Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(3): 2043-2053, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214997

RESUMEN

Herein, we demonstrate a working prototype of a conjugated proton crane, a reversible tautomeric switching molecule in which truly intramolecular long-range proton transfer occurs in solution at room temperature. The system consists of a benzothiazole rotor attached to a 7-hydroxy quinoline stator. According to the experimental and theoretical results, the OH proton is delivered under irradiation to the quinolyl nitrogen atom through a series of consecutive proton transfer and twisting steps. The use of a rigid rotor prevents undesired side processes that decrease the switching performance in previously described proton cranes and provides an unprecedented switching efficiency and fatigue resistance. The newly designed system confirms the theoretical concept for the application of proton transfer-initiated intramolecular twisting as the switching mechanism, developed more than 10 years ago, and provides unique insights for the further development of tautomeric molecular switches and motors, molecular logic gates, and new molecular-level energy storage systems.

2.
J Org Chem ; 89(4): 2155-2168, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38296620

RESUMEN

A series of 4- and 10-benzoyl-1-azapyrenes were prepared by a combination of Pd-catalyzed cross-coupling reactions and Brønsted-acid-mediated alkyne-carbonyl-metathesis (ACM). The photophysical and electrochemical properties of the products were studied and compared to theoretical results.

3.
J Am Chem Soc ; 144(3): 1169-1173, 2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35025493

RESUMEN

Controlling the order and lifetimes of electronically excited states is essential to effective light-to-potential energy conversion by molecular chromophores. This work reports a luminescent and photoreactive iron(II) complex, the first performant group homologue of prototypical sensitizers of ruthenium. Double cyclometalation of a phenylphenanthroline framework at iron(II) favors the population of a triplet metal-to-ligand charge transfer (3MLCT) state as the lowest energy excited state. Near-infrared (NIR) luminescence exhibits a monoexponential decay with τ = 2.4 ns in the solid state and 1 ns in liquid phase. Lifetimes of 14 ns at 77 K are in line with a narrowing of the NIR emission band at λem,max = 1170-1230 nm. Featuring a 3MLCT excited-state redox potential of -2 V vs the ferrocene/ferrocenium couple, the use of the Fe(II) chromophore as a sensitizer for light-driven synthesis is exemplified by the radical cross-coupling of 4-chlorobromobenzene and benzene.

4.
Inorg Chem ; 61(1): 214-226, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34908410

RESUMEN

Ru(II)- and Cu(I)-based photosensitizers featuring the recently developed biipo ligand (16H-benzo-[4',5']-isoquinolino-[2',1',:1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one) were comprehensively investigated by X-ray crystallography, electrochemistry, and especially several time-resolved spectroscopic methods covering all time scales from femto- to milliseconds. The analysis of the experimental results is supported by density functional theory (DFT) calculations. The biipo ligand consists of a coordinating 1,10-phenanthroline moiety fused with a 1,8-naphthalimide unit, which results in an extended π-system with an incorporated electron acceptor moiety. In a previous study, it was shown that this ligand enabled a Ru(II) complex that is an efficient singlet oxygen producer and of potential use for other light-driven applications due to its long emission lifetime. The goal of our here presented research is to provide a full spectroscopic picture of the processes that follow optical excitation. Interestingly, the Ru(II) and Cu(I) complexes differ in their characteristics even though the lowest electronically excited states involve in both cases the biipo ligand. The combined spectroscopic results indicate that an emissive 3MLCT state and a rather dark 3LC state are populated, each to some extent. For the Cu(I) complex, most of the excited population ends up in the 3LC state with an extraordinary lifetime of 439 µs in the solid state at 20 K, while a significant population of the 3MLCT state causes luminescence for the Ru(II) complex. Hence, there is a balance between these two states, which can be tuned by altering the metal center or even by thermal energy, as suggested by the temperature-dependent experiments.

5.
Inorg Chem ; 61(31): 12249-12261, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35877171

RESUMEN

In this study, we present a slight but surprisingly successful structural modification of the previously reported heteroleptic Cu(I) photosensitizer Cubiipo ([(xantphos)Cu(biipo)]PF6; biipo = 16H-benzo-[4',5']-isoquinolino-[2',1':1,2]-imidazo-[4,5-f]-[1,10]-phenanthrolin-16-one). As a key feature, biipo bears a naphthalimide unit at the back, which is directly fused to a phenanthroline moiety to extend the conjugated π-system. This ligand was now altered to include two additional methyl groups at the 2,9-positions at the phenanthroline scaffold. Comparing the novel Cudmbiipo complex to its predecessor, ultrafast transient absorption spectroscopy reveals the efficient suppression of a major deactivation pathway by stabilization of a transient triplet state. Furthermore, quantitative measurements of singlet oxygen evolution in solution confirmed that a larger fraction of the excited-state population is transferred to the photocatalytically active ligand-centered triplet 3LC state with a much longer lifetime of ∼30 µs compared to Cubiipo (2.6 µs). In addition, Cudmbiipo was compared with the well-established reference complex Cubcp ([(xantphos)Cu(bathocuproine)]PF6) in terms of its photophysical and photocatalytic properties by applying time-resolved femto- and nanosecond absorption, step-scan Fourier transform infrared (FTIR), and emission spectroscopies. Superior light-harvesting properties and a greatly enhanced excited-state lifetime with respect to Cubcp enable Cudmbiipo to be more active in exemplary photocatalytic applications, i.e., in the formation of singlet oxygen and the isomerization of (E)-stilbene.


Asunto(s)
Fármacos Fotosensibilizantes , Oxígeno Singlete , Ligandos , Naftalimidas , Fenantrolinas , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química
6.
Chemistry ; 25(17): 4325-4329, 2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30725500

RESUMEN

Herein we report the photo- and electrochemical characterization of pyrimidopteridine N-oxide-based heterocycles. The potential of their application as organic photoredox catalysts is showcased in the photomediated contra-thermodynamic E→Z isomerization of cinnamic acid derivatives and oxidative cyclization of 2-phenyl benzoic acid to benzocoumarin using molecular oxygen as a mild oxidant. Furthermore, unprecedented intermolecular non-covalent n-π-hole interactions in solid state are discussed based on crystallographic and theoretical data.

7.
Chem Commun (Camb) ; 59(64): 9726-9729, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37476912

RESUMEN

We present a computational approach for predicting key properties of organic radical anions, including excited-state lifetimes and redox potentials. The approach shows good agreement with experimental data and has potential for in silico screening to facilitate the rational design of photocatalysts.

8.
Nat Chem ; 15(4): 468-474, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36849804

RESUMEN

Although iron is a dream candidate to substitute noble metals in photoactive complexes, realization of emissive and photoactive iron compounds is demanding due to the fast deactivation of their charge-transfer states. Emissive iron compounds are scarce and dual emission has not been observed before. Here we report the FeIII complex [Fe(ImP)2][PF6] (HImP = 1,1'-(1,3-phenylene)bis(3-methyl-1-imidazol-2-ylidene)), showing a Janus-type dual emission from ligand-to-metal charge transfer (LMCT)- and metal-to-ligand charge transfer (MLCT)-dominated states. This behaviour is achieved by a ligand design that combines four N-heterocyclic carbenes with two cyclometalating aryl units. The low-lying π* levels of the cyclometalating units lead to energetically accessible MLCT states that cannot evolve into LMCT states. With a lifetime of 4.6 ns, the strongly reducing and oxidizing MLCT-dominated state can initiate electron transfer reactions, which could constitute a basis for future applications of iron in photoredox catalysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA