Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 618(7964): 349-357, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258678

RESUMEN

The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-ß (Aß) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aß-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aß plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Vaina de Mielina , Placa Amiloide , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Modelos Animales de Enfermedad , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Axones/metabolismo , Axones/patología , Microglía/metabolismo , Microglía/patología , Análisis de Expresión Génica de una Sola Célula , Factores de Riesgo , Progresión de la Enfermedad
2.
Mol Psychiatry ; 27(12): 4974-4983, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34866134

RESUMEN

Encephalitis has an estimated prevalence of ≤0.01%. Even with extensive diagnostic work-up, an infectious etiology is identified or suspected in <50% of cases, suggesting a role for etiologically unclear, noninfectious processes. Mild encephalitis runs frequently unnoticed, despite slight neuroinflammation detectable postmortem in many neuropsychiatric illnesses. A widely unexplored field in humans, though clearly documented in rodents, is genetic brain inflammation, particularly that associated with myelin abnormalities, inducing primary white matter encephalitis. We hypothesized that "autoimmune encephalitides" may result from any brain inflammation concurring with the presence of brain antigen-directed autoantibodies, e.g., against N-methyl-D-aspartate-receptor NR1 (NMDAR1-AB), which are not causal of, but may considerably shape the encephalitis phenotype. We therefore immunized young female Cnp-/- mice lacking the structural myelin protein 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) with a "cocktail" of NMDAR1 peptides. Cnp-/- mice exhibit early low-grade inflammation of white matter tracts and blood-brain barrier disruption. Our novel mental-time-travel test disclosed that Cnp-/- mice are compromised in what-where-when orientation, but this episodic memory readout was not further deteriorated by NMDAR1-AB. In contrast, comparing wild-type and Cnp-/- mice without/with NMDAR1-AB regarding hippocampal learning/memory and motor balance/coordination revealed distinct stair patterns of behavioral pathology. To elucidate a potential contribution of oligodendroglial NMDAR downregulation to NMDAR1-AB effects, we generated conditional NR1 knockout mice. These mice displayed normal Morris water maze and mental-time-travel, but beam balance performance was similar to immunized Cnp-/-. Immunohistochemistry confirmed neuroinflammation/neurodegeneration in Cnp-/- mice, yet without add-on effect of NMDAR1-AB. To conclude, genetic brain inflammation may explain an encephalitic component underlying autoimmune conditions.


Asunto(s)
Encefalitis , Sustancia Blanca , Humanos , Femenino , Ratones , Animales , Autoanticuerpos , Enfermedades Neuroinflamatorias , Receptores de N-Metil-D-Aspartato , Inflamación , Fenotipo
3.
Mol Psychiatry ; 26(12): 7746-7759, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34331009

RESUMEN

The etiology and pathogenesis of "anti-N-methyl-D-aspartate-receptor (NMDAR) encephalitis" and the role of autoantibodies (AB) in this condition are still obscure. While NMDAR1-AB exert NMDAR-antagonistic properties by receptor internalization, no firm evidence exists to date that NMDAR1-AB by themselves induce brain inflammation/encephalitis. NMDAR1-AB of all immunoglobulin classes are highly frequent across mammals with multiple possible inducers and boosters. We hypothesized that "NMDAR encephalitis" results from any primary brain inflammation coinciding with the presence of NMDAR1-AB, which may shape the encephalitis phenotype. Thus, we tested whether following immunization with a "cocktail" of 4 NMDAR1 peptides, induction of a spatially and temporally defined sterile encephalitis by diphtheria toxin-mediated ablation of pyramidal neurons ("DTA" mice) would modify/aggravate the ensuing phenotype. In addition, we tried to replicate a recent report claiming that immunizing just against the NMDAR1-N368/G369 region induced brain inflammation. Mice after DTA induction revealed a syndrome comprising hyperactivity, hippocampal learning/memory deficits, prefrontal cortical network dysfunction, lasting blood brain-barrier impairment, brain inflammation, mainly in hippocampal and cortical regions with pyramidal neuronal death, microgliosis, astrogliosis, modest immune cell infiltration, regional atrophy, and relative increases in parvalbumin-positive interneurons. The presence of NMDAR1-AB enhanced the hyperactivity (psychosis-like) phenotype, whereas all other readouts were identical to control-immunized DTA mice. Non-DTA mice with or without NMDAR1-AB were free of any encephalitic signs. Replication of the reported NMDAR1-N368/G369-immunizing protocol in two large independent cohorts of wild-type mice completely failed. To conclude, while NMDAR1-AB can contribute to the behavioral phenotype of an underlying encephalitis, induction of an encephalitis by NMDAR1-AB themselves remains to be proven.


Asunto(s)
Encefalitis , Receptores de N-Metil-D-Aspartato , Animales , Autoanticuerpos , Barrera Hematoencefálica , Ratones , Células Piramidales
4.
Mol Psychiatry ; 26(6): 1790-1807, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33564132

RESUMEN

Physical activity and cognitive challenge are established non-invasive methods to induce comprehensive brain activation and thereby improve global brain function including mood and emotional well-being in healthy subjects and in patients. However, the mechanisms underlying this experimental and clinical observation and broadly exploited therapeutic tool are still widely obscure. Here we show in the behaving brain that physiological (endogenous) hypoxia is likely a respective lead mechanism, regulating hippocampal plasticity via adaptive gene expression. A refined transgenic approach in mice, utilizing the oxygen-dependent degradation (ODD) domain of HIF-1α fused to CreERT2 recombinase, allows us to demonstrate hypoxic cells in the performing brain under normoxia and motor-cognitive challenge, and spatially map them by light-sheet microscopy, all in comparison to inspiratory hypoxia as strong positive control. We report that a complex motor-cognitive challenge causes hypoxia across essentially all brain areas, with hypoxic neurons particularly abundant in the hippocampus. These data suggest an intriguing model of neuroplasticity, in which a specific task-associated neuronal activity triggers mild hypoxia as a local neuron-specific as well as a brain-wide response, comprising indirectly activated neurons and non-neuronal cells.


Asunto(s)
Hipoxia , Neuronas , Animales , Encéfalo , Hipocampo , Humanos , Ratones , Plasticidad Neuronal
5.
FASEB J ; 33(7): 8634-8647, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31090455

RESUMEN

Reduced expression of 2'-3'-cyclic nucleotide 3'-phosphodiesterase (Cnp) in humans and mice causes white matter inflammation and catatonic signs. These consequences are experimentally alleviated by microglia ablation via colony-stimulating factor 1 receptor (CSF1R) inhibition using PLX5622. Here we address for the first time preclinical topics crucial for translation, most importantly 1) the comparison of 2 long-term PLX5622 applications (prevention and treatment) vs. 1 treatment alone, 2) the correlation of catatonic signs and executive dysfunction, 3) the phenotype of leftover microglia evading depletion, and 4) the role of intercellular interactions for efficient CSF1R inhibition. Based on our Cnp-/- mouse model and in vitro time-lapse imaging, we report the unexpected discovery that microglia surviving under PLX5622 display a highly inflammatory phenotype including aggressive premortal phagocytosis of oligodendrocyte precursor cells. Interestingly, ablating microglia in vitro requires mixed glial cultures, whereas cultured pure microglia withstand PLX5622 application. Importantly, 2 extended rounds of CSF1R inhibition are not superior to 1 treatment regarding any readout investigated (magnetic resonance imaging and magnetic resonance spectroscopy, behavior, immunohistochemistry). Catatonia-related executive dysfunction and brain atrophy of Cnp-/- mice fail to improve under PLX5622. To conclude, even though microglia depletion is temporarily beneficial and worth pursuing, complementary treatment strategies are needed for full and lasting recovery.-Fernandez Garcia-Agudo, L., Janova, H., Sendler, L. E., Arinrad, S., Steixner, A. A., Hassouna, I., Balmuth, E., Ronnenberg, A., Schopf, N., van der Flier, F. J., Begemann, M., Martens, H., Weber, M. S., Boretius, S., Nave, K.-A., Ehrenreich, H. Genetically induced brain inflammation by Cnp deletion transiently benefits from microglia depletion.


Asunto(s)
2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , Encéfalo/patología , Encefalitis/genética , Microglía/patología , Eliminación de Secuencia/genética , Adulto , Animales , Encéfalo/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Compuestos Orgánicos/farmacología , Fenotipo , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Eliminación de Secuencia/efectos de los fármacos
6.
Neurobiol Learn Mem ; 150: 136-150, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29474958

RESUMEN

Based on the intellicage paradigm, we have developed a novel cognitive, emotional and social phenotyping battery that permits comprehensive standardized behavioral characterization of mice in an experimenter-independent social setting. Evaluation of this battery in a large number of male and female C57BL/6 wildtype mice, tested in >20 independent cohorts, revealed high reproducibility of the behavioral readouts and may serve as future reference tool. We noticed robust sex-specific differences in general activity, cognitive and emotional behavior, but not regarding preference for social pheromones. Specifically, female mice revealed higher activity, decreased sucrose preference, impaired reversal and place-time-reward learning. Furthermore, female mice reacted more sensitively than males to reward-withdrawal showing a negative emotional contrast/Crespi-effect. In a series of validation experiments, we tested mice with different pathologies, including neuroligin-3 deficient mice (male Nlgn3y/- and female Nlgn3+/-) for autistic behavior, oligodendrocyte-specific erythropoietin receptor knockout (oEpoR-/-) mice for cognitive impairment, as well as mouse models of renal failure (unilateral ureteral obstruction and 5/6 nephrectomy) and of type 2 diabetes (ApoE-/-) - for delineating potentially confounding effects of motivational factors (thirst, glucose-craving) on learning and memory assessments. As prominent features, we saw in Nlgn3 mutants reduced preference for social pheromones, whereas oEpoR-/- mice showed learning deficits in place or reversal learning tasks. Renal failure led to increased water intake, and diabetic metabolism to enhanced glucose preference, limiting interpretation of hereon based learning and memory performance in these mice. The phenotyping battery presented here may be well-suited as high-throughput multifaceted diagnostic instrument for translational neuropsychiatry and behavioral genetics.


Asunto(s)
Conducta Animal/fisiología , Cognición/fisiología , Emociones/fisiología , Aprendizaje/fisiología , Fenotipo , Conducta Social , Animales , Conducta Exploratoria/fisiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Elife ; 122023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36892455

RESUMEN

A key feature of advanced brain aging includes structural defects of intracortical myelin that are associated with secondary neuroinflammation. A similar pathology is seen in specific myelin mutant mice that model 'advanced brain aging' and exhibit a range of behavioral abnormalities. However, the cognitive assessment of these mutants is problematic because myelin-dependent motor-sensory functions are required for quantitative behavioral readouts. To better understand the role of cortical myelin integrity for higher brain functions, we generated mice lacking Plp1, encoding the major integral myelin membrane protein, selectively in ventricular zone stem cells of the mouse forebrain. In contrast to conventional Plp1 null mutants, subtle myelin defects were restricted to the cortex, hippocampus, and underlying callosal tracts. Moreover, forebrain-specific Plp1 mutants exhibited no defects of basic motor-sensory performance at any age tested. Surprisingly, several behavioral alterations reported for conventional Plp1 null mice (Gould et al., 2018) were absent and even social interactions appeared normal. However, with novel behavioral paradigms, we determined catatonia-like symptoms and isolated executive dysfunction in both genders. This suggests that loss of myelin integrity has an impact on cortical connectivity and underlies specific defects of executive function. These observations are likewise relevant for human neuropsychiatric conditions and other myelin-related diseases.


Asunto(s)
Catatonia , Vaina de Mielina , Ratones , Animales , Femenino , Humanos , Masculino , Vaina de Mielina/metabolismo , Catatonia/metabolismo , Catatonia/patología , Encéfalo/patología , Ratones Noqueados , Cuerpo Calloso , Oligodendroglía
8.
Acta Neuropathol Commun ; 9(1): 121, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215338

RESUMEN

Up to one person in a population of 10,000 is diagnosed once in lifetime with an encephalitis, in 50-70% of unknown origin. Recognized causes amount to 20-50% viral infections. Approximately one third of affected subjects develops moderate and severe subsequent damage. Several neurotropic viruses can directly infect pyramidal neurons and induce neuronal death in cortex and hippocampus. The resulting encephalitic syndromes are frequently associated with cognitive deterioration and dementia, but involve numerous parallel and downstream cellular and molecular events that make the interpretation of direct consequences of sudden pyramidal neuronal loss difficult. This, however, would be pivotal for understanding how neuroinflammatory processes initiate the development of neurodegeneration, and thus for targeted prophylactic and therapeutic interventions. Here we utilized adult male NexCreERT2xRosa26-eGFP-DTA (= 'DTA') mice for the induction of a sterile encephalitis by diphtheria toxin-mediated ablation of cortical and hippocampal pyramidal neurons which also recruits immune cells into gray matter. We report multifaceted aftereffects of this defined process, including the expected pathology of classical hippocampal behaviors, evaluated in Morris water maze, but also of (pre)frontal circuit function, assessed by prepulse inhibition. Importantly, we modelled in encephalitis mice novel translationally relevant sequelae, namely altered social interaction/cognition, accompanied by compromised thermoreaction to social stimuli as convenient readout of parallel autonomic nervous system (dys)function. High resolution magnetic resonance imaging disclosed distinct abnormalities in brain dimensions, including cortical and hippocampal layering, as well as of cerebral blood flow and volume. Fluorescent tracer injection, immunohistochemistry and brain flow cytometry revealed persistent blood-brain-barrier perturbance and chronic brain inflammation. Surprisingly, blood flow cytometry showed no abnormalities in circulating major immune cell subsets and plasma high-mobility group box 1 (HMGB1) as proinflammatory marker remained unchanged. The present experimental work, analyzing multidimensional outcomes of direct pyramidal neuronal loss, will open new avenues for urgently needed encephalitis research.


Asunto(s)
Modelos Animales de Enfermedad , Encefalitis/patología , Sustancia Gris/patología , Células Piramidales/patología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
9.
Nat Commun ; 11(1): 1313, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152318

RESUMEN

Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in mammalian brain. In clinical settings, recombinant EPO treatment has revealed a remarkable improvement of cognition, but underlying mechanisms have remained obscure. Here, we show with a novel line of reporter mice that cognitive challenge induces local/endogenous hypoxia in hippocampal pyramidal neurons, hence enhancing expression of EPO and EPO receptor (EPOR). High-dose EPO administration, amplifying auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single-cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. This suggests a model of neuroplasticity in form of a fundamental regulatory circle, in which neuronal networks-challenged by cognitive tasks-drift into transient hypoxia, thereby triggering neuronal EPO/EPOR expression.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/fisiopatología , Eritropoyetina/metabolismo , Hipoxia/metabolismo , Hipoxia/fisiopatología , Neurogénesis , Plasticidad Neuronal , Animales , Diferenciación Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Eritropoyetina/farmacología , Femenino , Eliminación de Gen , Humanos , Masculino , Ratones Endogámicos C57BL , Modelos Neurológicos , Actividad Motora/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Condicionamiento Físico Animal , Resistencia Física/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Receptores de Eritropoyetina/metabolismo , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
10.
J Clin Invest ; 128(2): 734-745, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29252214

RESUMEN

The underlying cellular mechanisms of catatonia, an executive "psychomotor" syndrome that is observed across neuropsychiatric diseases, have remained obscure. In humans and mice, reduced expression of the structural myelin protein CNP is associated with catatonic signs in an age-dependent manner, pointing to the involvement of myelin-producing oligodendrocytes. Here, we showed that the underlying cause of catatonic signs is the low-grade inflammation of white matter tracts, which marks a final common pathway in Cnp-deficient and other mutant mice with minor myelin abnormalities. The inhibitor of CSF1 receptor kinase signaling PLX5622 depleted microglia and alleviated the catatonic symptoms of Cnp mutants. Thus, microglia and low-grade inflammation of myelinated tracts emerged as the trigger of a previously unexplained mental condition. We observed a very high (25%) prevalence of individuals with catatonic signs in a deeply phenotyped schizophrenia sample (n = 1095). Additionally, we found the loss-of-function allele of a myelin-specific gene (CNP rs2070106-AA) associated with catatonia in 2 independent schizophrenia cohorts and also associated with white matter hyperintensities in a general population sample. Since the catatonic syndrome is likely a surrogate marker for other executive function defects, we suggest that microglia-directed therapies may be considered in psychiatric disorders associated with myelin abnormalities.


Asunto(s)
2',3'-Nucleótido Cíclico 3'-Fosfodiesterasa/genética , Catatonia/patología , Microglía/citología , Vaina de Mielina/química , Adulto , Factores de Edad , Alelos , Animales , Encéfalo/patología , Catatonia/prevención & control , Femenino , Genotipo , Humanos , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Mutación , Oligodendroglía/citología , Compuestos Orgánicos/química , Fenotipo , Prevalencia , Receptor de Factor Estimulante de Colonias de Macrófagos/genética , Esquizofrenia/genética , Sustancia Blanca/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA