Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Prod Rep ; 39(6): 1172-1225, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35470828

RESUMEN

Covering: up to the end of 2021Within the 2,5-dioxopiperazines-containing natural products, those generated from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle. The great variety of natural products, ranging from simple dimeric bispyrrolidinoindoline dioxopiperazines and tryptophan-derived dioxopiperazine/pyrrolidinoindoline dioxopiperazine analogs to complex polycyclic downstream metabolites containing transannular connections between the subunits, will be covered. These natural products are constructed by Nature using hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) assembly lines. Mining of microbial genome sequences has more recently allowed the study of the metabolic routes and the discovery of their hidden biosynthetic potential. The competition (ideally, also the combined efforts) between their isolation from the cultures of the producing microorganisms after global genome mining and heterologous expression and the synthetic campaigns, has more recently allowed the successful generation and structural confirmation of these natural products. Their biological activities as well as their proposed biogenetic routes and computational studies on biogenesis will also be covered.


Asunto(s)
Productos Biológicos , Triptófano , Dicetopiperazinas , Genoma Microbiano , Péptido Sintasas/metabolismo , Sintasas Poliquetidas/metabolismo , Triptófano/genética
2.
J Nat Prod ; 84(6): 1725-1737, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34019401

RESUMEN

Total synthesis and structural confirmation of homo- and heterodimeric bispyrrolidinoindoline dioxopiperazine alkaloids isolated from fungi and bacteria, namely, ditryptoleucine A, ditryptoleucine B (11), the N,N'-bis-demethylated analogue (+)-12, (-)-dibrevianamide F (13), (-)-SF-5280-451 (14), tetratryptomycin A (15), (-)-tryprophenaline (17), and (-)-SF-5280-415 (18), has been carried out starting from the corresponding bispyrrolidinoindolines derived from tryptophan. Our efforts to synthesize all possible diastereomers of the natural ditryptoleucine isolates uncovered structural factors that determine the rate and efficiency of dioxopiperazine ring formation, leading in some cases to mixtures of diastereomers by concomitant epimerization, to the formation of their putative monomeric dioxopiperazine dipeptide biogenetic precursors, and to the alternative formation of a dimer with a fused 1,3,5-triazepan-6-one heterocycle.


Asunto(s)
Productos Biológicos/síntesis química , Oxindoles/síntesis química , Piperazinas/síntesis química , Dimerización , Dipéptidos , Estructura Molecular , Triptófano
3.
Chemistry ; 26(60): 13543-13567, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32267574

RESUMEN

Bifunctional unsaturated reagents designed to undergo palladium-catalyzed cross-coupling reactions with complementary polyenyl connective fragments are highly useful for the undoubtedly challenging synthesis of polyenes. The current toolkit of building blocks for the bidirectional formation of Csp2 -Csp2 single bonds of polyenes includes homo-bisfunctionalized reagents with equal or unequal reactivity (due to steric and/or electronic factors), and hetero-bisfunctionalized counterparts containing either two different nucleophiles, two electrophiles or one of these functionalities and a latent nucleophile that can be unmasked when desired. The combination of these bifunctional linchpin reagents using tactics that modulate the reactivity of each terminus in order to achieve the required connection have streamlined the synthesis of polyenes of great complexity using (iterative) cross-coupling methods for Csp2 -Csp2 bond formation. Reaction conditions for the Pd-catalyzed cross-coupling reactions are mild and functional-group-tolerant, and therefore these protocols allow to construct the polyene structures using shorter unsaturated reactants with the desired geometries, since in general the products preserve the stereochemical information of the connected cross-coupling partners.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA