Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 98(3): 615-629, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32446933

RESUMEN

A wide spectrum of immunological functions has been attributed to Interleukin 9 (IL-9), including effects on the survival and proliferation of immune and parenchymal cells. In recent years, emerging evidence suggests that IL-9 expression can promote tissue repair in inflammatory conditions. However, data about the involvement of IL-9 in kidney tissue protection is very limited. Here, we investigated the role of IL-9 in Adriamycin-induced nephropathy (AN), a mouse model for proteinuric chronic kidney disease. Compared to wild type mice, IL-9 knockout (Il9-/-) mice with AN displayed accelerated development of proteinuria, aggravated glomerulosclerosis and deterioration of kidney function. At an early stage of disease, the Il9-/- mice already displayed a higher extent of glomerular podocyte injury and loss of podocyte number compared to wild type mice. In the kidney, T cells and innate lymphoid cells produced IL-9. However, selective deficiency of IL-9 in the innate immune system in Il9-/-Rag2-/- mice that lack T and B cells did not alter the outcome of AN, indicating that IL-9 derived from the adaptive immune system was the major driver of tissue protection in this model. Mechanistically, we could show that podocytes expressed the IL-9 receptor in vivo and that IL-9 signaling protects podocytes from Adriamycin-induced apoptosis in vitro. Finally, in vivo treatment with IL-9 effectively protected wild type mice from glomerulosclerosis and kidney failure in the AN model. The detection of increased serum IL-9 levels in patients with primary focal and segmental glomerulosclerosis further suggests that IL-9 production is induced by glomerular injury in humans. Thus, IL-9 confers protection against experimental glomerulosclerosis, identifying the IL-9 pathway as a potential therapeutic target in proteinuric chronic kidney disease.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Animales , Doxorrubicina/toxicidad , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/prevención & control , Humanos , Inmunidad Innata , Interleucina-9 , Linfocitos , Ratones , Proteinuria/inducido químicamente , Proteinuria/prevención & control
2.
J Am Soc Nephrol ; 28(7): 2068-2080, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28154198

RESUMEN

Innate lymphoid cells (ILCs) have an important role in the immune system's response to different forms of infectious and noninfectious pathologies. In particular, IL-5- and IL-13-producing type 2 ILCs (ILC2s) have been implicated in repair mechanisms that restore tissue integrity after injury. However, the presence of renal ILCs in humans has not been reported. In this study, we show that ILC populations are present in the healthy human kidney. A detailed characterization of kidney-residing ILC populations revealed that IL-33 receptor-positive ILC2s are a major ILC subtype in the kidney of humans and mice. Short-term IL-33 treatment in mice led to sustained expansion of IL-33 receptor-positive kidney ILC2s and ameliorated adriamycin-induced glomerulosclerosis. Furthermore, the expansion of ILC2s modulated the inflammatory response in the diseased kidney in favor of an anti-inflammatory milieu with a reduction of pathogenic myeloid cell infiltration and a marked accumulation of eosinophils that was required for tissue protection. In summary, kidney-residing ILC2s can be effectively expanded in the mouse kidney by IL-33 treatment and are central regulators of renal repair mechanisms. The presence of ILC2s in the human kidney tissue identifies these cells as attractive therapeutic targets for CKD in humans.


Asunto(s)
Interleucina-33/fisiología , Enfermedades Renales/inmunología , Glomérulos Renales/patología , Linfocitos/inmunología , Animales , Proliferación Celular , Células Cultivadas , Progresión de la Enfermedad , Femenino , Humanos , Inmunidad Innata , Interleucina-33/uso terapéutico , Enfermedades Renales/prevención & control , Linfocitos/clasificación , Masculino , Ratones , Ratones Endogámicos BALB C , Esclerosis/inmunología , Esclerosis/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA