed strong DPPH radical scavenging activity (IC50 = 4.54µg/ml) which was comparable with the standard antioxidant, ascorbic acid. In α-amylase inhibitory activity, the crude extract and butanol fraction showed highest enzyme inhibition. In the antidiabetic activity, daily administration of the crude extract, aqueous and butanol fractions for fifteen days showed highest significant reduction in fasting blood glucose level (BGL) compared to diabetic control in STZ-induced diabetic mice model. The root extract and fractions of M. salicifolia exhibited significant antihyperglycemic, α-amylase inhibitory and antioxidant activity with no sign of toxicity. The antidiabetic effect of the plant could be due to the synergistic effect of various classes of constituents present in the root part of the plant.


Asunto(s)
Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Hipoglucemiantes/farmacología , Myrica/química , Extractos Vegetales/farmacología , Estreptozocina/farmacología , alfa-Amilasas/antagonistas & inhibidores , Animales , Antioxidantes/farmacología , Compuestos de Bifenilo/farmacología , Glucemia/efectos de los fármacos , Femenino , Masculino , Ratones , Fitoquímicos/farmacología
19.
Toxicol Appl Pharmacol ; 377: 114628, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31207257

RESUMEN

The purpose of this study was to investigate the therapeutic effects and underlying mechanism of alpha-linolenic acid based intra-mammary nano-suspension (ALA-NS) on both in vitro antimicrobial and in vivo activity. The ALA-NS formulated and optimized for parameters like particle size, zeta potential, polydispersity index, sedimentation volume, and stability studies. In vitro, our results showed that ALA-NS (F1 and F2) have the higher zone of inhibition and lower minimum inhibitory concentration (MIC) value than ALA and cefotaxime alone against mastitis-causing pathogens. In vivo, our results showed that ALA-NS (F1 and F2) restored the altered oxidative biomarkers (superoxide dismutase, catalase, glutathione, TBARs, and protein carbonyl) along with histopathological changes in lipopolysaccharides (LPS) treated rats. Western blot results indicated that ALA-NS (F1 and F2) inhibited LPS induced inflammatory proteins (NFκBp65, COX, LOX, and IFN-γ) in rat mammary epithelial cells. ALA-NS (F1 and F2) also suppressed the hypoxia inducible factor-1α (HIF-1α) and upregulated prolyl-hydroxylase (PHD-2), sterol regulatory element binding protein (SREBP-1c), and fatty acid synthase (FASN) protein expression. In addition, ALA-NS upregulated the pro-apoptotic (BAX and BAD) and downregulated anti-apoptotic (BCL-2 and BCL-XL) proteins expression in rat mammary epithelial tissue. In conclusion, we found that ALA-NS (F1 and F2) have in vitro antimicrobial activity and protective effects on LPS-induced mastitis in rats.


Asunto(s)
Apoptosis/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Lipopolisacáridos/antagonistas & inhibidores , Mastitis/inducido químicamente , Mastitis/prevención & control , Mitocondrias/efectos de los fármacos , Factor de Transcripción ReIA/antagonistas & inhibidores , Ácido alfa-Linolénico/farmacología , Animales , Antiinfecciosos/farmacología , Proteínas Reguladoras de la Apoptosis/efectos de los fármacos , Bacterias/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Femenino , Lipopolisacáridos/toxicidad , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/efectos de los fármacos , Mastitis/microbiología , Pruebas de Sensibilidad Microbiana , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Suspensiones , Ácido alfa-Linolénico/administración & dosificación
20.
BMC Cancer ; 19(1): 996, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31651285

RESUMEN

BACKGROUND: This study evaluates the anti-cancer effects of Tadalafil (potent PDE-5 inhibitor) in female albino wistar rats against n-methyl n-nitrosourea induced mammary gland carcinogenesis. METHODS: The animals were selected and randomly divided among four groups and each group contains six animals per group. The animal tissue and serum samples were evaluated for the presence of antioxidant parameters and the cellular morphology was studied using carminic staining, haematoxylin staining and scanning electron microscopy followed by immunoblotting analysis. RESULTS: On the grounds of hemodynamic recordings and morphology, n-methyl n-nitrosourea treated group showed distorted changes along with distorted morphological parameters. For morphological analysis, the mammary gland tissues were evaluated using scanning electron microscopy, whole mount carmine staining, haematoxylin and eosin staining. The serum samples were evaluated for the evaluation of oxidative stress markers and inflammatory markers. The level of caspase 3 and 8 were also evaluated for the estimation of apoptosis. The fatty acid profiling of mammary gland tissue was evaluated using fatty acid methyl esters formation. The mitochondrial mediated apoptosis and inflammatory markers were evaluated using immunoblotting assay. CONCLUSION: The results confirm that Tadalafil treatment restored all the biological markers to the normal and its involvement in mitochondrial mediated death apoptosis pathway along with inhibition of inflammatory markers.


Asunto(s)
Lipooxigenasa/metabolismo , Neoplasias Mamarias Experimentales/prevención & control , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/uso terapéutico , Prostaglandina-Endoperóxido Sintasas/metabolismo , Transducción de Señal/efectos de los fármacos , Tadalafilo/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Carcinogénesis/metabolismo , Caspasa 3/metabolismo , Caspasa 8/metabolismo , Femenino , Frecuencia Cardíaca/efectos de los fármacos , Mediadores de Inflamación/sangre , Neoplasias Mamarias Experimentales/inducido químicamente , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Metilnitrosourea/efectos adversos , Metilnitrosourea/farmacología , Mitocondrias/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA