Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
EMBO Rep ; 24(6): e56319, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37114473

RESUMEN

Vitamins are essential micronutrients, but the mechanisms of vitamin chemoreception in animals are poorly understood. Here, we provide evidence that vitamin C doubles starvation resistance and induces egg laying in Drosophila melanogaster. Our behavioral analyses of genetically engineered and anatomically ablated flies show that fruit flies sense vitamin C via sweet-sensing gustatory receptor neurons (GRNs) in the labellum. Using a behavioral screen and in vivo electrophysiological analyses of ionotropic receptors (IRs) and sweet-sensing gustatory receptors (GRs), we find that two broadly tuned IRs (i.e., IR25a and IR76b) and five GRs (i.e., GR5a, GR61a, GR64b, GR64c, and GR64e) are essential for vitamin C detection. Thus, vitamin C is directly detected by the fly labellum and requires at least two distinct receptor types. Next, we expand our electrophysiological study to test attractive tastants such as sugars, carboxylic acids, and glycerol. Our analysis elucidates the molecular basis of chemoreception in sweet-sensing GRNs.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/fisiología , Drosophila melanogaster/genética , Gusto/fisiología , Ácido Ascórbico/farmacología , Proteínas de Drosophila/genética , Vitaminas , Receptores de Superficie Celular/genética
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33495342

RESUMEN

miR-33 is an intronic microRNA within the gene encoding the SREBP2 transcription factor. Like its host gene, miR-33 has been shown to be an important regulator of lipid metabolism. Inhibition of miR-33 has been shown to promote cholesterol efflux in macrophages by targeting the cholesterol transporter ABCA1, thus reducing atherosclerotic plaque burden. Inhibition of miR-33 has also been shown to improve high-density lipoprotein (HDL) biogenesis in the liver and increase circulating HDL-C levels in both rodents and nonhuman primates. However, evaluating the extent to which these changes in HDL metabolism contribute to atherogenesis has been hindered by the obesity and metabolic dysfunction observed in whole-body miR-33-knockout mice. To determine the impact of hepatic miR-33 deficiency on obesity, metabolic function, and atherosclerosis, we have generated a conditional knockout mouse model that lacks miR-33 only in the liver. Characterization of this model demonstrates that loss of miR-33 in the liver does not lead to increased body weight or adiposity. Hepatic miR-33 deficiency actually improves regulation of glucose homeostasis and impedes the development of fibrosis and inflammation. We further demonstrate that hepatic miR-33 deficiency increases circulating HDL-C levels and reverse cholesterol transport capacity in mice fed a chow diet, but these changes are not sufficient to reduce atherosclerotic plaque size under hyperlipidemic conditions. By elucidating the role of miR-33 in the liver and the impact of hepatic miR-33 deficiency on obesity and atherosclerosis, this work will help inform ongoing efforts to develop novel targeted therapies against cardiometabolic diseases.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/fisiopatología , Peso Corporal , Homeostasis , Hígado/metabolismo , Hígado/fisiopatología , MicroARNs/metabolismo , Animales , Aterosclerosis/sangre , Transporte Biológico , Tetracloruro de Carbono , Colesterol/metabolismo , Dieta Alta en Grasa , Conducta Alimentaria , Regulación de la Expresión Génica , Lipoproteínas HDL/sangre , Ratones , MicroARNs/genética , Obesidad/genética , Placa Aterosclerótica/genética , Placa Aterosclerótica/fisiopatología
3.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34782454

RESUMEN

Cholesterol biosynthetic intermediates, such as lanosterol and desmosterol, are emergent immune regulators of macrophages in response to inflammatory stimuli or lipid overloading, respectively. However, the participation of these sterols in regulating macrophage functions in the physiological context of atherosclerosis, an inflammatory disease driven by the accumulation of cholesterol-laden macrophages in the artery wall, has remained elusive. Here, we report that desmosterol, the most abundant cholesterol biosynthetic intermediate in human coronary artery lesions, plays an essential role during atherogenesis, serving as a key molecule integrating cholesterol homeostasis and immune responses in macrophages. Depletion of desmosterol in myeloid cells by overexpression of 3ß-hydroxysterol Δ24-reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol, promotes the progression of atherosclerosis. Single-cell transcriptomics in isolated CD45+CD11b+ cells from atherosclerotic plaques demonstrate that depletion of desmosterol increases interferon responses and attenuates the expression of antiinflammatory macrophage markers. Lipidomic and transcriptomic analysis of in vivo macrophage foam cells demonstrate that desmosterol is a major endogenous liver X receptor (LXR) ligand involved in LXR/retinoid X receptor (RXR) activation and thus macrophage foam cell formation. Decreased desmosterol accumulation in mitochondria promotes macrophage mitochondrial reactive oxygen species production and NLR family pyrin domain containing 3 (NLRP3)-dependent inflammasome activation. Deficiency of NLRP3 or apoptosis-associated speck-like protein containing a CARD (ASC) rescues the increased inflammasome activity and atherogenesis observed in desmosterol-depleted macrophages. Altogether, these findings underscore the critical function of desmosterol in the atherosclerotic plaque to dampen inflammation by integrating with macrophage cholesterol metabolism and inflammatory activation and protecting from disease progression.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Desmosterol/farmacología , Inflamasomas/metabolismo , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Colesterol/metabolismo , Vasos Coronarios , Células Espumosas/metabolismo , Humanos , Inflamación/metabolismo , Metabolismo de los Lípidos , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Placa Aterosclerótica/metabolismo , Esteroles/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 40(6): 1510-1522, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32349535

RESUMEN

OBJECTIVE: Endothelial Cav-1 (caveolin-1) expression plays a relevant role during atherogenesis by controlling NO production, vascular inflammation, LDL (low-density lipoprotein) transcytosis, and extracellular matrix remodeling. Additional studies have identified cholesterol-rich membrane domains as important regulators of autophagy by recruiting ATGs (autophagy-related proteins) to the plasma membrane. Here, we investigate how the expression of Cav-1 in the aortic endothelium influences autophagy and whether enhanced autophagy contributes to the atheroprotective phenotype observed in Cav-1-deficient mice. Approach and Results: To analyze the impact of Cav-1 deficiency on regulation of autophagy in the aortic endothelium during the progression of atherosclerosis, we fed Ldlr-/- and Cav-1-/-Ldlr-/- mice a Western diet and assessed autophagy in the vasculature. We observe that the absence of Cav-1 promotes autophagy activation in athero-prone areas of the aortic endothelium by enhancing autophagic flux. Mechanistically, we found that Cav-1 interacts with the ATG5-ATG12 complex and influences the cellular localization of autophagosome components in lipid rafts, which controls the autophagosome formation and autophagic flux. Pharmacological inhibition of autophagy attenuates the atheroprotection observed in Cav-1-/- mice by increasing endothelial inflammation and macrophage recruitment, identifying a novel molecular mechanism by which Cav-1 deficiency protects against the progression of atherosclerosis. CONCLUSIONS: These results identify Cav-1 as a relevant regulator of autophagy in the aortic endothelium and demonstrate that pharmacological suppression of autophagic flux in Cav-1-deficient mice attenuates the atheroprotection observed in Cav-1-/- mice. Additionally, these findings suggest that activation of endothelial autophagy by blocking Cav-1 might provide a potential therapeutic strategy for cardiovascular diseases including atherosclerosis.


Asunto(s)
Aterosclerosis/prevención & control , Autofagia/fisiología , Caveolina 1/deficiencia , Endotelio Vascular/fisiopatología , Vasculitis/prevención & control , Adenina/análogos & derivados , Adenina/farmacología , Animales , Aorta/patología , Aorta/fisiopatología , Aorta/ultraestructura , Aterosclerosis/etiología , Autofagia/efectos de los fármacos , Caveolina 1/análisis , Caveolina 1/fisiología , Dieta Occidental , Células Endoteliales/química , Células Endoteliales/fisiología , Células Endoteliales/ultraestructura , Endotelio Vascular/química , Endotelio Vascular/ultraestructura , Femenino , Humanos , Masculino , Microdominios de Membrana/química , Microdominios de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células 3T3 NIH , Receptores de LDL/deficiencia
5.
Semin Cell Dev Biol ; 81: 129-140, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29183708

RESUMEN

Alterations in lipoprotein metabolism enhance the risk of cardiometabolic disorders including type-2 diabetes and atherosclerosis, the leading cause of death in Western societies. While the transcriptional regulation of lipid metabolism has been well characterized, recent studies have uncovered the importance of microRNAs (miRNAs), long-non-coding RNAs (lncRNAs) and RNA binding proteins (RBP) in regulating the expression of lipid-related genes at the posttranscriptional level. Work from several groups has identified a number of miRNAs, including miR-33, miR-122 and miR-148a, that play a prominent role in controlling cholesterol homeostasis and lipoprotein metabolism. Importantly, dysregulation of miRNA expression has been associated with dyslipidemia, suggesting that manipulating the expression of these miRNAs could be a useful therapeutic approach to ameliorate cardiovascular disease (CVD). The role of lncRNAs in regulating lipid metabolism has recently emerged and several groups have demonstrated their regulation of lipoprotein metabolism. However, given the high abundance of lncRNAs and the poor-genetic conservation between species, much work will be needed to elucidate the specific role of lncRNAs in controlling lipoprotein metabolism. In this review article, we summarize recent findings in the field and highlight the specific contribution of lncRNAs and RBPs in regulating lipid metabolism.


Asunto(s)
Regulación de la Expresión Génica , Metabolismo de los Lípidos/genética , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética , Animales , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Homeostasis/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
Circulation ; 140(3): 225-239, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31154825

RESUMEN

BACKGROUND: Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear. METHODS: Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy. RESULTS: We found that absence of Cav1 significantly suppressed atherogenesis in Ldlr-/-eNOS-/- mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice. CONCLUSIONS: These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production.


Asunto(s)
Aterosclerosis/metabolismo , Caveolina 1/fisiología , Endotelio Vascular/metabolismo , Lipoproteínas LDL/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transcitosis/fisiología , Animales , Aterosclerosis/patología , Aterosclerosis/prevención & control , Células Cultivadas , Perros , Endotelio Vascular/patología , Activación Enzimática/fisiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
7.
BMC Pediatr ; 20(1): 249, 2020 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-32456624

RESUMEN

BACKGROUND: Despite consistent efforts to enhance child nutrition, poor nutritional status of children continues to be a major public health problem in Nepal. This study identified the predictors of severe acute malnutrition (SAM) among children aged 6 to 59 months in the two districts of Nepal. METHODS: We used data from a cross-sectional study conducted among 6 to 59 months children admitted to the Outpatient Therapeutic Care Centers (OTCC). The nutritional status of children was assessed using mid-upper arm circumference (MUAC) measurement. To determine which variables predict the occurrence of SAM, adjusted odds ratio was computed using multivariate logistic regression and p-value < 0.05 was considered as significant. RESULTS: Out of 398 children, 5.8% were severely malnourished and the higher percentage of female children were malnourished. Multivariate analysis showed that severe acute malnutrition was significantly associated with family size (five or more members) (Adjusted Odds Ratio [AOR]: 3.96; 95% Confidence Interval [CI]: 1.23-12.71). Children from severely food insecure households (AOR: 4.04; 95% CI: 1.88-10.53) were four times more likely to be severely malnourished. Higher odds of SAM were found among younger age-group (AOR: 12.10; 95% CI: 2.06-71.09) children (0-12 vs. 24-59 months). CONCLUSIONS: The findings of this study indicated that household size, household food access, and the child's age were the major predictors of severe acute malnutrition. Engaging poor families in kitchen gardening to ensure household food access and nutritious diet to the children, along with health education and promotion to the mothers of young children are therefore recommended to reduce child undernutrition.


Asunto(s)
Trastornos de la Nutrición del Niño , Desnutrición , Desnutrición Aguda Severa , Niño , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Desnutrición/diagnóstico , Desnutrición/epidemiología , Desnutrición/etiología , Nepal/epidemiología , Desnutrición Aguda Severa/diagnóstico , Desnutrición Aguda Severa/epidemiología
8.
Curr Opin Lipidol ; 28(3): 273-280, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28333713

RESUMEN

PURPOSE OF REVIEW: Work over the past decade has identified the important role of microRNAs (miRNAS) in regulating lipoprotein metabolism and associated disorders including metabolic syndrome, obesity, and atherosclerosis. This review summarizes the most recent findings in the field, highlighting the contribution of miRNAs in controlling LDL-cholesterol (LDL-C) and HDL-cholesterol (HDL-C) metabolism. RECENT FINDINGS: A number of miRNAs have emerged as important regulators of lipid metabolism, including miR-122 and miR-33. Work over the past 2 years has identified additional functions of miR-33 including the regulation of macrophage activation and mitochondrial metabolism. Moreover, it has recently been shown that miR-33 regulates vascular homeostasis and cardiac adaptation in response to pressure overload. In addition to miR-33 and miR-122, recent GWAS have identified single-nucleotide polymorphisms in the proximity of miRNA genes associated with abnormal levels of circulating lipids in humans. Several of these miRNAs, such as miR-148a and miR-128-1, target important proteins that regulate cellular cholesterol metabolism, including the LDL receptor (LDLR) and the ATP-binding cassette A1 (ABCA1). SUMMARY: MicroRNAs have emerged as critical regulators of cholesterol metabolism and promising therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field, highlighting the novel mechanisms by which miR-33 controls lipid metabolism and atherogenesis, and the identification of novel miRNAs that regulate LDL metabolism. Finally, we summarize the recent findings that identified miR-33 as an important noncoding RNA that controls cardiovascular homeostasis independent of its role in regulating lipid metabolism.


Asunto(s)
Metabolismo de los Lípidos/genética , MicroARNs/genética , Animales , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Humanos
9.
FASEB J ; 29(2): 597-610, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25392271

RESUMEN

Atherosclerosis is the major cause of death and disability in diabetic and obese subjects with insulin resistance. Akt2, a phosphoinositide-dependent serine-threonine protein kinase, is highly express in insulin-responsive tissues; however, its role during the progression of atherosclerosis remains unknown. Thus, we aimed to investigate the contribution of Akt2 during the progression of atherosclerosis. We found that germ-line Akt2-deficient mice develop similar atherosclerotic plaques as wild-type mice despite higher plasma lipids and glucose levels. It is noteworthy that transplantation of bone marrow cells isolated from Akt2(-/-) mice to Ldlr(-/-) mice results in marked reduction of the progression of atherosclerosis compared with Ldlr(-/-) mice transplanted with wild-type bone marrow cells. In vitro studies indicate that Akt2 is required for macrophage migration in response to proatherogenic cytokines (monocyte chemotactic protein-1 and macrophage colony-stimulating factor). Moreover, Akt2(-/-) macrophages accumulate less cholesterol and have an alternative activated or M2-type phenotype when stimulated with proinflammatory cytokines. Together, these results provide evidence that macrophage Akt2 regulates migration, the inflammatory response and cholesterol metabolism and suggest that targeting Akt2 in macrophages might be beneficial for treating atherosclerosis.


Asunto(s)
Aterosclerosis/fisiopatología , Proteínas Proto-Oncogénicas c-akt/deficiencia , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Glucemia/metabolismo , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Movimiento Celular , Colesterol/metabolismo , Citocinas/metabolismo , Progresión de la Enfermedad , Inflamación , Insulina/química , Leucocitos/citología , Lípidos/sangre , Lipoproteínas LDL/metabolismo , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Placa Aterosclerótica , Receptores de LDL/genética
10.
Curr Atheroscler Rep ; 16(5): 407, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623179

RESUMEN

Noncoding RNAs (ncRNAs) represent a class of RNA molecules that typically do not code for proteins. Emerging data suggest that ncRNAs play an important role in several physiological and pathological conditions such as cancer and cardiovascular diseases, including atherosclerosis. The best-characterized ncRNAs are the microRNAs which are small, approximately 22-nucleotide sequences of RNA that regulate gene expression at the posttranscriptional level through transcript degradation or translational repression. MicroRNAs control several aspects of atherosclerosis, including endothelial cell, vascular smooth cell, and macrophage functions as well as lipoprotein metabolism. Apart from microRNAs, recently ncRNAs, especially long ncRNAs, have emerged as important potential regulators of the progression of atherosclerosis. However, the molecular mechanism of their regulation and function as well as the significance of other ncRNAs such as small nucleolar RNAs during atherogenesis is largely unknown. In this review, we summarize the recent findings in the field, highlighting the importance of ncRNAs in atherosclerosis and discuss their potential use as therapeutic targets in cardiovascular diseases.


Asunto(s)
Aterosclerosis/genética , Regulación de la Expresión Génica/genética , Predisposición Genética a la Enfermedad , MicroARNs/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , Animales , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Humanos , MicroARNs/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 33(8): 1973-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23702658

RESUMEN

OBJECTIVE: To study the efficacy of anti-miRNA-33 therapy on the progression of atherosclerosis. APPROACH AND RESULTS: Ldlr(-/-) mice were injected subcutaneously with PBS, control, or anti-miR-33 oligonucleotides weekly and fed a Western diet for 12 weeks. At the end of treatment, the expression of miR-33 target genes was increased in the liver and aorta, demonstrating effective inhibition of miR-33 function. Interestingly, plasma high-density lipoprotein (HDL)-cholesterol was significantly increased in anti-miR-33-treated mice but only when they were fed a chow diet. However, HDL isolated from anti-miR-33-treated mice showed an increase cholesterol efflux capacity compared with HDL isolated from nontargeting oligonucleotide-treated mice. Analysis of atherosclerosis revealed a significant reduction of plaque size and macrophage content in mice receiving anti-miR-33. In contrast, no differences in collagen content and necrotic areas were observed among the 3 groups. CONCLUSIONS: Long-term anti-miR-33 therapy significantly reduces the progression of atherosclerosis and improves HDL functionality. The antiatherogenic effect is independent of plasma HDL-cholesterol levels.


Asunto(s)
Aterosclerosis/genética , Aterosclerosis/terapia , Terapia Genética/métodos , MicroARNs/genética , Receptores de LDL/genética , Alimentación Animal , Animales , Aterosclerosis/patología , HDL-Colesterol/sangre , Progresión de la Enfermedad , Silenciador del Gen , Inyecciones Subcutáneas , Ratones , Ratones Noqueados , Oligonucleótidos/genética , Oligonucleótidos/farmacología
12.
Nat Commun ; 15(1): 2131, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459068

RESUMEN

AgRP neurons drive hunger, and excessive nutrient intake is the primary driver of obesity and associated metabolic disorders. While many factors impacting central regulation of feeding behavior have been established, the role of microRNAs in this process is poorly understood. Utilizing unique mouse models, we demonstrate that miR-33 plays a critical role in the regulation of AgRP neurons, and that loss of miR-33 leads to increased feeding, obesity, and metabolic dysfunction in mice. These effects include the regulation of multiple miR-33 target genes involved in mitochondrial biogenesis and fatty acid metabolism. Our findings elucidate a key regulatory pathway regulated by a non-coding RNA that impacts hunger by controlling multiple bioenergetic processes associated with the activation of AgRP neurons, providing alternative therapeutic approaches to modulate feeding behavior and associated metabolic diseases.


Asunto(s)
Hambre , MicroARNs , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Hambre/fisiología , Hipotálamo/metabolismo , MicroARNs/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo
13.
J Nepal Health Res Counc ; 21(1): 63-70, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37742151

RESUMEN

BACKGROUND: Medical undergraduates are more prone to emotional distress in comparison to the general population and non-medical undergraduates. This study aimed to identify the prevalence and factors associated with depression and anxiety symptoms among undergraduate medical students. METHODS: A cross-sectional study was conducted among 204 medical students in a medical institute in Kathmandu. Depression, Anxiety and Stress Scale-42 was used to identify the prevalence of depression and anxiety symptoms. The data were analyzed using multivariable logistic regression models. RESULTS: The prevalence of depression and anxiety symptoms was 30.9% and 38.7% respectively. Depression symptoms were more likely to be prevalent among fourth and fifth-year students, with an adjusted odds ratio (aOR 1.96, 95% CI: 1.03-3.75) compared to second and third-year students, and those who failed in the last academic examination (aOR 2.55, 95% CI: 1.28-5.09). Anxiety symptoms were more prevalent among male students (aOR 2.11, 95% CI: 1.04-4.27), those who were from the relatively less advantaged ethnic group (aOR 2.08, 95% CI: 1.04-4.16) and those who stayed outside the dormitory (aOR 2.90, 95% CI: 1.46-5.78). CONCLUSIONS: The prevalence of depression and anxiety symptoms among medical students was high. Psychological support is needed to ensure the mental well-being of medical students.


Asunto(s)
Estudiantes de Medicina , Humanos , Masculino , Estudios Transversales , Depresión/epidemiología , Nepal/epidemiología , Ansiedad/epidemiología
14.
Nat Aging ; 3(1): 64-81, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36743663

RESUMEN

Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin ß3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin ß3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Ratones , Animales , Anciano , Placa Aterosclerótica/metabolismo , Médula Ósea/metabolismo , Integrina beta3/metabolismo , Aterosclerosis/genética , Miocitos del Músculo Liso , Músculo Liso/metabolismo
15.
Insect Biochem Mol Biol ; 144: 103760, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35346814

RESUMEN

Histamine is a fermented food product that exerts adverse health effects on animals when consumed in high amounts. This biogenic amine is fermented by microorganisms from histidine through the activity of histidine decarboxylase. Drosophila melanogaster can discriminate histidine and histamine using GR22e and IR76b in bitter-sensing gustatory receptor neurons (GRNs). In this study, RNA interference screens were conducted to examine 28 uncharacterized gustatory receptor genes using electrophysiology and behavioral experiments, including the binary food choice and proboscis extension response assays. GR9a and GR98a were first identified as specific histamine receptors by evaluating newly generated null mutants and recovery experiments by expressing their wild-type cDNA in the bitter-sensing GRNs. We further determined that histamine sensation was mainly mediated by the labellum but not by the legs, as demonstrated by the proboscis extension response assay. Our findings indicated that toxic histamine directly activates bitter-sensing GRNs in S-type sensilla, and this response is mediated by the GR9a, GR22e, and GR98a gustatory receptors.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histamina , Histidina , Receptores de Superficie Celular/genética , Gusto/fisiología
16.
Curr Biol ; 32(6): 1376-1386.e4, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35176225

RESUMEN

Amino acids are essential nutrients that act as building blocks for protein synthesis. Recent studies in Drosophila have demonstrated that glycine, phenylalanine, and threonine elicit attraction, whereas tryptophan elicits aversion at ecologically relevant concentrations. Here, we demonstrated that eight amino acids, including arginine, glycine, alanine, serine, phenylalanine, threonine, cysteine, and proline, differentially stimulate feeding behavior by activating sweet-sensing gustatory receptor neurons (GRNs) in L-type and S-type sensilla. In turn, this process is mediated by three GRs (GR5a, GR61a, and GR64f), as well as two broadly required ionotropic receptors (IRs), IR25a and IR76b. However, GR5a, GR61a, and GR64f are only required for sensing amino acids in the sweet-sensing GRNs of L-type sensilla. This suggests that amino acid sensing in different type sensilla occurs through dual mechanisms. Furthermore, our findings indicated that ecologically relevant high concentrations of arginine, lysine, proline, valine, tryptophan, isoleucine, and leucine elicit aversive responses via bitter-sensing GRNs, which are mediated by three IRs (IR25a, IR51b, and IR76b). More importantly, our results demonstrate that arginine, lysine, and proline induce biphasic responses in a concentration-dependent manner. Therefore, amino acid detection in Drosophila occurs through two classes of receptors that activate two sets of sensory neurons in physiologically distinct pathways, which ultimately mediates attraction or aversion behaviors.


Asunto(s)
Proteínas de Drosophila , Drosophila , Aminoácidos/metabolismo , Animales , Arginina/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Glicina/metabolismo , Lisina/metabolismo , Fenilalanina/metabolismo , Prolina/metabolismo , Receptores de Superficie Celular/metabolismo , Células Receptoras Sensoriales/fisiología , Gusto/fisiología , Percepción del Gusto/fisiología , Treonina/metabolismo , Triptófano/metabolismo
17.
J Nepal Health Res Counc ; 20(2): 539-545, 2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36550741

RESUMEN

BACKGROUND: Adequate nutrition before and during pregnancy is necessary to maintain women's reproductive health and to ensure healthy foetal outcome. Pregnant women are at high risk of acute malnutrition specifically during humanitarian crisis leading to adverse effects in foetal outcomes and women's health. This study aimed to assess the factors associated with acute malnutrition among pregnant women visiting Antenatal Clinics in two hospitals and a Primary Health Care Centre of Siraha district in the south-eastern plains of Nepal immediately after 2017 flash flood. METHODS: A health-institution based cross-sectional study was conducted among 444 pregnant women of reproductive age (15-49 years) in second and third trimester in three health institutions. Data collection was done in the aftermath of 2017 flash floods through face to face interview. Multiple logistic regression analysis was used to identify the factors associated with acute malnutrition defined as Mid Upper Arm Circumference less than or equals to 21 centimetres. RESULTS: Out of 444 participants, 9.9% were found to be acutely malnourished. Participant's education (AOR[Adjusted Odds Ratio]: 3.09, 95% CI[Confidence Interval]: 1.43-6.70), occupation (AOR: 3.16, 95% CI: 1.08-9.22), husband's occupation (AOR: 6.61, 95% CI: 2.17-20.12), household food security (AOR: 3.39, 95% CI: 1.36-8.49) and participant's dietary diversity (AOR:10.06, 95% CI: 3.35-30.27) were found to be statistically significant factors associated with acute malnutrition among pregnant women. CONCLUSIONS: Participants' silliteracy, unemployment, husband not employed for cash, household food insecurity and low dietary diversity were found to be statistically significant predictors of acute malnutrition among pregnant women during flash floods.


Asunto(s)
Desnutrición , Mujeres Embarazadas , Femenino , Humanos , Embarazo , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Estudios Transversales , Inundaciones , Factores de Riesgo , Nepal/epidemiología , Desnutrición/epidemiología
18.
STAR Protoc ; 3(2): 101410, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35620079

RESUMEN

Food preference is a fundamental behavior for animals to choose nutritious foods while rejecting foods containing toxins. Here, we describe binary food choice assays using Drosophila melanogaster, which are straightforward approaches for the characterization of two-way choice tastants. We detail the preparation of flies and dye-containing food, followed by the binary-choice feeding assays and the determination of the preference index (PI). This protocol is simple, sensitive, and reproducible in qualitatively detecting attractive or aversive characteristics toward any two-way choice tastants. For complete details on the use and execution of this protocol, please refer to Aryal et al. (2022).


Asunto(s)
Drosophila melanogaster , Preferencias Alimentarias , Animales , Bioensayo , Alimentos
19.
Insect Biochem Mol Biol ; 134: 103586, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33992752

RESUMEN

Many foods and drinks contain histamine; however, the mechanisms that drive histamine taste perception have not yet been investigated. Here, we use a simple model organism, Drosophila melanogaster, to dissect the molecular sensors required to taste histamine. We first investigated histidine and histamine taste perception by performing a binary food choice assay and electrophysiology to identify essential sensilla for histamine sensing in the labellum. Histamine was found to activate S-type sensilla, which harbor bitter-sensing gustatory receptor neurons. Moreover, unbiased genetic screening for chemoreceptors revealed that a gustatory receptor, GR22e and an ionotropic receptor, IR76b are required for histamine sensing. Ectopic expression of GR22e was sufficient to induce a response in I-type sensilla, which normally do not respond to histamine. Taken together, our findings provide new insights into the mechanisms by which insects discriminate between the toxic histamine and beneficial histidine via their taste receptors.


Asunto(s)
Proteínas de Drosophila , Histamina , Histidina , Receptores de Superficie Celular , Receptores Ionotrópicos de Glutamato , Animales , Células Quimiorreceptoras/efectos de los fármacos , Proteínas de Drosophila/efectos de los fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Electrofisiología , Histamina/farmacología , Histidina/farmacología , Receptores de Superficie Celular/efectos de los fármacos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/fisiología , Receptores Ionotrópicos de Glutamato/efectos de los fármacos , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/fisiología , Sensilos/efectos de los fármacos , Sensilos/metabolismo , Canales de Sodio/efectos de los fármacos , Canales de Sodio/genética , Canales de Sodio/fisiología , Gusto/genética , Gusto/fisiología
20.
Commun Biol ; 4(1): 1281, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34773080

RESUMEN

Ammonia and its amine-containing derivatives are widely found in natural decomposition byproducts. Here, we conducted biased chemoreceptor screening to investigate the mechanisms by which different concentrations of ammonium salt, urea, and putrescine in rotten fruits affect feeding and oviposition behavior. We identified three ionotropic receptors, including the two broadly required IR25a and IR76b receptors, as well as the narrowly tuned IR51b receptor. These three IRs were fundamental in eliciting avoidance against nitrogenous waste products, which is mediated by bitter-sensing gustatory receptor neurons (GRNs). The aversion of nitrogenous wastes was evaluated by the cellular requirement by expressing Kir2.1 and behavioral recoveries of the mutants in bitter-sensing GRNs. Furthermore, by conducting electrophysiology assays, we confirmed that ammonia compounds are aversive in taste as they directly activated bitter-sensing GRNs. Therefore, our findings provide insights into the ecological roles of IRs as a means to detect and avoid toxic nitrogenous waste products in nature.


Asunto(s)
Células Quimiorreceptoras/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Canales Iónicos Activados por Ligandos/genética , Receptores Ionotrópicos de Glutamato/genética , Canales de Sodio/genética , Animales , Reacción de Prevención , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Heces/química , Femenino , Canales Iónicos Activados por Ligandos/metabolismo , Masculino , Receptores Ionotrópicos de Glutamato/metabolismo , Canales de Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA