Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Mol Cell ; 53(1): 127-39, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24332809

RESUMEN

The endoplasmic reticulum (ER) stress transducer BBF2H7/CREB3L2 is an ER-resident transmembrane transcription factor. In response to physiological ER stress, it is processed at the transmembrane region to generate a cytoplasmic N terminus, which contains a basic leucine zipper (bZIP) domain, and luminal C terminus. The BBF2H7 N terminus functions as a transcription factor to promote the expression of ER-Golgi trafficking-related genes and plays crucial roles in chondrocyte differentiation. Here, we found that the BBF2H7 C terminus is secreted into the extracellular space as a signaling molecule for cell-to-cell communication. The secreted BBF2H7 C terminus directly binds to both Indian hedgehog and its receptor Patched-1, followed by activation of Hedgehog signaling, resulting in promoting the proliferation of neighboring chondrocytes. The dual N- and C-terminal functions of BBF2H7 triggered by physiological ER stress may allow chondrocytes to simultaneously regulate distinct cellular events for differentiation and proliferation in developing cartilage.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cartílago/metabolismo , Proliferación Celular , Condrocitos/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Cartílago/citología , Células Cultivadas , Condrocitos/citología , Retículo Endoplásmico/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Ratones , Ratones Noqueados , Estructura Terciaria de Proteína
2.
FASEB J ; 34(1): 865-880, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31914686

RESUMEN

Intramembrane cleavage of transmembrane proteins is a fundamental cellular process to produce important signals that elicit biological responses. These proteolytic events are known as regulated intramembrane proteolysis (RIP). ATF6 and BBF2H7 are transmembrane basic leucine zipper transcription factors and are subjected to RIP by site-1 protease (S1P) and site-2 protease (S2P) sequentially in response to endoplasmic reticulum (ER) stress. However, the detailed mechanisms responsible for RIP of the transcription factors, including the precise cutting sites, are still unknown. In this study, we demonstrated that S1P cleaves BBF2H7 just before the RXXL S1P recognition motif. Conversely, S2P cut at least three different sites in the membrane (next to Leu380, Met381, and Leu385), indicating that S2P cleaves the substrates at variable sites or via a multistep process. Interestingly, we found BBF2H7-derived small peptide (BSP) fragments located between the S1P and S2P cleavage sites in cells exposed to ER stress. Major type of BSP fragments was composed of 45 amino acid including partial transmembrane and luminal regions and easily aggregates like amyloid ß (Aß) protein. These results advance the understanding of poorly characterized ER stress-dependent RIP. Furthermore, the aggregable peptides produced by ER stress could link to the pathophysiology of neurodegenerative disorders.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Proteolisis , Factor de Transcripción Activador 6/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Humanos , Fragmentos de Péptidos/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Transcripción Genética/fisiología
3.
J Biol Chem ; 294(1): 101-115, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30413537

RESUMEN

We previously reported that among the 37 RING finger protein (RNF) family members, RNF183 mRNA is specifically expressed in the kidney under normal conditions. However, the mechanism supporting its kidney-specific expression pattern remains unclear. In this study, we elucidated the mechanism of the transcriptional activation of murine Rnf183 in inner-medullary collecting duct cells. Experiments with anti-RNF183 antibody revealed that RNF183 is predominantly expressed in the renal medulla. Among the 37 RNF family members, Rnf183 mRNA expression was specifically increased in hypertonic conditions, a hallmark of the renal medulla. RNF183 up-regulation was consistent with the activation of nuclear factor of activated T cells 5 (NFAT5), a transcription factor essential for adaptation to hypertonic conditions. Accordingly, siRNA-mediated knockdown of NFAT5 down-regulated RNF183 expression. Furthermore, the -3,466 to -3,136-bp region upstream of the mouse Rnf183 promoter containing the NFAT5-binding motif is conserved among mammals. A luciferase-based reporter vector containing the NFAT5-binding site was activated in response to hypertonic stress, but was inhibited by a mutation at the NFAT5-binding site. ChIP assays revealed that the binding of NFAT5 to this DNA site is enhanced by hypertonic stress. Of note, siRNA-mediated RNF183 knockdown increased hypertonicity-induced caspase-3 activation and decreased viability of mIMCD-3 cells. These results indicate that (i) RNF183 is predominantly expressed in the normal renal medulla, (ii) NFAT5 stimulates transcriptional activation of Rnf183 by binding to its cognate binding motif in the Rnf183 promoter, and (iii) RNF183 protects renal medullary cells from hypertonicity-induced apoptosis.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Túbulos Renales Colectores/metabolismo , Presión Osmótica , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/biosíntesis , Regulación hacia Arriba , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Células HEK293 , Células HeLa , Humanos , Túbulos Renales Colectores/citología , Ratones , Elementos de Respuesta , Factores de Transcripción/genética , Transcripción Genética , Ubiquitina-Proteína Ligasas/genética
4.
Lab Invest ; 100(6): 849-862, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32060407

RESUMEN

Wolfram Syndrome 1 (WFS1) protein is an endoplasmic reticulum (ER) factor whose deficiency results in juvenile-onset diabetes secondary to cellular dysfunction and apoptosis. The mechanisms guiding ß-cell outcomes secondary to WFS1 function, however, remain unclear. Here, we show that WFS1 preserves normal ß-cell physiology by promoting insulin biosynthesis and negatively regulating ER stress. Depletion of Wfs1 in vivo and in vitro causes functional defects in glucose-stimulated insulin secretion and insulin content, triggering Chop-mediated apoptotic pathways. Genetic proof of concept studies coupled with RNA-seq reveal that increasing WFS1 confers a functional and a survival advantage to ß-cells under ER stress by increasing insulin gene expression and downregulating the Chop-Trib3 axis, thereby activating Akt pathways. Remarkably, WFS1 and INS levels are reduced in type-2 diabetic (T2DM) islets, suggesting that WFS1 may contribute to T2DM ß-cell pathology. Taken together, this work reveals essential pathways regulated by WFS1 to control ß-cell survival and function primarily through preservation of ER homeostasis.


Asunto(s)
Células Secretoras de Insulina , Proteínas de la Membrana , Animales , Glucemia/análisis , Glucemia/metabolismo , Línea Celular , Células Cultivadas , Estrés del Retículo Endoplásmico/fisiología , Humanos , Insulina/análisis , Insulina/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones Noqueados , Transducción de Señal/fisiología , Síndrome de Wolfram
5.
Biochem Biophys Res Commun ; 514(1): 217-223, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31029429

RESUMEN

Mucopolysaccharidosis type II (MPS II) is one of the most common mucopolysaccharidoses, which is caused by mutation of the gene encoding iduronate 2-sulfatase (IDS). The loss of function of IDS leads to the accumulation of heparan sulfate and dermatan sulfate of glycosaminoglycans throughout the body, resulting in skeletal deformities, mental retardation, rigid joints, and thick skin. Recently, enzyme replacement therapy has become a common strategy for treating this condition. However, its effectiveness on the central nervous system (CNS) is limited because intravenously administered recombinant IDS (rIDS) cannot pass through the blood brain barrier. Therefore, several methods for delivering rIDS to the CNS, using anti-human transferrin receptor antibody and adeno-associated virus 9, have been explored. To investigate additional approaches for treatment, more cognition about the intracellular dynamics of mutant IDS is essential. We have already found that mutant IDS accumulated in the endoplasmic reticulum (ER) and was degraded by ER-associated degradation (ERAD). Although the dynamics of degradation of mutant IDS was revealed, the molecular mechanism related to the folding of mutant IDS in the ER remained unclear. In this research, we confirmed that mutant IDS retained in the ER would be folded by binding with calnexin (CNX). Thus, knockdown of CNX reduced the translocation of mutant IDS from ER to lysosome and its enzyme activity, indicating that the correct folding of this protein via interaction with CNX ensures its functional activity. These findings reveal the possibility that modifying the interaction of mutant IDS and CNX could contribute to alternative therapeutic strategies for MPS II.


Asunto(s)
Calnexina/metabolismo , Glicoproteínas/genética , Alcaloides/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Glicoproteínas/química , Glicoproteínas/metabolismo , Células HeLa , Humanos , Lisosomas/metabolismo , Mucopolisacaridosis II/genética , Mutación , Pliegue de Proteína , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
6.
Biochem Biophys Res Commun ; 514(2): 436-442, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31053298

RESUMEN

Nuclear factor of activated T-cells 5 (NFAT5) directly binds to the promoter of the RING finger protein 183 (RNF183) gene and induces its transcription under hypertonic conditions in mouse inner-medullary collecting duct (mIMCD-3) cells. However, there is no specific anti-RNF183 antibody for immunostaining; therefore, it is unclear whether NFAT5 regulates RNF183 expression in vivo and where RNF183 is localized in the kidney. This study investigated NFAT5-regulated in vivo RNF183 expression and localization using CRISPR/Cas9-mediated RNF183-green fluorescent protein (RNF183-GFP) knock-in mice. GFP with linker sequences was introduced upstream of an RNF183 open reading frame in exon 3 by homologous recombination through a donor plasmid. Immunofluorescence staining using GFP antibody revealed that GFP signals gradually increase from the outer medulla down to the inner medulla and colocalize with aquaporin-2. Furosemide treatment dramatically decreased RNF183 expression in the renal medulla, consistent with the decrease in NFAT5 protein and target gene mRNA expression. Furosemide treatment of mIMCD-3 cells did not affect mRNA expression and RNF183 promoter activities. These results indicated that RNF183 is predominantly expressed in the renal medullary collecting ducts, and that decreased renal medullary tonicity by furosemide treatment decreases RNF183 expression by NFAT5 downregulation.


Asunto(s)
Regulación de la Expresión Génica , Médula Renal/fisiología , Túbulos Renales Colectores/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Regulación hacia Abajo/efectos de los fármacos , Femenino , Furosemida/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Sustitución del Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Ratones
7.
J Neurochem ; 144(1): 35-49, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28921568

RESUMEN

Unfolded protein response (UPR) has roles not only in resolving the accumulation of unfolded proteins owing to endoplasmic reticulum (ER) stress, but also in regulation of cellular physiological functions. ER stress transducers providing the branches of UPR signaling are known to localize in distal dendritic ER of neurons. These reports suggest that local activation of UPR branches may produce integrated outputs for distant communication, and allow regulation of local events in highly polarized neurons. Here, we demonstrated that synaptic activity- and brain-derived neurotrophic factor (BDNF)-dependent local activation of UPR signaling could be associated with dendritic functions through retrograde signal propagation by using murine neuroblastoma cell line, Neuro-2A and primary cultured hippocampal neurons derived from postnatal day 0 litter C57BL/6 mice. ER stress transducer, inositol-requiring kinase 1 (IRE1), was activated at postsynapses in response to excitatory synaptic activation. Activated dendritic IRE1 accelerated accumulation of the downstream transcription factor, x-box-binding protein 1 (XBP1), in the nucleus. Interestingly, excitatory synaptic activation-dependent up-regulation of XBP1 directly facilitated transcriptional activation of BDNF. BDNF in turn drove its own expression via IRE1-XBP1 pathway in a protein kinase A-dependent manner. Exogenous treatment with BDNF promoted extension and branching of dendrites through the protein kinase A-IRE1-XBP1 cascade. Taken together, our findings indicate novel mechanisms for communication between soma and distal sites of polarized neurons that are coordinated by local activation of IRE1-XBP1 signaling. Synaptic activity- and BDNF-dependent distinct activation of dendritic IRE1-XBP1 cascade drives BDNF expression in cell soma and may be involved in dendritic extension. Cover Image for this issue: doi. 10.1111/jnc.14159.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Neuronas/metabolismo , Respuesta de Proteína Desplegada , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Línea Celular Tumoral , Núcleo Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Dendritas/metabolismo , Retículo Endoplásmico/metabolismo , Ácido Glutámico/farmacología , Hipocampo/citología , Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Neuroblastoma , Proteínas Serina-Treonina Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/fisiología , Sinapsis/fisiología , Proteína 1 de Unión a la X-Box/metabolismo
8.
J Cell Sci ; 128(23): 4353-65, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26503158

RESUMEN

Luman (also known as CREB3) is a type-II transmembrane transcription factor belonging to the OASIS family that localizes to the endoplasmic reticulum (ER) membrane under normal conditions. In response to ER stress, OASIS-family members are subjected to regulated intramembrane proteolysis (RIP), following which the cleaved N-terminal fragments translocate to the nucleus. In this study, we show that treatment of bone marrow macrophages (BMMs) with cytokines - macrophage colony-stimulating factor (M-CSF) and RANKL (also known as TNFSF11) - causes a time-dependent increase in Luman expression, and that Luman undergoes RIP and becomes activated during osteoclast differentiation. Small hairpin (sh)RNA-mediated knockdown of Luman in BMMs prevented the formation of multinucleated osteoclasts, concomitant with the suppression of DC-STAMP, a protein that is essential for cell-cell fusion in osteoclastogenesis. The N-terminus of Luman facilitates promoter activity of DC-STAMP, resulting in upregulation of DC-STAMP expression. Furthermore, Luman interacts with DC-STAMP, and controls its stability and localization. These results suggest that Luman regulates the multinucleation of osteoclasts by promoting cell fusion of mononuclear osteoclasts through DC-STAMP induction and intracellular distribution during osteoclastogenesis.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Macrófagos/metabolismo , Proteínas de la Membrana/biosíntesis , Proteínas del Tejido Nervioso/biosíntesis , Osteoclastos/metabolismo , Animales , Células de la Médula Ósea/citología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Factor Estimulante de Colonias de Macrófagos/genética , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/citología , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos ICR , Proteínas del Tejido Nervioso/genética , Osteoclastos/citología , Estabilidad Proteica , Transporte de Proteínas , Ligando RANK/genética , Ligando RANK/metabolismo
9.
Biol Pharm Bull ; 40(9): 1337-1343, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28867719

RESUMEN

Secretory and membrane proteins are synthesized in ribosomes, then mature in the endoplasmic reticulum (ER), but if ER function is impaired, immature defective proteins accumulate in the ER. This situation is called ER stress: in response, a defensive mechanism called the unfolded protein response (UPR) is activated in cells to reduce the defective proteins. During the UPR, the ER transmembrane sensor molecules inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), and RNA-dependent protein kinase (PKR)-like ER kinase (PERK) are activated, stress signals are transduced to the outside of the ER, and various cell responses, including gene induction, occur. In ER-associated degradation (ERAD), one type of UPR, defective proteins are eventually expelled from the ER and degraded in the cytoplasm through the ubiquitin proteasome system. Since ER stress has been reported to have relationships with neurodegenerative diseases, diabetes, metabolic syndromes, and cancer, it is the focus of increased attention from the perspectives of elucidating pathogenic mechanisms, and in the development of therapeutics.


Asunto(s)
Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Animales , Enfermedad , Retículo Endoplásmico/efectos de los fármacos , Degradación Asociada con el Retículo Endoplásmico , Humanos , Respuesta de Proteína Desplegada/efectos de los fármacos
10.
Biochem Biophys Res Commun ; 480(2): 166-172, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27725157

RESUMEN

The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 or PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/metabolismo , Exosomas/metabolismo , Cuerpos Multivesiculares/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , eIF-2 Quinasa/metabolismo , Células HeLa , Humanos , Transducción de Señal
11.
J Biol Chem ; 289(20): 13810-20, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24711445

RESUMEN

The endoplasmic reticulum (ER) stress transducer, box B-binding factor 2 human homolog on chromosome 7 (BBF2H7), is a basic leucine zipper (bZIP) transmembrane transcription factor. This molecule is activated in response to ER stress during chondrogenesis. The activated BBF2H7 accelerates cartilage matrix protein secretion through the up-regulation of Sec23a, which is responsible for protein transport from the ER to the Golgi apparatus and is a target of BBF2H7. In the present study, we elucidated the mechanisms of the transcriptional activation of Bbf2h7 in chondrocytes. The transcription of Bbf2h7 is regulated by Sex determining region Y-related high-mobility group box 9 (Sox9), a critical factor for chondrocyte differentiation that facilitates the expression of one of the major cartilage matrix proteins Type II collagen (Col2), through binding to the Sox DNA-binding motif in the Bbf2h7 promoter. BBF2H7 is activated as a transcription factor in response to physiological ER stress caused by abundant synthesis of cartilage matrix proteins, and consequently regulates the secretion of cartilage matrix proteins. Taken together, our findings demonstrate novel regulatory mechanisms of Sox9 for controlling the secretion of cartilage matrix proteins through the activation of BBF2H7-Sec23a signaling during chondrogenesis.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Condrocitos/citología , Condrocitos/metabolismo , Condrogénesis , Estrés del Retículo Endoplásmico , Factor de Transcripción SOX9/metabolismo , Activación Transcripcional , Animales , Proliferación Celular , Humanos , Proteínas Matrilinas/metabolismo , Ratas , Transducción de Señal , Regulación hacia Arriba
12.
J Biol Chem ; 287(11): 8144-53, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22262831

RESUMEN

OASIS is a basic leucine zipper transmembrane transcription factor localized in the endoplasmic reticulum (ER) that is cleaved in its transmembrane region in response to ER stress. This novel ER stress transducer has been demonstrated to express in osteoblasts and astrocytes and promote terminal maturation of these cells. Additionally, OASIS is highly expressed in goblet cells of the large intestine. In this study, we investigated the roles of OASIS in goblet cell differentiation in the large intestine. To analyze the functions of OASIS in goblet cells, we examined morphological changes and the expression of goblet cell differentiation markers in the large intestine of Oasis(-/-) mice. By disrupting the Oasis gene, the number of goblet cells and production of mucus were decreased in the large intestine. Oasis(-/-) goblet cells showed abnormal morphology of mucous vesicles and rough ER. The expression levels of mature goblet cell markers were lower, and conversely those of early goblet cell markers were higher in Oasis(-/-) mice, indicating that differentiation from early to mature goblet cells is impaired in Oasis(-/-) mice. To determine the association of OASIS with other factors involved in goblet cell differentiation, in vitro experiments using a cell culture model were performed. We found that OASIS was activated in response to mild ER stress that is induced in differentiating goblet cells. Knockdown of the Oasis transcript perturbed goblet cell terminal differentiation. Together, our data indicate that OASIS plays crucial roles in promoting the differentiation of early goblet cells to mature goblet cells in the large intestine.


Asunto(s)
Diferenciación Celular/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Células Caliciformes/metabolismo , Intestino Grueso/metabolismo , Modelos Biológicos , Proteínas del Tejido Nervioso/metabolismo , Animales , Antígenos de Diferenciación/biosíntesis , Línea Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Regulación de la Expresión Génica/fisiología , Células Caliciformes/citología , Intestino Grueso/citología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética
13.
J Biol Chem ; 287(43): 36190-200, 2012 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-22936798

RESUMEN

BBF2H7 (box B-binding factor 2 human homolog on chromosome 7) is a basic leucine zipper transmembrane transcription factor that belongs to the cyclic AMP-responsive element-binding protein (CREB)/activating transcription factor (ATF) family. This novel endoplasmic reticulum (ER) stress transducer is localized in the ER and is cleaved in its transmembrane region in response to ER stress. BBF2H7 has been shown to be expressed in proliferating chondrocytes in cartilage during the development of long bones. The target of BBF2H7 is Sec23a, one of the coat protein complex II components. Bbf2h7-deficient (Bbf2h7(-/-)) mice exhibit severe chondrodysplasia, with expansion of the rough ER in proliferating chondrocytes caused by impaired secretion of extracellular matrix (ECM) proteins. We observed a decrease in the number of proliferating chondrocytes in the cartilage of Bbf2h7(-/-) mice. TUNEL staining of the cartilage showed that apoptosis was promoted in Bbf2h7(-/-) chondrocytes. Atf5 (activating transcription factor 5), another member of the CREB/ATF family and an antiapoptotic factor, was also found to be a target of BBF2H7 in chondrocytes. ATF5 activated the transcription of Mcl1 (myeloid cell leukemia sequence 1), which belongs to the antiapoptotic B-cell leukemia/lymphoma 2 family, to suppress apoptosis. Finally, we found that the BBF2H7-ATF5-MCL1 pathway specifically suppressed ER stress-induced apoptosis in chondrocytes. Taken together, our findings indicate that BBF2H7 is activated in response to ER stress caused by synthesis of abundant ECM proteins and plays crucial roles as a bifunctional regulator to accelerate ECM protein secretion and suppress ER stress-induced apoptosis by activating the ATF5-MCL1 pathway during chondrogenesis.


Asunto(s)
Factores de Transcripción Activadores/metabolismo , Apoptosis/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Cartílago/metabolismo , Placa de Crecimiento/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción Activadores/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Cartílago/citología , Proliferación Celular , Condrocitos/citología , Condrocitos/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Placa de Crecimiento/citología , Humanos , Ratones , Ratones Noqueados , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
14.
IUBMB Life ; 63(4): 233-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21438114

RESUMEN

The endoplasmic reticulum (ER) plays role in the maintenance of numerous aspects of cellular and organismal homeostasis by folding, modifying, and exporting nascent secretory and transmembrane proteins. Failure of the ER's adaptive capacity results in accumulation of unfolded or malfolded proteins in the ER lumen (ER stress). To avoid cellular damage, mammalian cells activate the specific signals from the ER to the cytosol or nucleus to enhance the capacity for protein folding, attenuate the synthesis of proteins, and degrade unfolded proteins. These signaling pathways are collectively known as the unfolded protein response (UPR). The canonical branches of the UPR are mediated by three ER membrane-bound proteins, PERK, IRE1, and ATF6. These ER stress transducers basically play important roles in cell survival after ER stress. Recently, novel types of ER stress transducers, OASIS family members that share a region of high sequence similarity with ATF6 have been identified. They have a transmembrane domain, which allows them to associate with the ER, and possess a transcription-activation domain and a bZIP domain. OASIS family proteins include OASIS, BBF2H7, CREBH, AIbZIP, and Luman. Despite the structural similarities among OASIS family proteins and ATF6, differences in activating stimuli, tissue distribution, and response element binding indicate specialized functions of each member on regulating the UPR in the specific organs and tissues. Here, we summarize our current understanding of biochemical characteristics and in vivo functions of OASIS family proteins, particularly focusing on OASIS and BBF2H7. A growing body of new works suggests that the UPR branches regulated by OASIS family members play essential roles in cell differentiation and maturation or maintenance of basal cellular homeostasis in mammals.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Leucina Zippers , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Respuesta de Proteína Desplegada , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular , Condrocitos/citología , Condrogénesis , Retículo Endoplásmico/fisiología , Humanos , Transporte de Proteínas , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo
15.
Cell Death Discov ; 7(1): 152, 2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34226518

RESUMEN

The nuclear envelope (NE) safeguards the genome and is pivotal for regulating genome activity as the structural scaffold of higher-order chromatin organization. NE had been thought as the stable during the interphase of cell cycle. However, recent studies have revealed that the NE can be damaged by various stresses such as mechanical stress and cellular senescence. These types of stresses are called NE stress. It has been proposed that NE stress is closely related to cellular dysfunctions such as genome instability and cell death. Here, we found that an endoplasmic reticulum (ER)-resident transmembrane transcription factor, OASIS, accumulates at damaged NE. Notably, the major components of nuclear lamina, Lamin proteins were depleted at the NE where OASIS accumulates. We previously demonstrated that OASIS is cleaved at the membrane domain in response to ER stress. In contrast, OASIS accumulates as the full-length form to damaged NE in response to NE stress. The accumulation to damaged NE is specific for OASIS among OASIS family members. Intriguingly, OASIS colocalizes with the components of linker of nucleoskeleton and cytoskeleton complexes, SUN2 and Nesprin-2 at the damaged NE. OASIS partially colocalizes with BAF, LEM domain proteins, and a component of ESCRT III, which are involved in the repair of ruptured NE. Furthermore, OASIS suppresses DNA damage induced by NE stress and restores nuclear deformation under NE stress conditions. Our findings reveal a novel NE stress response pathway mediated by OASIS.

16.
iScience ; 23(12): 101810, 2020 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-33299977

RESUMEN

Endoplasmic reticulum (ER) stress is known to induce pro-inflammatory response and ultimately leads to cell death. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER-localized protein whose expression and secretion is induced by ER stress and a crucial survival factor. However, the underlying mechanism of how MANF exerts its cytoprotective activity remains unclear due to the lack of knowledge of its receptor. Here we show that Neuroplastin (NPTN) is such a receptor for MANF. Biochemical analysis shows the physiological interaction between MANF and NPTN on the cell surface. Binding of MANF to NPTN mitigates the inflammatory response and apoptosis via suppression of NF-kß signaling. Our results demonstrate that NPTN is a cell surface receptor for MANF, which modulates inflammatory responses and cell death, and that the MANF-NPTN survival signaling described here provides potential therapeutic targets for the treatment of ER stress-related disorders, including diabetes mellitus, neurodegeneration, retinal degeneration, and Wolfram syndrome.

17.
Brain Res ; 1749: 147139, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33010207

RESUMEN

Aggregation, fibril formation, and deposition of amyloid ß (Aß) protein are believed to be the central pathogeneses of Alzheimer's disease (AD). Numerous studies have shown that fibril formation is promoted by preformed seeds at the beginning of the aggregation process. Therefore, aggregated molecules that promote fibrillization of Aß protein as seeds could affect the pathology. We recently found that approximately 40 amino acid hydrophobic peptides, BBF2H7-derived small peptide (BSP) fragments, are generated via intramembranous cleavage under endoplasmic reticulum (ER) stress conditions. Interestingly, similar to Aß protein, the fragments exhibit a high aggregation propensity and form fibril structures. It has been noted that ER stress is involved in the pathogenesis of AD. In this study, we examined the effect of BSP fragments on aggregation and cytotoxicity of Aß1-40 protein, which is generated as a major species of Aß protein, but has a lower aggregative property than Aß1-42 protein. We demonstrated that BSP fragments promote aggregation of Aß1-40 protein. Aggregates of Aß1-40 protein mediated by BSP fragments also exhibited potent neurotoxicity. Our findings suggest the possibility that BSP fragments affect accumulation of Aß proteins and are involved in the pathogenesis of AD.


Asunto(s)
Amiloide/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Línea Celular , Humanos , Fragmentos de Péptidos/metabolismo
18.
Sci Transl Med ; 12(540)2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32321868

RESUMEN

Differentiation of insulin-producing pancreatic ß cells from induced pluripotent stem cells (iPSCs) derived from patients with diabetes promises to provide autologous cells for diabetes cell replacement therapy. However, current approaches produce patient iPSC-derived ß (SC-ß) cells with poor function in vitro and in vivo. Here, we used CRISPR-Cas9 to correct a diabetes-causing pathogenic variant in Wolfram syndrome 1 (WFS1) in iPSCs derived from a patient with Wolfram syndrome (WS). After differentiation to ß cells with our recent six-stage differentiation strategy, corrected WS SC-ß cells performed robust dynamic insulin secretion in vitro in response to glucose and reversed preexisting streptozocin-induced diabetes after transplantation into mice. Single-cell transcriptomics showed that corrected SC-ß cells displayed increased insulin and decreased expression of genes associated with endoplasmic reticulum stress. CRISPR-Cas9 correction of a diabetes-inducing gene variant thus allows for robust differentiation of autologous SC-ß cells that can reverse severe diabetes in an animal model.


Asunto(s)
Diabetes Mellitus , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Animales , Diferenciación Celular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/terapia , Edición Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Ratones
19.
Sci Rep ; 9(1): 5199, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914711

RESUMEN

Endoplasmic reticulum (ER) stress in beta cells is an important pathogenic component of both type 1 and type 2 diabetes mellitus, as well as genetic forms of diabetes, especially Wolfram syndrome. However, there are currently no convenient ways to assess ER stress in beta cells, raising the need for circulating ER stress markers indicative of beta cell health. Here we show that pancreatic stone protein/regenerating protein (PSP/reg) is a potential biomarker for ER stressed beta cells. PSP/reg levels are elevated in cell culture and mouse models of Wolfram syndrome, a prototype of ER stress-induced diabetes. Moreover, PSP/reg expression is induced by the canonical chemical inducers of ER stress, tunicamycin and thapsigargin. Circulating PSP/reg levels are also increased in some patients with Wolfram syndrome. Our results therefore reveal PSP/reg as a potential biomarker for beta cells under chronic ER stress, as is the case in Wolfram syndrome.


Asunto(s)
Estrés del Retículo Endoplásmico , Células Secretoras de Insulina/metabolismo , Litostatina/metabolismo , Adulto , Animales , Biomarcadores/sangre , Niño , Humanos , Litostatina/sangre , Masculino , Proteínas de la Membrana/metabolismo , Ratones Noqueados , Modelos Biológicos , Ratas , Síndrome de Wolfram/sangre , Adulto Joven
20.
Sci Rep ; 9(1): 20301, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31889078

RESUMEN

RNF183 is a ubiquitin ligase containing RING-finger and transmembrane domains, and its expression levels are increased in patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, and in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Here, we further demonstrate that RNF183 was induced to a greater degree in the dextran sulfate sodium (DSS)-treated IBD model at a very early stage than were inflammatory cytokines. In addition, fluorescence-activated cell sorting and polymerase chain reaction analysis revealed that RNF183 was specifically expressed in epithelial cells of DSS-treated mice, which suggested that increased levels of RNF183 do not result from the accumulation of immune cells. Furthermore, we identified death receptor 5 (DR5), a member of tumour necrosis factor (TNF)-receptor superfamily, as a substrate of RNF183. RNF183 mediated K63-linked ubiquitination and lysosomal degradation of DR5. DR5 promotes TNF-related apoptosis inducing ligand (TRAIL)-induced apoptosis signal through interaction with caspase-8. Inhibition of RNF183 expression was found to suppress TRAIL-induced activation of caspase-8 and caspase-3. Thus, RNF183 promoted not only DR5 transport to lysosomes but also TRAIL-induced caspase activation and apoptosis. Together, our results provide new insights into potential roles of RNF183 in DR5-mediated caspase activation in IBD pathogenesis.


Asunto(s)
Enfermedades Inflamatorias del Intestino/metabolismo , Lisosomas/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Apoptosis , Biomarcadores , Línea Celular , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Expresión Génica , Humanos , Inmunohistoquímica , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/patología , Ratones , Membrana Mucosa/metabolismo , Membrana Mucosa/patología , Unión Proteica , Transporte de Proteínas , Proteolisis , ARN Mensajero , Índice de Severidad de la Enfermedad , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA