Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Biol Cell ; 111(12): 308-318, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31628772

RESUMEN

BACKGROUND INFORMATION: Autophagy is induced during HIV-1 entry into CD4 T cells by the fusion of the membranes triggered by the gp41 envelope glycoprotein. This anti-HIV-1 mechanism is inhibited by the viral infectivity factor (Vif) neosynthesized after HIV-1 integration to allow viral replication. However, autophagy is very rapidly controlled after HIV-1 entry by a still unknown mechanism. As HIV-1 viral protein R (Vpr) is the only auxiliary protein found within the virion in substantial amount, we studied its capability to control the early steps of HIV-1 envelope-mediated autophagy. RESULTS: We demonstrated that ectopic Vpr inhibits autophagy in both the Jurkat CD4 T cell line and HEK.293T cells. Interestingly, Vpr coming from the virus also blocks autophagy in CD4 T cells, the main cell target of HIV-1. Furthermore, Vpr decreases the expression level of two essential autophagy proteins (ATG), LC3B and Beclin-1, and an important autophagy-related protein, BNIP3 as well as the level of their mRNA. We also demonstrated in HEK.293T cells that Vpr degrades the FOXO3a transcription factor through the ubiquitin proteasome system. CONCLUSION: Vpr, the only well-expressed HIV-1 auxiliary protein incorporated into viruses, is able to negatively control autophagy induced during HIV-1 entry into CD4 T cells. SIGNIFICANCE: We provide insights of how HIV-1 controls autophagy very early after its entry into CD4 T cells and discovered a new function of Vpr. These results open the route to a better understanding of the roles of Vpr during HIV-1 infection through FOXO3a degradation and could be important to consider additional therapies that counteract the role of Vpr on autophagy.


Asunto(s)
Autofagia/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , VIH-1 , Productos del Gen vpr del Virus de la Inmunodeficiencia Humana/inmunología , Beclina-1/inmunología , Linfocitos T CD4-Positivos/citología , Células HEK293 , VIH-1/inmunología , VIH-1/fisiología , Humanos , Células Jurkat , Proteínas de la Membrana/inmunología , Proteínas Asociadas a Microtúbulos/inmunología , Proteínas Proto-Oncogénicas/inmunología , Proteínas Supresoras de Tumor/inmunología , Replicación Viral
2.
J Neurochem ; 140(3): 485-494, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27861891

RESUMEN

Dominant optic atrophy (DOA) is because of mutations in the mitochondrial protein OPA1. The disease principally affects retinal ganglion cells, whose axons degenerate leading to vision impairments, and sometimes other neuronal phenotypes. The exact mechanisms underlying DOA pathogenesis are not known. We previously demonstrated that the main role of OPA1, as a mitochondrial fusogenic and anti-apoptotic protein, are inhibited by interaction with the stress inducible pro-apoptotic BNIP3 protein. Because BNIP3 was recently reported to participate in autophagy and mitophagy, we tested the involvement of these processes in DOA pathogenesis. Using an in vitro neuronal model of DOA, we identified a BNIP3 down-regulation that reduced autophagy and mitophagy. Restoring BNIP3 had a biphasic effect, first rescuing autophagy and mitophagy levels but later leading to cell death. Similarly, in an in vivo mouse model of DOA, we showed that BNIP3 levels are decreased in young adult mice and increase to normal levels upon aging, paralleling disease progression. Altogether, our results indicate that the relationship between OPA1 and BNIP3 may have important bearings on DOA pathogenesis.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Haploinsuficiencia/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Mitofagia/fisiología , Neuronas/metabolismo , Atrofia Óptica Autosómica Dominante/metabolismo , Animales , Femenino , GTP Fosfohidrolasas/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Transgénicos , Proteínas Mitocondriales/genética , Neuronas/patología , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/patología , Embarazo , Ratas , Ratas Wistar
3.
EMBO Rep ; 12(3): 223-30, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21274005

RESUMEN

Mitochondria are highly dynamic organelles that can change in number and morphology during cell cycle, development or in response to extracellular stimuli. These morphological dynamics are controlled by a tight balance between two antagonistic pathways that promote fusion and fission. Genetic approaches have identified a cohort of conserved proteins that form the core of mitochondrial remodelling machineries. Mitofusins (MFNs) and OPA1 proteins are dynamin-related GTPases that are required for outer- and inner-mitochondrial membrane fusion respectively whereas dynamin-related protein 1 (DRP1) is the master regulator of mitochondrial fission. We demonstrate here that the Drosophila PMI gene and its human orthologue TMEM11 encode mitochondrial inner-membrane proteins that regulate mitochondrial morphogenesis. PMI-mutant cells contain a highly condensed mitochondrial network, suggesting that PMI has either a pro-fission or an anti-fusion function. Surprisingly, however, epistatic experiments indicate that PMI shapes the mitochondria through a mechanism that is independent of drp1 and mfn. This shows that mitochondrial networks can be shaped in higher eukaryotes by at least two separate pathways: one PMI-dependent and one DRP1/MFN-dependent.


Asunto(s)
Proteínas de Drosophila/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Dinaminas , Proteínas de Unión al GTP/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/genética , Morfogénesis/genética , ARN Interferente Pequeño
4.
eNeuro ; 10(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37863658

RESUMEN

Mitochondria are integrative hubs central to cellular adaptive pathways. Such pathways are critical in highly differentiated postmitotic neurons, the plasticity of which sustains brain function. Consequently, defects in mitochondria and in their dynamics appear instrumental in neurodegenerative diseases and may also participate in cognitive impairments. To directly test this hypothesis, we analyzed cognitive performances in a mouse mitochondria-based disease model, because of haploinsufficiency in the mitochondrial optic atrophy type 1 (OPA1) protein involved in mitochondrial dynamics. In males, we evaluated adult hippocampal neurogenesis parameters using immunohistochemistry. We performed a battery of tests to assess basal behavioral characteristics and cognitive performances, and tested putative treatments. While in dominant optic atrophy (DOA) mouse models, the known main symptoms are late onset visual deficits, we discovered early impairments in hippocampus-dependent spatial memory attributable to defects in adult neurogenesis. Moreover, less connected adult-born hippocampal neurons showed a decrease in mitochondrial content. Remarkably, voluntary exercise or pharmacological treatment targeting mitochondrial dynamics restored spatial memory in DOA mice. Altogether, our study identifies a crucial role for OPA1-dependent mitochondrial functions in adult neurogenesis, and thus in hippocampal-dependent cognitive functions. More generally, our findings show that adult neurogenesis is highly sensitive to mild mitochondrial defects, generating impairments in spatial memory that can be detected at an early stage and counterbalanced by physical exercise and pharmacological targeting of mitochondrial dynamics. Thus, amplification of mitochondrial function at an early stage appears beneficial for late-onset neurodegenerative diseases.


Asunto(s)
Enfermedades Neurodegenerativas , Atrofia Óptica Autosómica Dominante , Masculino , Ratones , Animales , Memoria Espacial , Mitocondrias/metabolismo , Neurogénesis/fisiología , Neuronas/metabolismo , Atrofia Óptica Autosómica Dominante/metabolismo , Hipocampo/metabolismo , Enfermedades Neurodegenerativas/metabolismo
5.
Semin Cell Dev Biol ; 21(6): 593-8, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20045077

RESUMEN

Mitochondrial morphology varies according to cell type and cellular context from an interconnected filamentous network to isolated dots. This morphological plasticity depends on mitochondrial dynamics, a balance between antagonistic forces of fission and fusion. DRP1 and FIS1 control mitochondrial outer membrane fission and Mitofusins its fusion. This review focuses on OPA1, one of the few known actors of inner membrane dynamics, whose mutations provoke an optic neuropathy. Since its first identification in 2000 the characterization of the functions of OPA1 has made rapid progress thus providing numerous clues to unravel the pathogenetic mechanisms of ADOA-1.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Apoptosis , ADN Mitocondrial/metabolismo , Metabolismo Energético , GTP Fosfohidrolasas/genética , Humanos , Fusión de Membrana , Mitocondrias/ultraestructura , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Mutación , Atrofia Óptica Autosómica Dominante/fisiopatología
6.
EMBO Rep ; 11(6): 459-65, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20436456

RESUMEN

Opa1 modulates mitochondrial fusion, cristae structure and apoptosis. The relationships between these functions and autosomal dominant optic atrophy, caused by mutations in Opa1, are poorly defined. We show that Bnip3 interacts with Opa1, leading to mitochondrial fragmentation and apoptosis. Fission is due to inhibition of Opa1-mediated fusion and is counteracted by Opa1 in an Mfn1-dependent manner. Bnip3-Opa1 interaction is necessary to trigger Opa1 complex disruption in a Bax- and/or Bak-dependent manner, ultimately leading to apoptosis. Our results uncover a direct link between Opa1 on the inner mitochondrial membrane and the apoptotic machinery on the outer membrane that modulates fusion and cristae structure by separate mechanisms. These findings might help to unravel optic atrophy aetiology as retinal ganglion cells are particularly prone to hypoxia, an inductor of Bnip3 expression.


Asunto(s)
Apoptosis , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , GTP Fosfohidrolasas/química , Células HeLa , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína
7.
Med Sci (Paris) ; 26(10): 823-9, 2010 Oct.
Artículo en Francés | MEDLINE | ID: mdl-20929672

RESUMEN

Mitochondria are dynamic organelles that continuously move, fuse and divide. Their overall morphology, ranging from a filamentous network to a collection of isolated dots, is determined by fusion-fission equilibrium, which depends on the cellular and physiological context. The machineries of fusion and fission, that are conserved throughout evolution, include three large GTPases of the dynamin-superfamily: Dnm1/DRP1 - involved in fission - as well as Fzo1/MFN and Mgm1/OPA1 - required for fusion. While the activities, mecanisms and regulations of mitochondrial fusion and fission machineries continue to be unravelled, the relevance of mitochondrial dynamics is witnessed by their impact on organelle functions, cell survival and cell differenciation, their requirement for embryonic development and their involvement in neurological diseases.


Asunto(s)
Mitocondrias/fisiología , Mitocondrias/ultraestructura , Animales , Evolución Biológica , Fenómenos Biomecánicos , Fusión Celular , Eliminación de Gen , Técnicas de Inactivación de Genes , Humanos , Cinética , Mutación , Enfermedades del Sistema Nervioso/fisiopatología , Orgánulos/fisiología , Orgánulos/ultraestructura
8.
Neurotox Res ; 36(2): 257-267, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30215161

RESUMEN

Generation of new neurons is a tightly regulated process that involves several intrinsic and extrinsic factors. Among them, a metabolic switch from glycolysis to oxidative phosphorylation, together with mitochondrial remodeling, has emerged as crucial actors of neurogenesis. However, although accumulating data raise the importance of mitochondrial morphology and function in neural stem cell proliferation and differentiation during development, information regarding the contribution of mitochondria to adult neurogenesis processes remains limited. In the present review, we discuss recent evidence covering the importance of mitochondrial morphology, function, and energy metabolism in the regulation of neuronal development and adult neurogenesis, and their impact on memory processes.


Asunto(s)
Mitocondrias/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Adulto , Animales , Diferenciación Celular/fisiología , Humanos
9.
Dis Model Mech ; 12(2)2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30658998

RESUMEN

Mitochondria continually move, fuse and divide, and these dynamics are essential for the proper function of the organelles. Indeed, the dynamic balance of fusion and fission of mitochondria determines their morphology and allows their immediate adaptation to energetic needs as well as preserving their integrity. As a consequence, mitochondrial fusion and fission dynamics and the proteins that control these processes, which are conserved from yeast to human, are essential, and their disturbances are associated with severe human disorders, including neurodegenerative diseases. For example, mutations in OPA1, which encodes a conserved factor essential for mitochondrial fusion, lead to optic atrophy 1, a neurodegeneration that affects the optic nerve, eventually leading to blindness. Here, by screening a collection of ∼1600 repurposed drugs on a fission yeast model, we identified five compounds able to efficiently prevent the lethality associated with the loss of Msp1p, the fission yeast ortholog of OPA1. One compound, hexestrol, was able to rescue both the mitochondrial fragmentation and mitochondrial DNA (mtDNA) depletion induced by the loss of Msp1p, whereas the second, clomifene, only suppressed the mtDNA defect. Yeast has already been successfully used to identify candidate drugs to treat inherited mitochondrial diseases; this work may therefore provide useful leads for the treatment of optic atrophies such as optic atrophy 1 or Leber hereditary optic neuropathy.


Asunto(s)
ADN Mitocondrial/metabolismo , Evaluación Preclínica de Medicamentos , Reposicionamiento de Medicamentos , Dinámicas Mitocondriales , Schizosaccharomyces/metabolismo , Clomifeno/farmacología , Hexestrol/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Dominios Proteicos , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo
10.
Sci Rep ; 9(1): 6107, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30988455

RESUMEN

Pathogenic variants of OPA1, which encodes a dynamin GTPase involved in mitochondrial fusion, are responsible for a spectrum of neurological disorders sharing optic nerve atrophy and visual impairment. To gain insight on OPA1 neuronal specificity, we performed targeted metabolomics on rat cortical neurons with OPA1 expression inhibited by RNA interference. Of the 103 metabolites accurately measured, univariate analysis including the Benjamini-Hochberg correction revealed 6 significantly different metabolites in OPA1 down-regulated neurons, with aspartate being the most significant (p < 0.001). Supervised multivariate analysis by OPLS-DA yielded a model with good predictive capability (Q2cum = 0.65) and a low risk of over-fitting (permQ2 = -0.16, CV-ANOVA p-value 0.036). Amongst the 46 metabolites contributing the most to the metabolic signature were aspartate, glutamate and threonine, which all decreased in OPA1 down-regulated neurons, and lysine, 4 sphingomyelins, 4 lysophosphatidylcholines and 32 phosphatidylcholines which were increased. The phospholipid signature may reflect intracellular membrane remodeling due to loss of mitochondrial fusion and/or lipid droplet accumulation. Aspartate and glutamate deficiency, also found in the plasma of OPA1 patients, is likely the consequence of respiratory chain deficiency, whereas the glutamate decrease could contribute to the synaptic dysfunction that we previously identified in this model.


Asunto(s)
Corteza Cerebral/patología , GTP Fosfohidrolasas/deficiencia , Neuronas/patología , Atrofia Óptica Autosómica Dominante/patología , Animales , Ácido Aspártico/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Embrión de Mamíferos , Femenino , GTP Fosfohidrolasas/genética , Ácido Glutámico/metabolismo , Humanos , Metabolómica , Atrofia Óptica Autosómica Dominante/genética , Fosfolípidos/metabolismo , Cultivo Primario de Células , ARN Interferente Pequeño/metabolismo , Ratas
11.
Biochim Biophys Acta ; 1763(5-6): 500-9, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16737747

RESUMEN

The mitochondria are dynamic organelles that constantly fuse and divide. An equilibrium between fusion and fission controls the morphology of the mitochondria, which appear as dots or elongated tubules depending the prevailing force. Characterization of the components of the fission and fusion machineries has progressed considerably, and the emerging question now is what role mitochondrial dynamics play in mitochondrial and cellular functions. Its importance has been highlighted by the discovery that two human diseases are caused by mutations in the two mitochondrial pro-fusion genes, MFN2 and OPA1. This review will focus on data concerning the function of OPA1, mutations in which cause optic atrophy, with respect to the underlying pathophysiological processes.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Atrofia Óptica Autosómica Dominante/patología , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Proteínas Mitocondriales/metabolismo , Mutación/genética , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Levaduras/metabolismo
12.
FEBS Lett ; 590(20): 3544-3558, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27664110

RESUMEN

Mitochondria continually fuse and divide to dynamically adapt to changes in metabolism and stress. Mitochondrial dynamics are also required for mitochondrial DNA (mtDNA) integrity; however, the underlying reason is not known. In this study, we examined the link between mitochondrial fusion and mtDNA maintenance in Schizosaccharomyces pombe, which cannot survive without mtDNA, by screening for suppressors of the lethality induced by loss of the dynamin-related large GTPase Msp1p. Our findings reveal that inactivation of Msp1p induces a ROS-dependent nuclear mutator phenotype that affects mitochondrial fission genes involved in suppressing mitochondrial fragmentation and mtDNA depletion. This indicates that mitochondrial fusion is crucial for maintaining the integrity of both mitochondrial and nuclear genetic information. Furthermore, our study suggests that the primary roles of Msp1p are to organize mitochondrial membranes, thus making them competent for fusion, and maintain the integrity of mtDNA.


Asunto(s)
Dinaminas/deficiencia , GTP Fosfohidrolasas/deficiencia , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Schizosaccharomyces/enzimología , ADN Mitocondrial/metabolismo , Regulación Fúngica de la Expresión Génica , Dinámicas Mitocondriales , Fenotipo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
FEBS Lett ; 584(14): 3153-7, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20621843

RESUMEN

Mitochondrial fusion depends on the evolutionary conserved dynamin, OPA1/Mgm1p/Msp1p, whose activity is controlled by proteolytic processing. Since processing diverges between Mgm1p (Saccharomyces cerevisiae) and OPA1 (mammals), we explored this process in another model, Msp1p in Schizosaccharomyces pombe. Generation of the short isoform of Msp1p neither results from the maturation of the long isoform nor correlates with mitochondrial ATP levels. Msp1p is processed by rhomboid and a protease of the matrix ATPase associated with various cellular activities (m-AAA) family. The former is involved in the generation of short Msp1p and the latter in the stability of long Msp1p. These results reveal that Msp1p processing may represent an evolutionary switch between Mgm1p and OPA1.


Asunto(s)
Dinaminas/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Evolución Biológica , Dinaminas/genética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Fusión de Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/metabolismo , Isoformas de Proteínas/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
14.
J Cell Sci ; 122(Pt 15): 2632-9, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19567474

RESUMEN

Mitochondrial morphology depends on the equilibrium between antagonistic fission and fusion forces acting on mitochondrial membranes. Inactivation of fusion induces the loss of mtDNA. When both fusion and fission are simultaneously inactivated, the loss of mtDNA is alleviated, along with mitochondrial fragmentation. Mechanisms involved in mtDNA maintenance thus seem to depend on a coordinated regulation of fusion and fission forces. We have studied the role of the dynamin Msp1p, a fusion effector in mitochondrial morphology, in relation to the maintenance of mtDNA. Two hydrophobic regions of Msp1p, predicted to be transmembrane segments, were shown to anchor the long form of the protein into mitochondrial membranes, whereas the short form, lacking these two domains, behaved as a peripheral membrane protein. Both domains were essential for the fusogenic activity of Msp1p, but deletion of the second domain alone induced loss of mtDNA and thus lethality. Our results demonstrate that the role of Msp1p in the control of mitochondrial morphology is distinct from that required for genome maintenance, and that only the latter function is essential for cell viability. This parallels recent observations that have distinguished the role of OPA1, the human orthologue of Msp1p, in mitochondrial dynamics from that in cristae organization and apoptosis. Furthermore, our observations may contribute to our understanding of the pathological mechanisms resulting from mutations in OPA1 that give rise to the ADOA syndromes.


Asunto(s)
ADN Mitocondrial/genética , Dinaminas/metabolismo , Genoma Fúngico , Mitocondrias/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Dinaminas/genética , Genes Letales , Membranas Mitocondriales/metabolismo , Isoformas de Proteínas , Proteínas de Schizosaccharomyces pombe/genética
15.
J Cell Physiol ; 211(2): 423-30, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17167772

RESUMEN

To characterize the molecular links between type-1 autosomal dominant optic atrophy (ADOA) and OPA1 dysfunctions, the effects of pathogenic alleles of this dynamin on mitochondrial morphology and apoptosis were analyzed, either in fibroblasts from affected individuals, or in HeLa cells transfected with similar mutants. The alleles were missense substitutions in the GTPase domain (OPA1(G300E) and OPA1(R290Q)) or deletion of the GTPase effector domain (OPA1(Delta58)). Fragmentation of mitochondria and apoptosis increased in OPA1(R290Q) fibroblasts and in OPA1(G300E) transfected HeLa cells. OPA1(Delta58) did not influence mitochondrial morphology, but increased the sensitivity to staurosporine of fibroblasts. In these cells, the amount of OPA1 protein was half of that in control fibroblasts. We conclude that GTPase mutants exert a dominant negative effect by competing with wild-type alleles to integrate into fusion-competent complexes, whereas C-terminal truncated alleles act by haplo-insufficiency. We present a model where antagonistic fusion and fission forces maintain the mitochondrial network, within morphological limits that are compatible with cellular functions. In the retinal ganglion cells (RGCs) of patients suffering from type-1 ADOA, OPA1-driven fusion cannot adequately oppose fission, thereby rendering them more sensitive to apoptotic stimuli and eventually leading to optic nerve degeneration.


Asunto(s)
Apoptosis , Fibroblastos/metabolismo , GTP Fosfohidrolasas/metabolismo , Mitocondrias/metabolismo , Mutación , Atrofia Óptica Autosómica Dominante/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/genética , Western Blotting , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , GTP Fosfohidrolasas/genética , Eliminación de Gen , Células HeLa , Humanos , Microscopía Fluorescente , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Mutación Missense , Atrofia Óptica Autosómica Dominante/genética , Atrofia Óptica Autosómica Dominante/patología , Atrofia Óptica Autosómica Dominante/fisiopatología , Fenotipo , Piel/metabolismo , Piel/patología , Estaurosporina/farmacología , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA